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Introduction: During an immune response, macrophages undergo systematic

metabolic rewiring tailored to support their functions. Branched-chain amino

acid (BCAA) metabolism has been reported to modulate macrophage function;

however, its role in macrophage alternative activation remain unclear. We aimed

to investigate the role of BCAA metabolism in macrophage alternative activation.

Method: The metabolomics of BMDM-derived M0 and M2 macrophages were

analyzed using LC-MS. BCAAs were supplemented and genes involved in BCAA

catabolismwere inhibited during M2macrophage polarization. The expression of

M2 marker genes was assessed through RT-qPCR, immunofluorescence, and

flow cytometry.

Results and discussion: Metabolomic analysis identified increased BCAA

metabolism as one of the most significantly rewired pathways upon alternative

activation. M2 macrophages had significantly lower BCAA levels compared to

controls. BCAA supplementation promoted M2 macrophage polarization both in

vitro and in vivo and increased oxidative phosphorylation in M2 macrophages.

Blocking BCAA entry intomitochondria by knockdown of SLC25A44 inhibited M2

macrophage polarization. Furthermore, M2 macrophages polarization was

suppressed by knockdown of Branched-chain amino-acid transaminase 2

(BCAT2) and branched chain keto acid dehydrogenase E1 subunit alpha

(BCKDHA), both of which are key enzymes involved in BCAA oxidation. Overall,

our findings suggest that BCAA catabolism plays an important role in polarization

toward M2 macrophages.
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1 Introduction

Macrophages are crucial players during inflammatory processes

with great functional plasticity. They initially reacts with a variety of

antigens and dynamically change their functions over the course of

an immune response, releasing cytokines and chemokines that

activate other immune cells (1). During the inflammatory process,

upon sensing classical activation signals associated with infection

such as lipopolysaccharide (LPS, a bacterial cell wall component)

and interferon-g (IFN-g), macrophages turn on pro-inflammatory

functions to help eliminate pathogens and initiate adaptive immune

responses (2). In contrast, in response to cytokines such as

interleukin-4 (IL-4), macrophages are alternatively activated to

reduce tissue damage and initiate tissue regeneration and

remodeling (3). M2 macrophages are also important in the

response to helminth and fungal infections (4, 5). An increasing

amount of literature suggests that different functional states of

macrophages are coupled with metabolic reprogramming, which

plays an important role in orchestrating macrophage functions (6).

For instance, one of the most distinctive metabolic characteristics

between M1 and M2 macrophages is L-arginine metabolism. The

catalytic enzymes responsible for L-arginine metabolism, inducible

nitric oxide synthase (iNOS) and arginase 1, were recognized as

hallmark effector molecules of M1 and M2 macrophages,

respectively (7). Another example is the citrate cycle: while the

citrate cycle is intact in M2 macrophages, M1 macrophages show

disruptions at two points—after citrate and after succinate. These

interruptions lead to the accumulation of metabolites such as

citrate, itaconate and succinate, which support the inflammatory

activation of M1 macrophages (8).

Branched-chain amino acid (BCAA), including leucine (leu),

isoleucine (Ile) and valine (Val), are essential dietary amino acids

participating in a variety of crucial biochemical functions (9). BCAAs

are transported into mitochondria by solute carrier family 25,

member 44 (SLC25A44) (10, 11). The first step of BCAA

catabolism involves the conversion of BCAAs to branched-chain a-
keto acids (BCKAs), including a-ketoisovalerate (KIV), a-keto-b-
methylvalerate (KMV), a-ketoisocaproate (KIC), through

transamination catalyzed by the branched-chain aminotransferases

BCAT1 and BCAT2 in the cytoplasm and the mitochondria,

respectively (12). BCKAs undergo further oxidative decarboxylation

to form acyl-CoA derivatives and NADH through the branched-

chain ɑ-ketoacid dehydrogenase (BCKDH) complex. This complex,

situated in the mitochondria, serves as a rate-limiting enzyme in the

oxidation of BCAAs (13).

Interestingly, several recent studies have provided evidence that

BCAA metabolism may influence macrophage metabolism and

activation. Exposure to BCKAs reduced the phagocytic activity of

macrophages (14). Inhibition of BCAT1 activity led to the reduction

of oxygen consumption, glycolysis and cell migration in

macrophages in vitro, which was shown to be associated with

reduced IRG1 levels and itaconate synthesis (15). High level of

BCAAs (10 mM) stimulated the release of cytokines, such as IL-6,

TNF-a, and ICAM-1, in peripheral blood mononuclear

cells (PBMCs) (16). A recent study has shown that BCAA
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supplementation enhances both M1 and M2 polarization in

macrophages during muscle repair. The mTORC1-HIF1a-
glycolysis pathway is suggested to mediate the effects of BCAAs

on M1 polarization, but not on M2 polarization (17). Thus, the

mechanisms by which BCAAs, particularly BCAA catabolism,

contribute to M2 polarization remains unclear.

