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CD19: a promising target
for systemic sclerosis
Kazuhiro Komura*

Department of Dermatology, Kanazawa Red Cross Hospital, Japanese Red Cross Society, Kanazawa,
Ishikawa, Japan
Systemic sclerosis (SSc) is an autoimmune disease characterized by immune

dysregulation, vascular damage, and fibrosis. B cells play a significant role in SSc

through autoantibody production, cytokine secretion, and T cell regulation.

Autoantibodies like anti-topoisomerase I and anti-RNA polymerase III are

specific to SSc and linked to clinical features such as skin and lung

involvement. B cell depletion therapies, particularly anti-CD20 antibodies like

rituximab, have shown benefits in treating SSc, improving skin and lung disease

symptoms. However, CD19, another B cell marker, is more widely expressed and

has emerged as a promising target in autoimmune diseases. CD19-targeted

therapies, such as CAR T cells and Uplizna® (inebilizumab), have demonstrated

potential in treating refractory autoimmune diseases, including SSc. Uplizna®

offers advantages over rituximab by targeting a broader range of B cells and

showing higher efficacy in specific patient subsets. Clinical trials currently

investigate Uplizna®’s effectiveness in SSc, particularly in severe cases. While

these therapies offer hope, long-term safety and efficacy remain unknown. SSc is

still a complex disease, but advancing B cell-targeted treatments could

significantly improve patient outcomes and knowledge about the pathogenesis.
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Introduction

Systemic sclerosis (SSc) or scleroderma is characterized by immune dysregulation,

obliterative microvasculopathy, and fibrosis, significant causes of mortality throughout the

body (1, 2).

B cells are implicated in the pathogenesis of SSc through several mechanisms, including

autoantibody production, cytokine secretion, antigen presentation, and regulation of T cell

responses (3, 4). Autoantibodies are a hallmark of SSc and can be detected in more than

90% of patients (5–9). They are associated with distinct clinical features, such as skin

involvement, lung fibrosis, or pulmonary arterial hypertension (8). Some autoantibodies,

such as anti-topoisomerase I, anti-RNA polymerase III, and anti-centromere, are highly

specific for SSc and can be used as diagnostic markers (8). B cells also secrete pro-

inflammatory and pro-fibrotic cytokines, such as interleukin-6 (IL-6), tumor necrosis

factor-alpha (TNF-a), and transforming growth factor-beta (TGF-b), which contribute to
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the activation of fibroblasts and endothelial cells (4, 10). Moreover,

B cells can act as antigen-presenting cells and stimulate T cell

responses, further enhancing immune dysregulation and tissue

damage in SSc (10). Finally, B cells can modulate the immune

system through regulatory B cells (Bregs), which produce anti-

inflammatory cytokines, such as IL-10 and IL-35, and suppress

effector T cells (11). However, the function and frequency of Bregs

are impaired in SSc, leading to a loss of immune tolerance and

homeostasis (12). In several studies, B cell depletion therapy with

anti-CD20 antibodies has shown some efficacy in improving skin

and lung manifestations of SSc. Other B cell targets, such as CD19,

are also being explored as potential therapeutic options for SSc.
Anti-CD20 antibody therapy for SSc

CD20 is a transmembrane protein expressed on most B cells,

except for stem cells and plasma cells. It is involved in the activation

and differentiation of B cells and can modulate B cell receptor

signaling and calcium flux (13). Anti-CD20 antibodies can bind to

CD20 and induce B cell depletion through ADCC, CDC, or direct

apoptosis (14–16). In experimental models of SSc, anti-CD20

antibodies have shown anti-fibrotic and anti-inflammatory effects

by reducing collagen deposition, fibroblast activation, and cytokine

production (17). They have also decreased the levels of

autoantibodies in SSc mice (17). In clinical trials, anti-CD20

antibodies have demonstrated some benefits for patients with SSc,

especially for skin and lung involvement. Rituximab, a chimeric

monoclonal antibody against CD20, was efficacious for both skin

sclerosis and ILD in SSc in case reports (18, 19), open-label trials

(20) and small-scale RCTs (21, 22). In a case-control study of 25

patients with severe SSc (MRSS >16), rituximab treatment

significantly improved skin sclerosis (mean ± SEM MRSS, from

26.6 ± 1.4 to 20.3 ± 1.8; P = 0.0001) after six months (range, 5–9)

