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Introduction: Lactoferrin (Lf) is an important immunomodulator in infections

caused by different agents. During SARS-CoV-2 infection, Lf can hinder or

prevent virus access to the intracellular environment. Severe cases of COVID-

19 are related to increased production of cytokines, accompanied by a weak type

1 interferon response.

Methods: We investigated the influence of bovine Lf (bLf) in the immune

response during SARS-CoV-2 infection in vitro and in vivo assays.

Results:Our results show a strong binding between bLf and TLR4/NF-kB in silico,

as well as an increase in mRNA expression of these genes in peripheral blood

mononuclear cells (PBMCs) treated with bLf. Furthermore, the treatment

increased TLR4/TLR9 mRNA expression in infected K18-hACE2 mouse blood,

indicating an activation of innate response. Our results show that, when bLf was

added, a reduction in the NK cell population was found, presenting a similar

effect on PD-1 in TCD4+ and TCD8+ cells. In the culture supernatant of PBMCs

from healthy participants, bLf decreased IL-6 levels and increased CCL5 in

COVID-19 participants. In addition, K18-hACE2 mice infected and treated with

bLf presented an increase of serum pro-inflammatory markers (GM-CSF/IL-1b/
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IL-2) and upregulated mRNA expression of IL1B and IL6 in the lung tissue.

Furthermore, bLf treatment was able to restore FTH1 levels in brain tissue.

Discussion: The data indicate that bLf can be part of a therapeutic strategy to

promote the immunomodulation effect, leading to homeostasis during

COVID-19.
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1 Introduction

Coronavirus disease 2019 (COVID-19) has spread worldwide as a

pandemic, leading to 776 million confirmed cases, including more than

7.1 million deaths (1). Acute respiratory manifestations are the most

common features of severe COVID-19 and may have extrapulmonary

involvement (2). Manifesting elevated serum levels of different

cytokines, which is called a “cytokine storm,” may contribute to the

fatal outcome of COVID-19. Cytokine storm prevention and

mitigation could be the key to better clinical outcomes for patients

with COVID-19. Thus, some drug-based therapies rely on minimizing

the effect of the cytokine storm, such as those with tocilizumab,

baricitinib, sarilumab, and corticosteroids (3, 4).

Lactoferrin (Lf), also known as lactotransferrin, is a glycoprotein

member of the transferrin family produced commonly by exocrine

glands (e.g., mammary and lacrimal glands) and granules of

neutrophils (5). Lf was discovered in 1939 and isolated from

human (hLf) and bovine (bLf) milk in 1960 (6) as a dimeric

protein with 691 and 689 amino acids, respectively, and a

molecular weight of about 80 kDa (7).

Lf plays multiple functions related to their capacity of reversible

binding to transition metals, such as Fe3+ with high affinity, and other

ions in a lesser degree. The protein also shows numerous antimicrobial

effects, including antibacterial, antifungal, antiviral, antiparasitic, anti-

inflammatory, and immunomodulatory activities (8–10).

A broad-spectrum antiviral effect was already assigned to Lf

against pathogens such as Influenza A, Human Immunodeficiency,

Hepatitis B, and Hepatitis C viruses (11). These antiviral properties

were mainly due to the inhibition of virus entry into host cells by

attachment to viral particles or blocking cellular receptors (12). Also,

the immunomodulatory role of this protein arise from limiting tissue

damage by regulation of cytokines, chemokines, and cell surface

receptors involved in immunological signaling pathways (13).

Also, a recent study demonstrated the in vitro efficacy of Lf

against severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) variants of concern by direct inhibition of virus entry and

immunomodulatory mechanisms (14). Furthermore, oral

administration of Lf in mice leads to type I interferon production,

thus playing a role in antiviral defense, by inhibition of protein
02
synthesis, degradation of viral RNA in infected cells, and

enhancement of antiviral immune activity (15).

Lf interacts with Toll-like receptors (TLRs) and promotes

regulatory effects in the immune system (16–18). TLR4 is a

surface receptor classified as a pattern recognition receptor (PRR)

that interacts with several infectious and non-infectious agents,

leading to the activation of nuclear factor kappa B (NF-kB), and
mitogen-activated protein kinases, leading to phosphorylation of

intracellular molecules, such as the MyD88 protein, and

contributing to T-cell proliferation as well as natural killer (NK)

cells, monocyte, neutrophil, and dendritic cell stimulation (9, 19).