In this study, we investigated the role of BCAA metabolism in

M2 macrophage polarization. We found that the abundance of

BCAAs was reduced in M2 macrophages compared to M0

macrophages. BCAA supplementation promoted M2 macrophage

polarization both in vitro and in vivo. Furthermore, inhibition of

BCAA catabolism by knockdown of SLC25A44, BCAT2 or

BCKDHA suppressed M2 macrophage polarization, indicating

that BCAA catabolism is important for M2 macrophage

polarization. These data uncover an important role of BCAA

catabolism in M2 macrophage polarization.
2 Materials and methods

2.1 Animals

6-8-weeks-old wild-type C57BL/6J mice were purchased from

Jiangsu JicuiYaokang Biotechnology Co., Ltd (Jiangsu, China). The

animals were kept in a pathogen-free environment. All

experimental procedures were approved by the animal research

committee of Fudan University. Both male and female mice are

used for bone marrow isolation. Female mice are used for chitin

administration experiments.
2.2 Cells

L-929 cells was obtained from the cell bank of the Chinese

Academy of Science (Shanghai, China). Cells were cultured in

RPMI 1640 medium (Gibco, USA) supplemented with 10% FBS

(VivaCell, China) and 1% penicillin/streptomycin (Invitrogen,

USA). Cells were maintained at 37°C in a humidified 5%

CO2 atmosphere.

Bone marrow-derived macrophages (BMDMs) were obtained

as previously described (18). Briefly, bone marrow cells were

obtained from wild-type C57BL/6 mice aged 6 to 8 weeks and

cultured in RPMI 1640 supplemented with 10% FBS, 1% penicillin/

streptomycin and 30% supernatants of L-929 conditioned medium.

On day 7, attached macrophages were washed and harvested

for stimulation.

Peritoneal exudate cells (PECs) were isolated from peritoneum

by lavage using 4 mL PBS for 3 times, and were collected

for analysis.
2.3 BMDM polarization and treatment

Differentiated BMDMs were incubated for 24 hr in culture

medium containing IL-4 (PeproTech, USA) at a concentration of 20
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ng/mL to induce M2 macrophage polarization. BMDMs were

treated by 100 ng/mL LPS and 50 ng/mL IFNg to induce M1

macrophage polarization. In some experiments, BMDMs were

cultured in BCAA free RPMI 1640 medium (USbiological, USA)

with or without 0.2 mM, 0.4 mM, 0.8 mM Val, Leu, Ile (Sigma,

USA) or their combination.
2.4 Gene knockdown assay using siRNA

BMDMs were transfected with 20 mM stock solution of small

interfering RNAs (siRNA) for 24 hr by using Lipofectamine™

RNAiMAX Transfection Reagent (Invitrogen, USA) according to

manufacturer’s instructions. Serum-free Opti-MEM (Gibco, USA)

was used to dilute the siRNA reagents. si-SLC25A44, si-BCAT2, si-

BCKDHA and si-NC oligo were purchased from GenePharma

(Shanghai, USA). The mouse SLC25A44 siRNA sequence was 5′-
CUCUCGGCAAGAAUCAUCUTT-3′, The mouse BCAT2 siRNA

sequence was 5′-GGGAGAACCUUGGCUUCUUCU-3′, The

mouse BCDKHA siRNA sequence was 5′-GCUΜGAGU

UCAUCCAGCCCAA-3′. After 24 hr, the cells were cultured with

IL-4 (20 ng/mL) to induce their polarization into M2.
2.5 Real-time quantitative PCR

Total RNA was extracted from BMDMs using TRIzol reagent

(Invitrogen, USA) according to the manufacturer’s instructions.

cDNA was synthesized with PrimeScript RT Master Mix (TaKaRa,

Japan). Quantitative RT-PCR was performed using SYBR Green

Master Mix (Yeasen, China). The relative mRNA expression level

was calculated by the 2-DDCt method (fold expression), b-actin was

used as an internal reference. The sequences of primers are listed in

Supplementary Table 1.
2.6 Immunofluorescence

For immunofluorescence, BMDMs were seeded in coverslips.

After adhesion, cells were polarized and treated with BCAAs. Cells

were then fixed using 4% PFA for 20 min, rinsed three times with

PBS, and permeabilized and blocked with PBS containing 1%BSA

and 0.3%Triton X-100 for 1 hr at room temperature. The cells were

then stained using a rabbit polyclonal anti-RELMa antibody

(Peprotech, USA) at 1:200 dilution in a humid chamber at 4°

C overnight.

After primary antibody incubation, macrophages were stained

with rabbit anti-IgG (Alexa Fluor® 488, Invitrogen, USA) at 1:200

dilution at room temperature in the dark for 1 hr. The nuclear

staining was done using Mounting Medium containing DAPI

(Yeasen, China). Images were assessed by fluorescence

microscopy with a ×40 objective lens (EVOS™ M7000, Thermo,

USA). Quantification of the images was performed using Image

J software.
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2.7 Flow cytometry

Antibodies for flow cytometry were purchased from Thermo

Fisher Scientific. The antibodies used were anti-CD45 (PE), anti-F4/

80 (FITC), anti-Siglec-F (PE-Cyanine7), anti-CD11b (APC-

Cyanine7), anti-CD206 (APC). Cells were washed in FACS buffer

(3% (vol/vol) FBS and 1 mM EDTA in PBS, pH 7.4) once, then

incubated with each antibody in 50 mL FACS buffer for 30 min and

washed once with 1 mL FACS buffer. Cells were analyzed on the BD

LSRII flow cytometer, and data analyzed using Flowjo software.
2.8 Chitin administration