(23). Additionally, nine SSc patients with ILD and rituximab

preserved %FVC (mean ± SEM %FVC, from 60.6 ± 2.4 to 61.3 ±

4.1; P = 0.5) (20). Consistently, rituximab significantly reduced

MRSS while retaining pulmonary function at 12 months in an

open-label, uncontrolled study of 20 patients (24). A randomized

controlled trial of rituximab for SSc was conducted with 56 patients

(21). They received either rituximab 375 mg/m2 or a placebo by

infusion once a week for four weeks. The primary outcome was the

difference in skin thickening measured by MRSS at 24 weeks after

the treatment. Rituximab significantly reduced 6.30 MRSS points

(2.14 increase in placebo; difference −8.44 [95% CI −11.00 to 5.88];

p < 0.00001). Thus, rituximab was the first drug for SSc to show

efficacy in a double-blind, randomized, and placebo-controlled trial

with skin sclerosis at the primary endpoint. Based on the results,

rituximab was approved for SSc in Japan in 2021.

One of the main concerns about rituximab therapy for SSc is

long-term safety, especially the risk of infections and malignancies.

Although anti-CD20 antibodies have been used for over a decade in

other autoimmune diseases, such as rheumatoid arthritis and

systemic lupus erythematosus, the data on their long-term safety

in SSc are still limited (25, 26). A recent systematic review and meta-
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analysis of 14 studies with 597 SSc patients who received rituximab

showed that the overall mean rate for rituximab-related severe

adverse events rate was 12.1% (p=0.733, I2 = 0%) throughout

treatment, which was acceptable and controllable for oncologist

and rheumatologist to manage (27).

Further limitations and challenges in using anti-CD20

antibodies for SSc are mode of actions during depleting B cells.

An emerging strategy we can consider is the use of obinutuzumab in

the treatment of SSc as well as SLE (28). Obinutuzumab is a

humanized type II monoclonal anti-CD20 antibody, known for its

more effective B cell depletion than rituximab (29, 30). In the phase

2 randomized and placebo-controlled trial, obinutuzumab

demonstrated efficacy in achieving both complete and overall

renal responses at week 52 when combined with mycophenolate

and corticosteroids in patients with lupus nephritis (31). The

difference between newly generated type II antibody

ob inutuzumab and r i tux imab depends on ant ibody

internalization, Fc-Fc Receptor interactions, CDC, and homotypic

adhesions/intracellular signaling within experimental studies in SLE

and RA (16). Obinutuzumab demonstrates efficacy in low

complement and rituximab-resistant SLE, since obinutuzumab

depletes B cells in a complement-independent manner (28). Thus,

more studies are needed to identify the best candidates, the most

effective regimen, and the potential predictors of anti-CD20 therapy

within SSc pathogenesis.
CD19 and CD20

CD19 and CD20 are molecules expressed on B cells’ surface but

have different functions and roles in immune regulation (13). CD20

is a transmembrane protein that forms homodimers and acts as a

calcium channel for B cell activation. CD20 is involved in the

development and maturation of B cells, and its expression is

relatively constant throughout the B cell lineage, starting from

late pre-B lymphocytes (pro-B lymphocytes do not express it) and

its expression is lost in terminally differentiated plasmablasts and

plasma cells (32). While CD20 is generally not expressed in mature

plasmablasts, it is present in early plasmablasts under certain

circumstances, although it remains uncertain in patients with SSc

(33). CD20 is also expressed on a small subpopulation of T cells

(34). CD20 is the target of several monoclonal antibodies, such as

rituximab, that deplete B cells and modulate their functions in

autoimmune diseases.