A previous study showed that severely ill patients with COVID-

19 have a high concentration of pro-inflammatory cytokines, such

as interleukin-6 (IL-6), compared to those who are moderately ill

(3). In the same way, IL-2, IL-2R, IL-7, IL-10, granulocyte-colony

stimulating factor (G-CSF), interferon-g-inducible protein 10 (IP-

10/CXCL10), monocyte chemoattractant protein (MCP-1/CCL2)

MCP-3/CCL7, Interleukin-1 receptor antagonist (IL-1ra),

Macrophage Inflammatory Protein-1 Alpha (MIP-1a/CCL3),
interferon gama (IFN-g), and tumor necrosis factor (TNF-a) were
observed at high plasma concentration in intensive care unit

patients. The acute phase of SARS-CoV-2 infection was

associated with a marked leukopenia in up to 80% of hospitalized

patients, associated with a dramatic decrease of CD4+ and CD8+ T

cells (20).

Imbalances in the number of mononuclear cells in peripheral

blood are related to the inflammatory phase of COVID-19, and some

studies have associated these changes with the disease outcome (21–

23). Restoration of immune cell numbers and functions has the

potential to correct the delicate immune homeostasis required to

establish an effective recovery from SARS-CoV-2 infection (24).

In this study, we evaluated the effect of bLf on the cellular

immune response and production of pro-inflammatory cytokines

using SARS-CoV-2–infected cells derived from patients with

COVID-19. In addition, the therapeutic effect of bLf in SARS-

CoV-2– infected K18–human ACE2 (hACE2) mice was

investigated. Additionally, using in silico strategy, we investigated

a model of interaction between the Lf molecule and TLR4 in an

attempt to provide a possible mechanism of action for this protein.
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2 Materials and methods

2.1 In vitro experimental design

2.1.1 Study population
Blood samples were obtained by venipuncture from patients with

COVID-19 attended at a public hospital (Gaffrée and Guinle University

Hospital) in Rio de Janeiro, Brazil. Fifteen patients were followed up,

and blood collection was performed according to COVID-19 symptoms

onset at <10 days (T1), 20–30 days (T2), and 40–60 days (T3). SARS-

CoV-2 infection was confirmed by real-time reverse transcription

polymerase chain reaction (RT-qPCR). All patients signed an

informed consent, and the protocol was approved by the Institutional

Review Board under certificate number 37079320.4.0000.5258.

Participants with negative results for SARS-CoV-2 infection by RT-

qPCR and without signals and symptoms were included as a control

group and called unexposed (n = 15) (Table 1). Demographic data such

as age and gender of participants are described in Table 1.

2.1.2 In vitro bLf treatment assay
Peripheral blood mononuclear cells (PBMCs) from each

participant were isolated and purified by density gradient

centrifugation (Ficoll–Paque; Sigma), resuspended in freezing

solution CryoStor (STEMCELL Technologies), and cryo-preserved

in liquid nitrogen. PBMCs collected at T1, T2, and T3 were cultured in

using Culture media for human cells (RPMI) 1640 media

(Invitrogen™) supplemented with 1 M 4-(2-hydroxyethyl)-1-

piperazineëthanesulfonic acid (HEPES) buffer, 2 mM L-glutamine, 5

mM b-mercaptoethanol, 1 mM sodium pyruvate, 1% non-essential

amino-acid solution, 1% (v/v) vitamin, and 10% fetal bovine serum

(Invitrogen™) for 18 h (resting) before antigen stimulation. The cells

were then incubated for 24 h at 37°C and 5% CO2 with recombinant

IL-2 (50 ng/mL; Mabtech, #3851-2A) as a positive control. Afterward,

PBMC samples from healthy participants unexposed to COVID-19

and from patients with convalescent COVID-19 (T2) were treated

with different concentrations of apo-bLf (CAS BioSciences, New York,

NY, USA) at 1, 5, and 10 mg/mL, and the cells were then incubated for

24 h at 37°C and 5% CO2, after resting of 18 h, whereas PBMC

samples from T1 were treated with bLf at 10 mg/mL, after resting. The

cells were incubated for 48 h at 37°C and 5% CO2. Subsequently, the

cells were collected for RNA extraction using the TRIzol reagent

(Invitrogen™), according to the manufacturer’s instructions.

2.1.3 Immunophenotyping by flow cytometry
After initial incubation, cells were harvested, and the pellet was

washed with Fluorescence Activated Cell Sorting (FACS) buffer (25).

After that, the cells were resuspended in live-dead blue dye solution,
Frontiers in Immunology 03
incubated for 15 min, washed with FACS buffer, and centrifuged at

400 g for 10 min. Then, the cells were incubated for 25 min at 2°C–8°

C with a mix of human antibodies: CD8 Brilliant Violet 605 (clone

SK1), CD56 PECy5 (clone B159), CD3 FITC (clone UCHT-1), CD16

PECF594 (clone 3G8), CD4 APC (clone L200), CD69 Brilliant Violet

421 (clone FN50), and CD279 (PD-1) Brilliant Violet 711 (clone

EH12.1), all purchased from BD Biosciences (San Diego, CA, USA).