10 mg chitin (Solarbio, China) was suspended in 3 mL PBS,

sonicated with a JY92-IIDN device (SCIENTZ, China) at 150 W,

work 7 s and pause 6 s two times for 10 min. After filtration with

100 mm cell strainer, chitin was diluted in 10 mL PBS, 100 mL of

chitin was injected once intraperitoneally and PECs were collected

2 d after administration (19, 20).
2.9 BCAA supplementation

BCAA (valine, leucine, isoleucine) solution was prepared in PBS

(pH 7.4) as isomolar mixtures and sterilized by filtration through a

0.22 mm filter. Mice were intraperitoneally injected with 500 mL of

30 mmol, 60 mmol or 90 mmol BCAA solution (21) after

chitin administration.
2.10 Metabolomics

IL-4 treated BMDMs or non-treated BMDMs were washed once

with PBS. Pre-chilled 80% (vol/vol) methanol was added and then

incubated at -80°C overnight. The metabolite-containing supernatants

were centrifuged for 10 min at 14000 g and 4°C, and supernatants were

dried under nitrogen flow (22). The metabolome extracts were

reconstituted in acetonitrile and H2O (1:1, vol/vol), vortex for 1 min,

and centrifuged for 15 min at 14000 rpm and 4°C. Targeted LC-MS

were performed by QTRAP 6500+ Liquid chromatography-mass

spectrometer (AB SCIEX, USA) interfaced with ExionLC™ AD

HPLC system (AB SCIEX, USA). Mobile phases A (95% H2O; 5%

acetonitrile; 20 mM ammonium acetate; 10 mM ammonia; 50 µL 0.05

M medronic acid) and mobile phases B (100% acetonitrile) are used.

Chromatographic separation was performed on a HILIC column

(iHILIC-(P) Classic column, 5 mm, 150 × 2.1 mm) with the

following gradient: 0-2 min 15% A; 2-7 min 15-40% A; 7-12 min

40-65% A; 12-12.1 min 65-80% A; 12.1-15.9 min 80% A; 15.9-16 min

80-15% A; 16-23 min 15% A. The flow rate was set as 0.2 mL/min, and

the injection volume was 5 µL. The column temperature was 30°C and

autosampler temperature was 6°C. The missing value was addressed

according to the 80% rule (23): a metabolite was considered detectable

if it appeared in at least 4 out of 5 samples in a group. In order to
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remove potential variations in total metabolite abundance across

samples, the total intensity of metabolite peaks within each sample

was adjusted to the mean total intensity across all samples. Each

metabolite peak intensity is then divided by the normalization factor,

standardizing the total metabolite abundance within each sample (24).

The peak area list with compound names was analyzed by

MetaboAnalyst 6.0. Kyoto Encyclopedia of Genes and Genomes

(KEGG) was used for the enrichment analysis of the significantly

upregulated or downregulated metabolites.
2.11 Oxygen consumption assay

The oxygen consumption rate (OCR) was measured by the

Seahorse XFe96 Extracellular Flux Analyzer (Agilent, USA).

BMDM cells were plated at 8 × 104 cells/well in a Seahorse 96-

well microplate (Agilent, USA) and treated as indicated. The cells

were incubated in Seahorse XF DMEM medium (Agilent, USA) for

1 hr at 37°C in measuring chamber before the assay. Oxygen

consumption rate was measured under basal conditions and in

response to sequential injections of 1 mM oligomycin, 1.2 mM FCCP

(Carbonyl cyanide 4-trifluoromethoxy phenylhydrazone), and 1

mM rotenone.
2.12 Data analyses and statistics

Statistical analysis was performed with GraphPad Prism 9

software. Data are shown as mean ± SEM. Groups were

compared by a Student’s two-tailed t test and two way ANOVA

(followed by Tukey’s multiple comparison tests). P values of < 0.05

were considered to be statistically significant. The number of

experiments and significance levels are presented in the legend of

the figures.
3 Results

3.1 Decreased BCAAs in M2
polarized macrophages

To systematically identify the metabolic pathways that are rewired

in macrophages upon alternative activation, we performed

metabolomic analysis comparing murine bone marrow-derived

macrophages (BMDMs) stimulated with IL-4 for 24 hr (M2) to

unstimulated BMDMs (M0) (Figure 1A). We totally detected 186

metabolites in the samples, and we identified upregulated or

downregulated metabolites in M2 relative to M0 cells (>1.5-fold, P <

0.05). Principal component analysis (PCA) and heatmap of the

metabolites abundance revealed a significant separation between M0

and M2 macrophages (Figures 1B, C). In addition to several pathways

including citrate cycle and arginine metabolic pathway, which are

known to be altered in M2 macrophages, we discovered that BCAA

metabolism was one of the most profoundly impacted pathways

(Figure 1D). The abundance of Val and Leu/Ile were significantly

decreased in M2 macrophages compared to M0 macrophages
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(Figure 1E). Additionally, one of the M0 samples did not cluster

with the others in the PCA plot (Figure 1B). To determine if this outlier

affected BCAA levels, we analyzed the relative intensities of Val and

Leu/Ile both with and without this M0 outlier. The results showed a

significant decrease in M2 macrophages, regardless of whether the

outlier was included (Supplementary Figure 1). These results suggested

that BCAA levels were decreased in M2 macrophages.
3.2 BCAA supplementation promoted M2
macrophage polarization both in vivo and
in vitro

We next determined whether BCAAs affect M2 macrophage

polarization. Differentiated BMDMs were treated with 20 ng/mL of

IL-4 for 24 hr with or without BCAAs. The mRNA expression level

of the key M2 macrophage genes were determined by RT-qPCR.