CD19, on the other hand, is a glycoprotein that forms a

multimolecular cell surface signal-transduction complex,

including CD21 and CD81 (35). In contrast to a negative

regulator of CD22, CD19 acts as a positive response regulator for

BCR signaling (36, 37). CD19 regulates the threshold and intensity

of BCR signaling and thus influences B cells’ differentiation,

antibody production, and memory formation (38). CD19

expression is variable and depends on the activation state and

subtype of B cells, and it is downregulated upon plasma cell

differentiation (Table 1) (13, 38–40). CD19 is expressed at high

levels by all mature B cells, memory B cells, and plasmablasts, while
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some pre-B cells and plasma cells express CD19. Plasmablasts are

transient antibody-secreting cells those are short-lived with high

proliferation rate. Plasma cells, having a distinct morphology

characterized by an eccentrically placed nucleus with coarse

chromatin arranged in a clock face pattern and abundant

cytoplasm immunoglobulin inclusion, can be long-lived secreting

antibodies in the bone marrow and at the inflammatory sites (41–

43). Thus, CD19 is widely expressed on B cell linage, including

CD20-negative pre-B cells, CD20-negative plasmablasts, and

CD20-negative plasma cells, in addition to CD20-positive B cells.

When comparing the effects of two monoclonal antibodies,

anti-CD19 and anti-CD20, on an animal model of multiple

sclerosis, anti-CD19 is more effective than anti-CD20 in reducing

autoantibodies and plasma cells that cause inflammation and

damage in the nervous system. The result of the study identifies a

subset of plasma cells that express CD19 but not CD20, which are

resistant to anti-CD20 therapy and may be responsible for residual

disease activity (41).
Potential role of CD19 in
SSc pathogenesis

CD19 expression and function are augmented in various

autoimmune diseases, including SSc (44, 45). On the other hand,

genetic deficiency in CD19 reveals primary immunodeficiency

syndrome (46). CD19 expression is increased in peripheral B cells

from patients with SSc compared to healthy controls and correlates

with disease activity, skin fibrosis, and autoantibody levels

(44). Genetic variants of CD19 have been associated with

augmented CD19 expression levels, increased susceptibility, and

different clinical phenotypes in SSc (47, 48). In the experimental

SSc model, CD19 ligation induced augmented tyrosine

phosphorylation of Vav and intracellular Ca responses, major

effector responses downstream of CD19 signaling in B cells (10,

49). Experimental SSc models also demonstrated CD19-associated

skin sclerosis, pulmonary fibrosis, and autoimmunity, since these

phenotypes were normalized in CD19 deficiency (10, 50–53). In

addition to autoantibody production, up-regulated CD19 on B cells

may also play a role in local inflammation since homing receptor

CXCR3 was positive on autoreactive B cells at the inflammatory

sites in SLE, RA joint, and experimental SSc-pulmonary fibrosis (52,

54, 55). Thus, enhanced CD19 signaling induces hyperreactivity of

B cell responses at the site of inflammation and enhances
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phenotypes of autoimmune diseases, while CD19 deficiency

causes immunodeficiency and underscoring SSc phenotype.
Chimeric antigen receptor T therapy
in autoimmune diseases

CAR T therapy is a novel and promising approach to target

malignant B cells that escape conventional B cell depletion (56).