The samples were washed with FACS buffer, centrifuged at 400 g for

10 min, homogenized with 1% paraformaldehyde solution, and

analyzed using LSR Fortessa (BD Biosciences) followed by offline

analysis by FlowJo software (BD Biosciences).
2.1.4 Cytokine detection in PBMC supernatant
To verify the levels of IL-6, C-X-C motif chemokine ligand 8 (IL-8/

CXCL8), C-C motif chemokine ligand 5 (rantes/CCL5) cytokines in the

supernatant of stimulated PBMC, an in-house multiplex liquid

microarray test was performed. To this end, 106 xMAP microspheres

(Luminex Corporation, Austin, Texas, USA) were coupled with anti-

human mouse purified monoclonal antibodies at the following

concentrations: anti–IL-6 at 100 mg/mL, anti-CXCL8 at 50 mg/mL,

and anti-CCL5 at 100 mg/mL (all from Abcam Plc, Cambridge, UK).

Coupling reactions were performed using the Amine Coupling Kit (Bio-

Rad) following the manufacturer’s instructions. For quantitation assay,

the Bio-Plex Pro Human Cytokine Standard 27-plex, Group I (Bio-Rad,

Hercules, CA, USA), was used as a standard curve following the

manufacturer’s instructions. Supernatant samples from cell culture

were diluted 1:10, and standards were incubated in duplicates with

coupled microspheres at 600 rotations per Minute (rpm) for 30 min at

37°C. The microspheres were washed three times with wash solution

[Phosphate buffered saline (PBS) (pH 7.4) + 1% bovine serum albumin

+ 0.02% Tween 20 + 0.005% sodium azide] and incubated with anti-

human goat polyclonal biotinylated antibodies (0.1 mg/mL) against all

the analyzed cytokines (R&D Systems, Minneapolis, MN, USA) at 600

rpm for 30 min at 37°C. Subsequently, the microspheres were washed,

incubated with streptavidin-Phycoerythrin (PE) (BD Biosciences) at 600

for 10 min at 37°C, and resuspended in the wash solution. The median

fluorescence intensity (MFI) of each reaction was quantified in pg/mL

using the Luminex MagPix system (Luminex Corporation, Austin,

Texas, USA). Cytokine concentrations were calculated by

interpolating MFI of samples with the standard curve and a four-

parameter analysis was applied using the SoftMax Pro v5.4 software

(Molecular Devices, San Jose, CA, USA).
2.1.5 Cytokines gene expression in bLf-
treated PBMC

Complementary DNA (cDNA) was synthesized from 500 ng of

total RNA using the High-Capacity cDNA Reverse Transcription Kit

(Thermo Fisher Scientific). Thirty-two transcripts were quantified,

using B2M, GAPDH, 18S, and PPIA genes as endogenous controls of

expression (genes and primer descriptions are given in Supplementary

Table S1). Analysis of gene expression was performed using Fluidigm

(Biomark platform) assays, as described elsewhere (26), and according

to the manufacturer’s instructions. Data were normalized by division of

the cycle threshold (Ct) mean value of targets by Ct mean of reference

genes. Results were expressed on a logarithmic scale.
TABLE 1 Demographic features of enrolled participants.

Unexposed
(n = 15)

COVID-19
(n = 15)

Age (mean ± SD)* 36 ± 9.4 30.9 ± 10.3

Sex (F/M) 11/4 12/3
*Years; F, female; M, male.
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2.2 In silico molecular docking to evaluate
the protein–protein interactions of bLf
with TLR4 and NF-kB

The in silico experiments were performed using Cluspro 2.0

server (https://cluspro.bu.edu/login.php) to molecular docking the

protein–protein interaction model for bLf (Protein Data Bank

(PDB): 1BLF) with TLR4 from Homo sapiens (human samples)

(PDB: 4G8A) and bLf with NF-kB from Homo sapiens (human

samples) (PDB: 1SVC). The top score models posed with the lowest

energy were chosen to be analyzed through the PDBsum server

(http://www.ebi.ac.uk/pdbsum) to get the residue interactions and

bounding information. The PyMoL software (http://www.pymol.org/

pymol) was used to calculate the root mean square deviation (RMSD)

by superimposition between the ligand’s atoms and the visualization

of the protein–protein docking generated.
2.3 In vivo experimental design

2.3.1 SARS-CoV-2 infection and bLf treatment of
K18-hACE2

Twenty-one K18-hACE2 transgenic mice of both sexes were

used as a SARS-CoV-2 infection model. Animals were 17 to 20

weeks old, weighing 20–25 g, SARS-CoV-2 naïve, and captivity

colony born in the Mice Breeding Service of the Institute of Science

and Technology in Biomodels of Fiocruz (Rio de Janeiro, Brazil). Of

this total, three experimental groups (n = 7) were generated:

negative control (NC), subjected to saline administration; a

positive control (PC) group, infected 105 SARS-CoV-2 particles

(Wuhan strain); and a group that received both the viral particles

and the apo-bLf at 10 mg/10 mL (treated) for 72 h (at 12-h

intervals). K18-hACE2 mice were inoculated through the

intranasal route by trained staff and observed daily to record

body weight and clinical signs of illness (bristling fur, arched

back, respiratory alteration, eye discharge, and limited mobility).