Treatment with BCAAs increased the mRNA expression levels of

Arg1, Retnla,Mrc1,Mgl1 andMgl2 in M2 macrophages, but did not

increase the expression level of Ym1. BCAAs did not change the

expression of M2 macrophage-related genes under M0 conditions

(Figures 2A–F). In addition, BCAAs treatment increased RELMa
protein level as assessed by immunofluorescence (Figures 2G, H), as

well as the frequency of CD206+CD11b+F4/80+ cells (Figure 2I).

The gating strategy was shown in Supplementary Figure 2.

To understand the dose-dependent effect of BCAAs on M2

macrophage polarization, we treated BMDMs with increasing doses

of BCAAs for 12, 24 and 48 hours during M2 macrophage

polarization. The result showed that BCAAs increased Retnla

expression in a dose-dependent manner at both 24 and 48 hours

and increased Arg1 expression at 24 hours. In contrast, BCAA

treatment suppressed Ym1 expression at 24 and 48 hours. At the 12

hour-time point, BCAA treatment had no significant effect on the

expression of Arg1, Retnla or Ym1 (Supplementary Figure 3). In

addition, to understand whether BCAA supplementation

specifically modulate M2 macrophage polarization, we also

determined the effect of BCAA supplementation on M1

macrophage polarization. We found that BCAA supplementation

didn’t increase the expression level of M1 markers in polarized M1

macrophages, including Il1b, Il6, Nos2, Tnfa (Supplementary

Figure 4). Next, to investigate the functional role of BCAAs in

alternatively activated macrophages polarization in vivo, we

subjected wildtype (WT) mice to an in vivo model of chitin-

induced M2 polarization. Chitin, a major structural component of

helminths and fungi, was suggested to induce M2 macrophage

polarization and subsequent eosinophil recruitment when injected

peritoneally (19, 20). We administered mice with chitin along with

increasing doses of BCAAs (Figure 3A). The results indicate that

BCAAs start to promote M2 macrophage polarization in peritoneal

macrophages at a dose of 90 µmol, corresponding to 4.5 mM in

circulation, given that the average mouse body weight is

approximately 20 g. We found that chitin-induced recruitment of

eosinophils was significantly increased in BCAAs treated animals

(Figures 3B, C). BCAA supplementation increased the percentage of

CD11b+F4/80+CD206+ cells in PECs (Figures 3D, E). In addition,

the expression of M2 macrophage-associated genes Arg1, Ym1,
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Mgl1 and Mgl2 in chitin-elicited PECs were also increased in mice

administrated with BCAAs (Figures 3F–I). Additionally, we

measured Ym1 expression in peritoneal cells at 24 and 48 hours

after chitin administration in mice treated with 90 µmol BCAAs.

The results showed that Ym1 levels decreased at 24 hours in mice

treated with both chitin and BCAAs, but increased at 48 hours

compared to mice treated with chitin alone. This result, at least in

part, suggests that the varying effects of BCAA supplementation on

Ym1 expression may be influenced by the timing of detection

(Supplementary Figure 5). Collectively, these data indicated that

BCAAs promoted M2 macrophage in vitro and in vivo.
3.3 Leu promoted M2 macrophage
polarization most robustly among BCAAs

To explore the impact of individual BCAAs on M2 macrophage

polarization, we supplemented BMDMs with leu, Ile and Val, either
Frontiers in Immunology 05
individually or in combination, under M0 or M2 conditions. We

found that while Ile and Val exhibited some capacity to enhance M2

macrophage polarization, their effects were not as pronounced as

those of Leu alone or the combination of all three BCAAs. The

results suggested that Leu exerts the most pronounced effect on

alternative macrophage polarization (Figure 4).
3.4 BCAA supplementation promoted
oxidative phosphorylation in
M2 macrophages

The metabolites of BCAA catabolism, such as acetyl-CoA and

succinyl-CoA, enter the TCA cycle and fuel oxidative

phosphorylation (OXPHOS), which is established to be critical

for M2 polarization (25). Notably, the relative level of acetyl-CoA

was upregulated in M2 macrophages, indicating enhanced

OXPHOS in M2 macrophages (Supplementary Figure 6). We
FIGURE 1

Metabolomics analysis between M0 and M2 BMDM. (A) The schematic protocol of BMDM differentiation and M2 polarization in 6-8 week-old female
mice (n = 4 replicates). (B) Principal Component Analysis (PCA) of M0 and M2 BMDM metabolites (n = 4 replicates). (C) Heatmap of the intracellular
metabolites in M0 and M2 BMDM. (D) KEGG pathway analysis of changed differential metabolites (P < 0.05) (n = 4 replicates). (E) Val, Leu and Ile relative
intensity in M0 and M2 BMDM (n = 4 replicates). Data are shown as mean ± SEM. Statistics were performed using two-tailed Student’s t test. *P < 0.05.
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speculated BCAA catabolism serves to fuel the OXPHOS and