CAR T cells are genetically engineered T cells that express a

synthetic receptor that recognizes a specific antigen on the surface

of B cells, such as CD19, CD20, or CD22, generated to treat B cell

malignancy (57, 58). Upon binding to the antigen, CAR T cells

activate and kill the malignant and activated B cells while sparing

other immune cells that do not express the antigen. CAR T therapy

has successfully treated B cell malignancies, such as acute

lymphoblastic leukemia, chronic lymphocytic leukemia, and non-

Hodgkin’s lymphoma (56). Recently, CAR T therapy has also been

explored in treating autoimmune diseases, such as SLE,

dermatomyositis, multiple sclerosis, and SSc (59–62) (Table 2). In

these cases, CAR T cells were directed against CD19. The results

showed that CAR T therapy induced a rapid and sustained

depletion of circulating B cells and a complete clinical and

serological remission of autoimmune diseases without causing

severe adverse events or infections (63, 66). In a case series, four

patients with refractory SSc were significantly improved by single

CD19 CAR T cell infusion after preconditioning with fludarabine

cyclophosphamide (63). All SSc patients had a decrease in MRSS (-9

points, ranging from -17 to -7) and the median change in the

EUSTAR activity index (-4.2 points, ranging from -4.7 to -2.3) at

least six months of follow-up. These responses looked greater than

CD20-directed rituximab, as previously described. SSc-associated

scl-70 autoantibody levels were also decreased in all patients with

SSc after CD19 CAR T therapy. As a result, all patients successfully

discontinued immunosuppressive medications during the follow-

up after CD19 CAR. In other case series, CD19-targeted CAR-T

therapy achieved 50% improvement in MRSS after six months in

two patients with SSc (62). However, CAR T therapy’s long-term

effects and safety in autoimmune diseases remain unknown. In an

experimental animal model (fos-related antigen-2 transgenic

mouse), CD19 CAR therapy paradoxically worsens pulmonary

fibrosis (65). Therefore, careful discussion is needed about the

indication of CAR-T therapy for SSc. Moreover, CAR T requires

specific facilities for genomics and over 200,000$ cost. There are still
TABLE 1 Cell surface CD19 and CD20 expression during B-cell development.

Expression
Stem
cell

Pro-
B cell

Pre-
B cell

Immature
B cell

Mature
B cell

Memory
B cell

Plasmablasts
Plasma
cell

CD20

CD19
Red and pink indicate positivity and partial positivity of CD20, respectively. Partial and high CD19 expression are indicated in light green and dark green, respectively.
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challenges in making these therapies widely accessible for patients

with autoimmune diseases.
Uplizna ® (inebilizumab) therapy in
autoimmune diseases and SSc

Uplizna® is an afucosylated IgG1 monoclonal antibody that binds

to CD19 and depletes B cells (67), which are involved in the immune

response in autoimmune diseases, including neuromyelitis optica

spectrum disorder (NMOSD); a rare and severe neurological disease.

A clinical trial showed that inebilizumab reduced the risk of NMOSD

attacks by more than 70% compared to placebo without causing severe

side effects. Uplizna® could be an effective treatment for NMOSD

patients (68). Uplizna® was approved by the FDA in 2020 as the first

drug for the treatment of NMOSD patients with anti-aquaporin 4 Ab.

Of note, in a post hoc analysis, Uplizna® decreased ~10-fold attack rate

in 13 NMOSD patients with prior rituximab use (69).

Uplizna® appeals advantages in comparison to rituximab (67).

First, Uplizna® targets CD19 in contrast to CD20-targeted rituximab

(Table 1). CD19 is expressed on pro-B cells, autoreactive plasmablasts,

plasma cells, and CD20+B cells. Targeting immature cells, Uplizna®

enables B cell depletion with fewer injections and avoids B cell recovery.

Autoreactive plasmablasts and plasma cell depletion reduce

autoantibody production and other pathological B cell activities.

Secondly, removing fucose from the Fc region results in

approximately tenfold increased affinity for the activating Fc gamma

receptor IIIA. It significantly enhances natural killer cell-mediated

depletion of B cells via ADCC and antibody-dependent cellular

phagocytosis mechanisms (70, 71). The relevance of ADCC and

antibody-mediated phagocytosis is now well established in contrast

to CDC and apoptosis (72). Thus, Uplizna® demonstrates maximum

ADCC activities, while rituximab showed modest CDC and limited

ADCC activities. This results in Uplizna® efficiently depleting B cells

even in approximately 40% of the homozygous population for the

genetic risk factor of antibody therapy resistance (73, 74). Thirdly,

Uplizna® has a humanized structure. Humanized structures are

associated with reduced immunogenicity, improved tolerability, and

decreased potential for infusion-related reactions compared with
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chimeric structure rituximab. Accordingly, the anti-drug antibodies

positive rate was low (9.8%) in Uplizna-treated MNOSD (75). Thus,

Uplizna® is an efficient and safe CD19-target drug.