After 7 days post-infection (dpi), mice were euthanized by CO2

asphyxiation followed by cervical dislocation (Figure 1A). Whole

blood as well as pieces of lungs and brain tissues were harvested and

stored using a stabilizer solution of Invitrogen™, TRIzol (blood), or

RNAlater (lungs and brain), according to the manufacturer’s

instructions. This research protocol was approved by the Ethics

Committee on the Use of Animals of Fiocruz under certificate

number LW-17/20.

2.3.2 Cytokine detection in K18-hACE2
mouse serum

Cytokines in serum samples from K18-hACE2 mice at the

seventh dpi were detected using ProcartaPlex Mouse Th1/Th2

Cytokine Panel, 11plex kit (Thermo Fisher Scientific), according

to the manufacturer’s instruction. The samples were assayed in

duplicate to quantify the levels of the cytokines IL-1b, IL-2, IL-4,
IL-5, IL-6, IL-12p70, IL-13, IL-18, IFN-g, TNF-a, and Granulocyte-

macrophage colony-stimulating factor (GM-CSF). The results were

analyzed as described in Section 2.1.4.
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2.3.3 Cytokine/chemokine gene expression in
tissues and whole blood

To evaluate the gene expression profile at 7 dpi, tissue mRNA was

extracted using the RNeasy Plus Mini Kit (Qiagen), and whole-blood

mRNA was extracted by the TRIzol method, both procedures according

tomanufacturer’s instructions, followed by cDNA synthesis from 500 ng

of total RNA using the High-Capacity cDNA Reverse Transcription Kit

(Applied Biosystems). The cytokines/chemokine IL1B, IL6, IL18, FTH1,

NOX1, IL10, CASP1, GADD45G, IFNB1, TLR4, TLR9, CCL2, and

CLEC5A transcripts were quantified, using B2M, GAPDH, and PPIA

genes as endogenous controls of expression (gene and primer

descriptions are given in Supplementary Table S1); qPCR was

performed using SYBR® Green master mix (Applied Biosystems), 400

nM each primer (forward and reverse) and 5 ng each cDNA. The cycling

conditions used were 10min at 95°C, 15 s at 95°C, and 4min at 60°C, for

45 cycles for DNA denaturation and amplification carried out using the

QuantStudio Pro 7 Real-Time PCR System (Applied Biosystems). Using

the LinRegPCR software, the mean PCR efficiency per amplicon was

determined and used to calculate the start concentration per sample

(N0), expressed as arbitrary fluorescence units. Data were normalized by

the division of N0 mean of targets by N0 mean of the reference genes.

Results were expressed on a logarithmic scale.
2.4 Statistical analysis

Kolmogorov–Smirnov test was performed to identify the

normality assumption of the data. The comparisons between the

explored groups were performed using theMann–Whitney U test. For

the ex vivo data, the comparison was performed among unexposed

subjects and the different time points of blood collection were made

for the COVID-19 group. For the in vitro data from FACS, the

comparison was performed between unstimulated (mock) and all

concentrations of bLf used in the cell culture assay. Bar graphs

represent mean ± standard deviation (SD). Cell frequencies above

1% were considered for the final analysis of the flow cytometry data,

and differences were considered statistically significant when p ≤ 0.05.

The cytokines detected were analyzed by comparing the SARS-CoV-

2–infected and bLf-treated groups, using the Kruskal–Wallis test with

Dunn’s post-test, and differences were considered statistically

significant when p ≤ 0.05. Log2-normalized expression was

compared among NC, PC, and treated groups using the Kruskal–

Wallis test with Dunn’s post-test, and differences were considered

statistically significant when p ≤ 0.1. Graphs and statistical analysis

were performed using Prism software, v8.4.2 (San Diego, CA, USA).

3 Results

3.1 The relative amount of circulating NK
and T cells affected by SARS-CoV-
2 infection

Comparisons of blood from healthy subjects (unexposed) and

patients with COVID-19 revealed that the percentage of circulating NK

(CD56+) and CD4+ T cells significantly increased at 20–30 days after
frontiersin.org
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the onset of symptoms (Figures 2A, B, D). In contrast, CD8+ T cells

were reduced at the same time point (Figures 2A, E). Total monocytes

(CD14+) were not affected in the follow-up, and a restoration in CD8+

T cells was observed 40–60 days after symptom onset (Figures 2A, C).
3.2 In vitro effects of bLf on NK and T cells
and secreted cytokines in the
convalescent phase