supports M2 polarization. Thus, we tested the oxygen

consumption rate (OCR) by Seahorse XFe96 Analyzer. OCR of

M2 BMDMs increased strongly, and BCAAs enhanced the OCR of
Frontiers in Immunology 06
M2 BMDMs (Figures 5A–D), basal respiration, maximal respiration

and ATP product ion al l upregulated . Hence , BCAA

supplementation promoted oxidative phosphorylation in

M2 macrophages.
FIGURE 2

BCAAs enhance M2 polarization. BMDMs were treated with 0.8 mM BCAAs under M0 or M2 conditions for 24 hr. mRNA expression levels of Arg1 (A),
Retnla (B), Mrc1 (C), Ym1 (D), Mgl1 (E) and Mgl2 (F) were assessed by RT-qPCR (n = 3 replicates). (G) BMDMs were treated with IL-4 (20 ng/mL) in
the presence or absence of BCAAs (0.8 mM) for 24 hr and subjected to immunofluorescence using anti-RELMa antibody (green) and DAPI (blue).
Scale bar, 20 mm. (H) Quantification of relative fluorescent signal for RELMa in BMDMs from the M0, M2 and M2 + BCAAs groups (n = 5 replicates).
(I) Flow cytometric analysis of CD11b+F4/80+CD206 +cells were shown. Data are shown as mean ± SEM. Statistics were performed using two way
ANOVA followed by Tukey multiple comparisons. **P < 0.01; ***P < 0.001; ns, not significant. Arg1, Arginase 1; Retnla, Resistin like alpha; Mrc1,
Mannose receptor, C type 1; Ym1, Chitinase 3 like 1; Mgl1, Macrophage galactose N-acetyl-galactosamine specific lectin 1; Mgl2, Macrophage
galactose N-acetyl-galactosamine specific lectin 2.
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3.5 M2 polarization influenced BCAA
metabolic gene expression

SLC25A44 transports BCAAs into mitochondria (10). BCAAs

are transaminated by BCATs to form BCKAs, which is reversible.

BCAT2 plays the role in mitochondria, while BCAT1 works in

cytoplasm. BCKDH catalyzes the irreversible oxidation of BCKAs.
Frontiers in Immunology 07
The metabolite of BCAA catabolism enter TCA cycle as acetyl-CoA

and succinyl-CoA. As BCAAs were reduced in M2 BMDMs

(Figure 1) and supplementation of BCAAs promoted M2

polarization (Figure 2), we further examined the expression level

of key genes in BCAA catabolism, including Bcat1, Bcat2, Bckdha

and Slc25a44 at 0, 4, 8, and 24 hours after IL-4 treatment. The result

showed that Bcat1 was nearly undetectable in BMDMs, while Bcat2,
FIGURE 3

BCAAs promote M2 macrophage polarization in chitin-treated mice in a dose-dependent manner. (A) Schematic diagram of the experimental
protocol. Mice were intraperitoneally injected with 100 mL chitin. 30, 60 and 90 mmol BCAAs were administrated at 0 and 24 hr after chitin
administration. PECs were collected and analyzed at 24 and 48 hr post chitin administration. (B) Eosinophil populations in the peritoneal cavity were
analyzed by flow cytometry. Representative flow plots of gated CD45+ cells were shown. (C) Total numbers of eosinophils (n = 4 independent
biological replicates). (D–E) Flow cytometry analysis (D) and percentage (E) of CD206+ cells in gated CD11b+ F4/80+ PECs (n = 4 independent
biological replicates). (F–I) mRNA expression levels of Arg1 (F), Ym1 (I), Mgl1 (H) and Mgl2 (I) in PECs was determined by quantitative PCR (n = 4
independent biological replicates). Data are shown as mean ± SEM. Statistics were performed using two-tailed Student’s t test. *P < 0.05; Arg1,
Arginase 1; Ym1, Chitinase 3 like 1; Mgl1, Macrophage galactose N-acetyl-galactosamine specific lectin 1; Mgl2, Macrophage galactose N-acetyl-
galactosamine specific lectin 2.
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Bckdha and Slc25a44 were all expressed (Supplementary Figure 7A).

The mRNA levels of Bcat1 and Slc25a44 increased after 4 hours of

IL-4 stimulation and then decreased over time. In contrast, Bcat2

mRNA levels decreased following IL-4 treatment, while Bckdha

levels remained unchanged until 24 hours, when they also decreased

(Supplementary Figures 7B–E). We have assessed the protein level

of BCKDHA in M0 and IL-4 induced M2 macrophages, and the

protein level of BCKDHA was upregulated from 2 to 8 hours after

IL-4 treatment and returned to baseline levels 24 hours post IL-4

treatment (Supplementary Figure 8). These results suggest that the

expression level of key enzymes and mitochondrial transporter

involved in BCAA catabolism were unchanged or moderately

downregulated.
3.6 Inhibition of BCAA transportation
mediated by SLC25A44 reduced M2
macrophage polarization