On the other hand, Uplizna® may activate the Hepatitis B

virus and latent tuberculosis, similar to other immunosuppressive

therapies. Therefore, target patients require screening for these

infections before starting the drug infusion. In addition, with

continued Uplizna® effect, there may be progressive and

prolonged hypogammaglobulinemia or a decline in total and

individual immunoglobulin levels. In NMOSD patients treated

with Uplizna® for ≥ 4 years, 46.7% of patients had normal IgG

levels (≥ 700 mg/dL), 29.3% had mild hypogammaglobulinaemia

(500 to < 700 mg/dL), 20% had moderate (300 to < 500 mg/dL)

and 4% had severe (< 300 mg/dL). Low IgG titres were not

associated with severe infection, although the number of

patients was small (76). The therapy requires monitoring the

level of immunoglobulins at the beginning, during, and after

treatment discontinuation with Uplizna® until B-cell repletion,

especially in patients with infections and initial lower IgM levels.

Because hypogammaglobulinemia after rituximab treatment was

largely restricted to the IgM class and associated with low baseline

levels (77).

MITIGATE (78), a placebo-controlled phase 3 trial testing

Uplizna® efficacy and safety on IgG4-related disease (IgG4-RD;

NCT04540497), met its primary endpoint, showing a statistically

significant 87% reduction in the risk of IgG4-RD flare compared to

placebo (Hazard Ratio 0.13, p<0.0001) during the 52-week placebo-

controlled period. All critical secondary endpoints were also met.

The overall safety results during the placebo-controlled trial period

were consistent with Uplizna®’s known safety profile.

Uplizna® has also been investigated in other autoimmune

diseases like myasthenia gravis (NCT04524273). However, its role

in SSc has not yet been fully explored. Given the similarities

between NMOSD and SSc regarding B cell involvement, vascular

damage, and autoimmunity, Uplizna® may have therapeutic

potential for SSc patients, precisely in the CD19-overexpressing

SSc subset (64, 79, 80). Furthermore, Uplizna® has advantages in B

cell-directed therapy over rituximab, which has been approved for

SSc treatment in Japan (81). Therefore, clinical trials are initiated to
TABLE 2 Human and animal studies of CD19 targeting therapies in SSc.

Study
Type

Authors/
Year

Phase Model Therapy Outcome

Human
Study

Wang X et al.,
2024
(62)

Case
reports

Human (Systemic
Sclerosis Patients)

Anti-CD19 CAR-
T Cells

Reduction in skin score (-20 MRSS after 6 months) and lung fibrosis in 2
SSc patients.

Human
Study

Muller F 2024
(63)

Case
reports

Human (Systemic
Sclerosis Patients)

Anti-CD19 CAR-
T Cells

Decrease in B-cell activation and decreased skin score (-9 MRSS after 6
months) in 4 SSc patients

Human
Study

Schiopu E
et al., 2016
(64)

Phase I Human (Systemic
Sclerosis Patients)

Anti-CD19
MonoclonalAb
(Inebilizumab-
cdon)

A low-dose anti-CD19 ab decreased B-cell activation and skin score (-5.4
MRSS at day 85) in 24 SSc patients.

Animal
Study

Avouac J
et al., 2024
(65)

Animal
study

Mouse (Fra-2 Tg mice) Anti-CD19 CAR-T
Cells
+Anti-CD20
Monoclonal Ab

Worsening lung fibrosis
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evaluate the safety and efficacy of Uplizna® in SSc, especially in

those with severe skin and lung involvement.
Conclusion

SSc is a heterogeneous and complex disease that affects multiple

organs and systems. However, CD19 on B cells plays a vital role in

the pathogenesis of SSc, and B cell-targeted therapies have shown

promising results in some patients. Uplizna® is a novel B cell-

depleting agent approved for NMOSD with some similarities to SSc.

The potential of Uplizna® for treating SSc has been initiated in

clinical trials.
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