Considering the results for the COVID-19 group at 20–30 days

after the onset of symptoms, PBMCs from this time point were chosen

for in vitro cultivation with bLf to explore their effects on the

subpopulations of NK, CD4+ T, and CD8+ T cells. Although we

found that patients with COVID-19 showed an increase in the total

NK population, in the subpopulation of NK cells, NKbright cells

(CD3−CD56high) and NK-like T cells (NKT) were showed a decrease

in the COVID-19 exposed group (Figures 3A, B). Furthermore, bLf (10

mg/mL) reduced the subpopulation of NKbright cells (CD3−CD56high)

in individuals exposed and unexposed to COVID-19 (Figure 3A). The

NKT subpopulation showed an apparent reduction in concentrations
Frontiers in Immunology 05
of 1, 5, and 10 mg/mL bLf in unexposed individuals, whereas those

exposed only showed a reduction in bLf at a concentration of 10 mg/

mL (Figure 3B). When T cells were evaluated under bLf treatment, the

activation marker (CD69) was found to be raised for CD4+ T cells at 5

and 10 mg/mL bLf (Figure 3C). In addition, the programmed death

marker (CD279/PD-1) expression was diminished in bLf at 10 mg/mL

for CD4+ and CD8+ T cells, but only in the COVID-19 group

(Figures 3D, E). Secreted IL-6 levels were diminished upon bLf

treatment at 5 and 10 mg/mL in unexposed PBMC culture

(Figure 3F). Although CXCL8 levels were unaltered in both groups

(Figure 3G), high levels of CCL5 were detected after bLf treatment at 10

mg/mL in the COVID-19 group (Figure 3H).
3.3 Increased expression of NFKB, IFIT1,
NCF4, and TLR4 genes induced by bLf in
an acute phase

Based on the results obtained in the immunophenotyping,

treatment with bLf at 10 mg/mL had a greater effect on the

frequency of cell subpopulations. Thus, the PBMCs of the acute
FIGURE 1

Cytokine levels in different tissues, showing the immunomodulatory effect of bLf in K18-hACE2 mice infected with SARS-CoV-2. (A) Experimental
design; (B) serum levels of IFN-g, IL-1b, GM-CSF, and IL-2; (C) IL6, TLR4, and TLR9 gene expression in whole blood; (D) CCL2, IL6, IFNB1, and FTH1
gene expression in brain tissue; (E) IL1B, CASP1, CCL2, IL6, and NOX1 gene expression in lung tissue. Kruskal–Wallis tests with Dunn’s post-hoc tests
were applied to compare groups. *p < 0.05, **p < 0.005, ***p < 0.0005, and ****p < 0.00005. NC, negative control; PC, positive control (COVID-
19); treated, treated with bLf.
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phase COVID-19 group (T1) were treated with this concentration for

evaluation of different cytokines by mRNA expression. Evaluating

only the effect of Lf on PBMCs from acute participants, mRNA

expression of NFKB (nuclear factor kappa B), IFIT1 (ferritin heavy

chain 1),NCF4 (neutrophil cytosolic factor 4), and TLR4 (TLR4) were

upregulated with statistically significant differences compared to

those in the NC and no treated (NT) groups as shown in Figure 4.

However, no significant difference was seen in pro-inflammatory and

regulatory cytokine genes.
Frontiers in Immunology 06
3.4 Molecular docking shows interactions
of bLf with TLR4 and NF-kB

Using in silico analysis, 66 residues (48 from chain A and 18 from

chain B) of TLR4 (PDB: 4G8A) were found interacting with 62 residues

of bLf (PDB: 1BLF). The binding information is summarized in

Figure 5 and Table 2. In addition, bLf also interacted with NF-kB
(PDB: 1SVC) through 35 and 33 residues, respectively. Both TLR4 and

NF-kB had high weighted scores with low energy and good RMSD
FIGURE 2

Percentage of circulating immune cells from patients with COVID-19 and unexposed individuals, at different stages of the disease. (A) Gate strategy
accessing the subpopulation of PBMCs by ex vivo immunophenotyping. (B) Percentage of total NK cells, (C) total monocytes, (D) total CD4+ T cells,
and (E) total CD8+ T cells, obtained from unexposed individuals and patient with COVID-19. Percentage of obtained from unexposed individuals and
patients with COVID-19 (**p < 0.01, and ****p < 0.0001).
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values (<0.5 Å) in their interactions with bLf (Table 2). Such strong

interchain interactions of bLf with a cell surface receptor (TLR4) and

an intracellular protein (i.e., NF-kB)may simulate the internalization of

the molecule, suggesting a potential activation of immune cells.

3.5 Immunomodulatory effect of bLf on
SARS-CoV-2 acute infection in vivo

During the monitoring of K18-hACE2 mice, a lower percentage

of weight loss was observed in the animals that received bLf
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(treated) in comparison to that in PC group, whereas the NC

group did not show any weight loss (Supplementary Figure S1).