To explore the effect of BCAA transport into mitochondria on

M2 macrophage polarization, we knocked down Slc25a44 with

siRNA in BMDMs, and then polarized BMDMs toward M2

condition with 20 ng/mL IL-4 for 24 hr post transfection. With
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approximately 60% RNA silence efficiency, Slc25a44 inhibition

reduced the mRNA expression level of Arg1, Retnla, Mrc1, Ym1,

Mgl1 and Mgl2 (Figures 6A–G). Additionally, knockdown of

Slc25a44 decreased the protein level of RELMa in M2

macrophages, as assessed by immunostaining (Figures 6H, I). The

results suggested that inhibiting BCAA transport into mitochondria

via SLC25A44 impairs BMDM M2 polarization.
3.7 Restraining BCAA transamination
downregulated M2
macrophage polarization

In mitochondria, BCAAs were transaminated by BCAT2 to

generate BCKAs. To investigate the effect of BCAA transamination

on M2 macrophage polarization, we knocked down Bcat2 with

siRNA and subsequently induced M2 polarization in BMDMs. We

found that siRNA-mediated inhibition of BCAT2 resulted in a

significant decrease in the expression levels of M2 marker genes,

including Retnla, Ym1, Mgl1 and Mgl2, but there were no obvious

decrease in Arg1 andMrc1, (Figures 7A–G). Meanwhile, the protein

levels of RELMa were reduced in M2 macrophages following Bcat2

knockdown (Figures 7H, I). These results indicated that restraining
FIGURE 4

Leucine may dominate the effect of promoting M2 polarization among three kinds of BCAAs. BMDMs were treated with or without 0.8 mM of Val,
Leu, Ile or their mixture under M0 or M2 conditions for 24 hr. The mRNA expression levels of Arg1 (A), Retnla (B), Mrc1 (C), Ym1 (D), Mgl1 (E) and
Mgl2 (F) were assessed by RT-qPCR (n = 3 replicates). Data are shown as mean ± SEM. Statistics were performed using two way ANOVA followed by
Tukey multiple comparisons. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant. Arg1, Arginase 1; Retnla, Resistin like alpha; Mrc1, Mannose
receptor, C type 1; Ym1, Chitinase 3 like 1; Mgl1, Macrophage galactose N-acetyl-galactosamine specific lectin 1; Mgl2, Macrophage galactose N-
acetyl-galactosamine specific lectin 2.
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BCAA transamination via BCAT2 reduced M2 macrophage

polarization.
3.8 Suppressing BCAA decarboxylation
dampened M2 macrophage polarization

BCKAs undergo oxidative decarboxylation mediated by the

BCKDH complex, comprising catalytic subunits E1a, E1b, E2 and

E3 encoded by the BCKDHA, BCKDHB, BCKDE2 and BCKDE3

genes, respectively. We then explored the role of BCKA

decarboxylation in M2 macrophage polarization. Using siRNA,

we knocked down Bckdha in BMDMs and induced M2

macrophage polarization. The results revealed that Bckdha

knockdown reduced the expression levels of M2 marker genes,

including Arg1, Retnla, Ym1, Mgl1 and Mgl2, while the expression

level of Mrc1 remained unchanged (Figures 8A–G). Additionally,

the protein level of RELMa was decreased in M2 macrophages

following Bckdha knockdown (Figures 8H, I). These results

sugge s t ed tha t inh ib i t ing BCKDH-med ia t ed BCKA

decarboxylation reduces BMDM M2 polarization.
4 Discussions

Macrophages modulate their metabolic status to adapt to

different activation status, including M1 and M2 activation status.
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In our study, we found that BCAA catabolism promoted

polarization toward M2 macrophages. Metabolomic analysis

revealed that the abundance of BCAAs is reduced in M2

polarized macrophages. BCAAs promoted M2 macrophage

polarization both in vitro and in vivo. Furthermore, knockdown

of key genes involved in BCAA catabolism was shown to suppress

polarization toward M2 macrophages (Supplementary Figure 9).

Our study therefore provided evidence that BCAA metabolism has

a role in M2 macrophage polarization and suggested that BCAA

treatment may provide a therapeutic strategy for stimulating M2

macrophages-mediated tissue repair or remodeling.

The question remains whether BCAA catabolism specifically

modulate M2 macrophage polarization. Indeed, previous studies

have indicated that BCAA metabolism modulates M1 polarization.

For example, BCAAs has been shown to promote M1 polarization

and enhanced mTORC1-HIFa signaling in M1 macrophages (17).

Furthermore, the BCAT1 inhibitor ERG240 has been reported to

reduce LPS induced M1 polarization (15). Investigating the impact

of BCAA catabolism on M1 polarization would be a valuable

direction for future research. Additionally, this study focused on

IL-4-induced M2 polarization, as it is the most extensively studied

type of polarized M2 macrophages. Investigating the effects of

BCAA on other M2 macrophage subtypes stimulated by IL-10,

IL-4+IL-10, TGFb, and other factors would be valuable and will be

addressed in future research.

In the study, we detected the mRNA expression level of BCAA

metabolism genes such as Bcat1, Bcat2, Bckdha and Slc25a44, and
FIGURE 5

BCAAs increase OCR of M2 BMDM. BMDMs were treated with 0.8 mM BCAAs under M2 conditions for 24 hr. (A) The effect of BCAA
supplementation on OCR of M2 BMDM (n = 4 replicates); The effect of BCAA supplementation on basal respiration (B), maximal respiration (C) and
ATP production (D) of M2 BMDM (n = 4 replicates). Data are shown as mean ± SEM. Statistics were performed using two-tailed Student’s t test.
*P < 0.05; **P < 0.01; ***P < 0.001.
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the protein level of key enzyme BCKDHA to investigate whether

BCAA metabolism pathway is upregulated in M2 macrophages.