There was also a slight decrease in clinical signs in animals from the

treated group, with no significant difference in the infected group

(PC) (Supplementary Figure S2). These clinical aspects suggest that

bLf exerts a favorable effect in terms of COVID-19 outcome.

Analyzing SARS-CoV-2 RT-qPCR, it was not possible to observe

significant changes in the viral load of treated mice and PC group, in

samples of the nasal swabs from 7 days post-challenge (data not

showed). Hence, we hypothesized that the immunomodulatory
FIGURE 3

In vitro effects of bLf on subpopulations of NK and T cells from unexposed and COVID-19 groups. (A) Percentage of NKbright (CD3−CD56highCD16−),
(B) NKT(CD3+CD56+), (C) CD4+ activated T cells (CD69+), (D) exhausted CD4+ T cells (PD-1+), and (E) exhausted CD8+ T (PD-1+) cells upon
stimulation with different bLf concentrations (1, 5, and 10 mg/mL), as well as unstimulated (mock). Levels of (F) IL-6, (G) CXCL8 (IL-8), and (H) CCL5
(RANTES) detected in supernatant obtained from cell stimulation conditions. *p < 0.05 and **p < 0.01.
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properties of bLf could be protective against COVID-19 in our

mouse model.

The immunomodulatory effect of bLf on COVID-19 reflected in

a differential cytokine profile in serum, blood cells, and lung/brain

tissues of treated mice. Among cytokines analyzed in the serum,

IFN-g levels were lower in the treated bLf group and the NC group

compared to those in the untreated mouse group PC (p < 0.05). The

pro-inflammatory cytokines IL-1b, IL-2, and GM-CSF, but not

IFN-g, showed higher levels in treated animals than that in the PC

group (Figure 1B). In the blood, the treated group also presented a

high expression of TLR4 and TLR9 when compared to the PC group

(Figure 1C). In the brain, the virus led to high expression of CCL2,

IL6, and IFNB1 and low FTH1. The bLf treatment led to increase

FTH1 expression (Figure 1D). Analyzing the lung gene expression

levels of the PC group in comparison to that of the NC group, it was

observed that the levels of CCL2 and GADD45G increased and that

of IL1B, CASP1, and NOX1 increased. The bLf treatment induced

increased levels of IL1B and IL6 (Figure 1E). Thus, these data

suggest that bLf treatment was able to increase the systemic and

lung levels of pro-inflammatory cytokines and the homeostatic

effects in iron metabolism in the treated group, contributing to an

early and beneficial inflammatory response.
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4 Discussion

The COVID-19 pandemic is still a threat, due to the fast virus

spread of new variants (27, 28). The main feature of COVID-19

pathogenesis is the dysregulation of immunological responses called

cytokine storm. Despite the development of effective vaccines, there

is no specific treatment available, and some subjects remain

vulnerable to severe manifestations, such as pregnant women,

elderly, and immunocompromised people. Hence, it is imperative

to develop a therapeutic strategy capable of being used in those risk

groups. Here, we utilized cells from patients with COVID-19, in

silico and in vivo approaches, for investigating the potential

immunomodulatory effect of bLf in COVID-19 infections. Our

findings show that bLf can bind to TLR4 and NF-kB, modulating

the frequency of circulating T and NK subtypes cells, as well as

reestablishing homeostatic levels of immunological mediators.

Lf is a pleiotropic molecule that triggers both anti- and pro-

inflammatory events, with an important role in general immunity

toward the restoration of physiological homeostasis. Some studies

demonstrated the anti-inflammatory effect of Lf on immune cells

(macrophages, NK cells, and neutrophils) (5, 26). It has been shown

that the treatment with Lf inhibits the formation of neutrophil

extracellular traps in neutrophils exposed in vitro to polyclonal

stimuli such as phorbol 12-myristate 13-acetate (5). Moreover, Lf

presents a protective role upon exposition to exogenous antigens,

serving as a mediator for the activation and migration of

macrophages/monocytes and dendritic cells (13, 29, 30). Here, the

reduction of IL-6 levels and the frequency of NK cells in

participants’ unexposed (healthy) samples with bLf reinforced its

potential immunomodulatory effect.

In the COVID-19 context, our findings suggest that the

treatment with bLf could help develop a responsive immune

response in the COVID-19 acute phase. In terms of innate

immune responses, peripheral blood cells from our clinical cohort

and mice infected with SARS-CoV-2 presented a cytokine storm

profile observed in previous studies. Studies demonstrated that such

a profile can be favorable during the acute phase by triggering

antiviral responses but is associated with severity in the

convalescent phase when the immunopathological responses can

cause damage (27, 31). Here, bLf treatment in the acute phase led to
TABLE 2 Description of the top models of TLR4/bLf and NF-kB/bLf
docking complexes as assessed by the ClusPro 2.0 method.