However, the mRNA level of Bcat2, Bckdha and Slc25a44 all

decreased. It would be informative to assess the metabolic flux of

BCAAs using isotope-assisted metabolomics to accurately monitor

the catabolic flux of BCAAs in M0 and M2 macrophages (26).

We observed that BCAA supplementation and genetic ablation

of key enzymes or the transporter resulted in differential regulation

of M2 markers. For instance, BCAA supplementation led to

increased expression of Arg1 and Reltna, but decreased Ym1
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expression in vitro. In addition, BCAAs were shown to increased

Ym1 expression in PECs in the in vivo model of chitin

administration, which differs from their in vitro effects. This

discrepancy may due to the fact that chitin administration can

lead to accumulations of eosinophils, basophils, neutrophils (27), as

well as increased levels of chemokines and lipid mediators (20, 28,

29). While BCAAs have been shown to suppress Ym1 expression in

vitro, they may, in contrast, promote immune cell recruitment or

enhance the production of chemokines or lipid mediators in vivo,

which could lead to increased Ym1 expression. Further studies are
FIGURE 6

Slc25a44 knockdown inhibits M2 polarization. BMDMs were transfected with siRNA targeting Slc25a44 (siSLC25A44) and scrambled control siRNA
(siNC) followed by M2 polarization. The mRNA expression levels of Slc25a44 (A), Arg1 (B), Retnla (C), Mrc1 (D), Ym1 (E), Mgl1 (F) and Mgl2 (G) were
assessed by RT-qPCR (n = 3 replicates). (H) BMDMs were treated with IL-4 (20 ng/mL) or not for 24 hr and subjected to immunofluorescence using
anti-RELMa antibody (green) and DAPI (blue). Scale bar, 20 mm. (I) Quantification of relative fluorescent signal for RELMa in BMDMs from siNC and
siSLC25A44 groups (n = 5 replicates). Data are shown as mean ± SEM. Statistics were performed using two way ANOVA followed by Tukey multiple
comparisons. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant. Arg1, Arginase 1; Retnla, Resistin like alpha; Mrc1, Mannose receptor, C type 1;
Ym1, Chitinase 3 like 1; Mgl1, Macrophage galactose N-acetyl-galactosamine specific lectin 1; Mgl2, Macrophage galactose N-acetyl-galactosamine
specific lectin 2.
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needed to explore whether BCAAs contribute to eosinophil

activation.

Metabolism is intricately linked to immune homeostasis, as

evidenced by the polarization of macrophages into different states.

Our data showed that the inhibition of key enzymes in BCAA

catabolism dampens M2 macrophage polarization, suggesting that

BCAA catabolism contributes to this process. Interestingly,

glioblastoma cells were shown to excrete large amounts of

branched-chain ketoacids (BCKAs), which can inhibit the

phagocytic activity associated with the typical M1 macrophage
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phenotype (14). Furthermore, the leucine metaboli te

ketoisocaproate (KIC) and the isoleucine metabolite a-keto-b-
methylvalerate (KMV) have been shown to increase the

expression level of Arg1 in macrophages (30). The question of

how BCAA catabolism promotes M2 macrophages polarization

remains. We speculate that BCAA may fuel the TCA cycle, which is

suggested to be critical for M2macrophage polarization (25, 31–33).

This idea is supported by the fact that BCAA catabolic metabolites

enter the TCA cycle as acetyl coenzyme A (acetyl-CoA) or succinyl

coenzyme A (succinyl-CoA). It is well established that
FIGURE 7

Bcat2 knockdown inhibits M2 polarization. BMDMs were transfected with siRNA targeting Bcat2 (siBCAT2) and scrambled control siRNA (siNC)
followed by M2 polarization. The mRNA expression levels of Bcat2 (A), Arg1 (B), Retnla (C), Mrc1 (D), Ym1 (E), Mgl1 (F) and Mgl2 (G) were assessed by
RT-qPCR (n = 3 replicates). (H) BMDMs were treated with IL-4 (20 ng/mL) or not for 24 hr and subjected to immunofluorescence using anti-RELMa
antibody (green) and DAPI (blue). Scale bar, 20 mm. (I) Quantification of relative fluorescent signal for RELMa in BMDMs from siNC and siBCAT2
groups (n = 5 replicates). Data are shown as mean ± SEM. Statistics were performed using two way ANOVA followed by Tukey multiple comparisons.
**P < 0.01; ***P < 0.001; ns, not significant. Arg1, Arginase 1; Retnla, Resistin like alpha; Mrc1, Mannose receptor, C type 1; Ym1, Chitinase 3 like 1;
Mgl1, Macrophage galactose N-acetyl-galactosamine specific lectin 1; Mgl2, Macrophage galactose N-acetyl-galactosamine specific lectin 2.
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mitochondrial OXPHOS is characteristic and necessary for ATP

production and biosynthesis in M2 macrophages (25, 32, 33).

Inhibition of OXPHOS by reducing substrates or targeting the

mitochondrial complex had been shown to downregulate M2-

related genes (Arg1, Mrc1) and the surface marker CD206 (32,

34). Fatty acid oxidation fuels OXPHOS with acetyl-CoA, thus

providing a crucial energy source for M2 polarization (25). In our

study, BCAA supplementation was found to promote M2

polarization and enhance OXPHOS during this process, revealing
Frontiers in Immunology 12
a possibility that BCAA may promote macrophage M2 polarization

through enhancing OXPHOS. Previous study has shown that

BCAA increases oxygen consumption rate (OCR) in brown

adipocytes, which actively utilizes BCAA in the mitochondria for

oxidation and thermogenesis upon cold exposure (10).

Additionally, a mitochondrial-targeted 2C-type Ser/Thr protein

phosphatase (PPM1K), which promotes BCAA catabolism, was

suggested to sustain glycolysis and oxidative phosphorylation in

hematopoietic stem cells (35).
FIGURE 8

Bckdha knockdown inhibits M2 polarization. BMDMs were transfected with siRNA targeting Bckdha (siBCKDHA) and scrambled control siRNA (siNC)
followed by M2 polarization. The mRNA expression levels of Bckdha (A), Arg1 (B), Retnla (C), Mrc1 (D), Ym1 (E), Mgl1 (F) and Mgl2 (G) were assessed
by RT-qPCR (n = 3 replicates). (H) BMDMs were treated with IL-4 (20 ng/mL) or not for 24 hr and subjected to immunofluorescence using anti-
RELMa antibody (green) and DAPI (blue). Scale bar, 20 mm. (I) Quantification of relative fluorescent signal for RELMa in BMDMs from siNC and
siBCKDHA groups (n = 5 replicates). Data are shown as mean ± SEM. Statistics were performed using two way ANOVA followed by Tukey multiple
comparisons. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant. Arg1, Arginase 1; Retnla, Resistin like alpha; Mrc1, Mannose receptor, C type 1;
Ym1, Chitinase 3 like 1; Mgl1, Macrophage galactose N-acetyl-galactosamine specific lectin 1; Mgl2, Macrophage galactose N-acetyl-galactosamine
specific lectin 2.
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In addition to its role as an energy source in macrophage M2

polarization, acetyl-CoA serves as a critical substrate for histone

acetylation, promoting an open chromatin structure that facilitates

the transcription of anti-inflammatory and tissue repair genes

characteristic of M2 macrophages (36–38). For instance, histone

deacetylase 3 (HDAC3) removes acetylation marks from regulatory

regions of M2 genes, thereby repressing M2 polarization and

promoting M1 macrophage activation (39, 40). Moreover, acetyl-

CoA synthesis by ACLY has been shown to be crucial for histone

acetylation and the transcriptional induction of a subset of M2 genes

(41). Based on our study, which showed that inhibition of BCAA

catabolism suppressed M2 macrophage polarization, and the

abundance of acetyl-CoA increased in M2 macrophages, we

hypothesize that BCAA catabolism might also modulate

transcription regulation of M2 genes via their metabolite, acetyl-CoA.

Further investigations are needed to elucidate the specific role of

BCAAs in producing metabolic products, particularly acetyl-CoA,

during M2 macrophage polarization. An earlier study has shown

that the inhibition of p300, a histoneacetyltransferase (HAT),

suppresses most M2 marker genes, while promoting Ym1 expression

(41). This indicates that histone acetylation may suppress Ym1

expression in M2 macrophages. Notably, BCAA catabolic

metabolites enter the TCA cycle as acetyl-CoA (9), which serves as a

critical substrate for histone acetylation, enhancing the transcription of

the M2 marker genes (41). Based on this, we speculate that BCAAs

suppress Ym1 expression, potentially through mechanisms related to

acetyl-CoA production and histone acetylation, which are still unclear

and warrant further investigation.

M2 macrophages are important players in tissue repair

following injury, making them potential target for treating tissue

repair-related diseases. For instance, during acute liver injury (ALI),

which is caused by endotoxins, certain drugs and their metabolites,

or other factors. M2 macrophages can mitigate liver damage

through their anti-inflammatory properties and ability to promote

tissue repair (42). Existing research has found that regulating

macrophage polarization can modulate ALIs. For example,

activation of cannabinoid receptor 2 (CB2) has been shown to

attenuate d-Galactosamine (GalN)/lipopolysaccharide (LPS)-

induced acute liver failure by inducing an M1 to M2 shift in

macrophages (43). Similarly, inhibition of p38a has been found

to induce a shift from M1 to M2 macrophages polarization, thereby

alleviating liver injury (44). Our observation that BCAA promotes

M2 macrophage polarization both in vitro and in vivo indicates that

BCAA supplementation may in part enhance liver repair by

promoting M2 macrophage polarization. Indeed, supplementation

with BCAA has been shown to activate Kupffer cells and attenuated

ischemia-reperfusion-induced hepatic leukocyte adhesion and

hepatic microcirculation disturbances in rats (45). Given that

BCAA supplementation has been reported to promote M1

macrophage polarization, it is still premature to conclude that

BCAAs enhance M2 immunity in pathological settings that

require M2 polarization. Further studies in additional

pathophysiological models are needed to better understand the

effects of BCAAs on M2 polarization in these contexts and to

explore the potential of BCAA supplementation as a therapeutic

strategy for tissue repair-related diseases.
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