Weighted score Lowest energy

ClusPro 2.0 model TLR4 - bLf NF-kB - bLf

Balanced (kcal/mol) −1,210.1 −911.1

Electrostatic favored
(kcal/mol)

−1,045.8 −1072.3

Hydrophobic favored
(kcal/mol)

−998.8 −956.0

van de Waals +
electrostatic (kcal/mol)

−333.2 −264.1

RMSD (Å) 0.262 0.368
RMSD, root mean square deviation value.
FIGURE 4

Upregulated genes expression after in vitro bLf treatment of PBMCs in the acute phase of COVID-19. Expression levels of NFKB (A), IFIT1 (B), NCF4
(C), and TLR4 (D). Kruskal–Wallis tests with Dunn’s post-hoc tests were applied to compare groups. NC, negative control (unexposed); NT, no
treatment (COVID-19); bLf, treatment with bLf.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1456634
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Silva et al. 10.3389/fimmu.2024.1456634
high levels of pro-inflammatory and antiviral cytokines, including

high levels of TLR4, NF-kB, and downstream genes, whose

activation events are pivotal for fighting against viral infections.

Cell surface receptors (PRRs and TLR4) bind to several

infectious and non-infectious agents triggering the activation of

NF-kB, contributing to T-cell and other immune cell proliferation

(9, 18, 19, 32). The binding of bLf to TLRs was previously

demonstrated with an immunomodulatory effect, facilitating

maturation, differentiation, and functional activity of neutrophils,

monocytes, and dendritic cells (16). Nevertheless, the molecular

interaction of bLf with TLR4 and NF-kB has not been well explored,

especially during SARS-CoV-2 infection. Here, our in vitro study

showed a significant expression of both TLR4 and NFKB after bLf

treatment of immune cells from COVID-19 group, as indicated by

RMSD value of 0.262 Å for TLR4 from human samples binding to

bLf, whereas Ohto et al. (33) showed an RMSD value of 1.6 Å among

TLR4 and putative ligand lipopolysaccharide (LPS). Also, analyzing

the residues present in the binding sites, our molecular docking

suggests the activation of both TLR4 and NF-kB because of bLf

interaction. Mukund et al. (34) showed some binding residues of NF-

kB (Lys52, Ser243, Asp274, and Lys275) presenting the inhibition of

the translocation to the nucleus and expression of NF-kB in breast

cancer cell lines (35). These active site residues did not participate in

any interaction observed in our in silico data, suggesting that they do

not affect the binding between bLf and NF-kB (34). Also, it was

observed in vitro in cell lineage the participation of carbohydrate

chain human Lf in activation of TLR4-mediating innate immunity
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(36). In this context, Ráscon-Cruz et al. (2021) showed that five

potential glycosylation sites of bLf (Asn233, Asn281, Asn368,

Asn476, and Asn545) can be exposed on its surface and may

participate in the recognition of specific receptors (16). Our in

silico findings detected two residues, Asn233 and Asn281, binding

to TLR4, suggesting that these residues may participate in the

immunomodulatory mechanism of bLf observed in the activation

of NK and T cells during COVID-19. Likewise, in vivo bLf treatment

also induced TLR4 and TLR9 in K18-hACE2 mouse peripheral

blood. Both the pathogen and bLf were inoculated through the

intranasal route to simulate viral tropism by the respiratory system.

Allegedly, this is the first report to use this model to evaluate bLf

immunomodulatory effect against acute COVID-19.

In COVID-19 group, NK cells (CD56+) and helper CD4+ T cells

(Th1 and Th2) were found in the lungs of deceased patients and, with

increased frequency in peripheral blood, were related to the

inflammatory phase (21–23). In addition, it was demonstrated that

SARS-CoV-2 can induce the activation of these immune cells (37–39).

On the other hand, lymphopenia was also described by several studies,

as well as impairment of IFN production, suggesting an ability of

SARS-CoV-2 to perform immune escape or suppress the immune

response (35, 40, 41). Similar results were detected in our study with

patients in the acute phase of COVID-19, which showed an increase in

NK cells and CD4+ T cells (20–30 days), but a decrease in CD8+ T cells

up to 10 days and between 20 and 30 days from the onset of symptoms.

Moreover, bLf was able to reduce the percentage of NK cells subset

even for COVID-19 or unexposed (healthy) subjects in the in vitro
FIGURE 5

Molecular docking of bLf with TLR4 and NF-kB. Structure of molecular docking pose of bLf with TLR4 (A) and NF-kB (B), showing residue
interactions as well as bound types.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1456634
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Silva et al. 10.3389/fimmu.2024.1456634
assay. Nevertheless, Kuhara et al. (2006) reported that oral

administration of bLf in healthy mice increased NK cell populations

and IFN-g production in the peripheral blood and spleen in a dose-

dependent manner, suggesting that bLf enhances NK cell activity (15).

In contrast to our in vivo data, K18-hACE2 mice treatment with bLf

showed lower serum IFN-g levels on 7 dpi of SARS-CoV-2 infection.

Regarding PD-1, Zeng et al. (2020) showed PD-1 overexpression by

activated T cells associated with fatal outcomes in critical patients with

COVID-19 (22). Here, in T cells expressing PD-1, bLf could impair its

frequency, specifically in COVID-19 samples. Meanwhile, an increase

of CD4+ T cells expressing CD69+ together with CCL5 levels was

noted in our experiments using bLf on COVID-19 samples. Pérez-

Garcıá et al. (2022) showed that low CCL5 expression levels in the

upper respiratory tract are associated with COVID-19 severity (42).

CCL5 chemokine combined with CCR5, CCR3, and CCR1 receptors

is upregulated by Th1 responses and downregulated by Th2 responses,

with an important role in Th1 cell recruitment and activation (43),

which suggests a positive effect of bLf in our experiments. In addition,

treated bLf caused an increase in GM-CSF, IL-1b, and IL-2 in serum

levels in vivo, which returned to the homeostatic level.

That same effect was seen on the mRNA expression of several

genes related to pro-inflammatory pathways in brain and lung

tissues, confirming the modulating effect of bLf. Also, the high

expression of FTH1 is consistent with findings that demonstrate the

role of bLf as a physiological orchestrator of iron and inflammatory

homeostasis through its ability to modulate the expression of the

major iron proteins, both in in vitro and in vivo studies as well as in

clinical trials (10). Additionally, a higher FTH1 expression was

observed in the brain tissue of the bLf-treated group, indicating that

bLf can cross the blood-brain barrier and suggesting that brain cells

are important targets for its action (44).

In addition to its well-documented immunomodulatory

properties, bLf exhibits a multifaceted antiviral activity against

SARS-CoV-2, acting at various stages of the viral lifecycle.

Beyond modulating the immune response, bLf has been shown to

block the interaction between the viral spike protein and heparan

sulfate proteoglycans, which serve as alternative receptors

facilitating viral entry (45, 46). Furthermore, bLf inhibits the

activity of the serine protease Transmembrane Serine Protease 2

(TMPRSS2), crucial for viral priming, thereby preventing the virus

from entering host cells (47). Additionally, bLf has been reported to

reduce viral replication by inhibiting the RNA-dependent RNA

polymerase (48, 49) and to blunt the main viral protease Mpro (also

known as 3CLpro), which is essential for viral protein processing

and maturation (50). These diverse mechanisms of action likely

contribute to the observed antiviral effects of bLf in our study and

highlight its potential as a broad-spectrum antiviral agent against

SARS-CoV-2.

Furthermore, the antiviral efficacy of bLF can vary depending

on the SARS-CoV-2 variant, as demonstrated byWotring et al. (14),

who found that bLf and its derivative, bovine lactoferricin (bLfcin),
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were particularly effective against the Alpha (B.1.1.7) variant. In our

study, we used theWuhan strain, and, although this choice provides

valuable insights, it is important to consider that different variants,

due to their distinct mutations, may respond differently to bLf.

These variations could influence the extent of bLf antiviral effects, as

certain mutations might alter the virus interaction with host cell

receptors or its susceptibility to Lf mechanisms of action. However,

a more recent study by Alves et al. (51) revealed that SARS-CoV-2

Wuhan and Omicron (BA.1) strains were equivalent in terms of

sensitivity to bLf during infection of Vero cells, regardless of the

iron-saturation state of the protein. Further studies are thus needed

to assess bLf effectiveness across a broader range of SARS-CoV-

2 variants.

As a limitation of the current study, the high concentration of

bLf used for the in vitro assays concerning the constitutive levels of

Lf in humans could exacerbate the immune events induced by this

molecule. For in vivo experiments, an additional collection point

between 0 and 7 dpi would, perhaps, be more informative for the

immunomodulatory effect of Lf, presenting a greater number of

differentially expressed genes, because the transcription time of each

gene may be different from each other.

Our findings reinforce the immunomodulatory effect of bLf

already described in the literature and fill the gap in the knowledge

about its regulatory effect on the immune response during SARS-

CoV-2 infection. Taken together, the results presented here

indicate that bLf affects the amount of circulating immune cells

in the late stage of infection, whereas, in acute COVID-19, the bLf

induces pro-inflammatory cytokines, suggesting that bLf can be

explored considering the immunomodulatory effect under

evaluation of the time of infection, as an important

supplementation that supports immune in the therapy of SARS-

CoV-2 infection, promoting immunological homeostasis. Thus,

the bLf effects can be further explored in future clinical trials

taking into consideration the time of infection, clinical conditions,

and in synergism of other drugs that help clear to clear the

infection and minimize several damages.
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Imunológica, Laboratório de Tecnologia Virológica, and
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