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Comprehensive analysis of
lactylation-related gene sets
and mitochondrial functions
in gastric adenocarcinoma:
implications for prognosis
and therapeutic strategies
Xindong Yin †, Wenya Xing †, Nan Yi, Yuanzi Zhou, Yue Chen,
Zhiwei Jiang, Chaoqun Ma* and Cunbing Xia*

Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu
Province Hospital of Chinese Medicine, Nanjing, China
Gastric adenocarcinoma (STAD) is characterized by high heterogeneity and

aggressiveness, leading to poor prognostic outcomes worldwide. This study

explored the prognostic significance of lactylation-related gene sets and

mitochondrial functions in STAD by integrating large-scale genomic datasets,

including TCGA and several GEO datasets. We utilized Spatial transcriptomics

and single-cell RNA sequencing to delineate the tumor microenvironment and

assess the heterogeneity of cellular responses within the tumor. Additionally, the

study identified distinct molecular subtypes within STAD that correspond with

unique survival outcomes and immune profiles, enhancing the molecular

classification beyond current paradigms. Prognostic models incorporating

these molecular markers demonstrated superior predictive capabilities over

existing models across multiple validation datasets. Furthermore, our analysis

of immune landscapes revealed that variations in lactylation could influence

immune cell infiltration and responsiveness, pointing towards novel avenues for

tailored immunotherapy approaches. These comprehensive insights provide a

foundation for targeted therapeutic strategies and underscore the potential of

metabolic and immune modulation in improving STAD treatment outcomes.
KEYWORDS

gastric adenocarcinoma, lactylation, mitochondrial dysfunction, tumor microenvironment,
prognostic biomarkers
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1 Introduction

Gastric cancer (GC), particularly gastric adenocarcinoma

(STAD), stands as a significant public health challenge worldwide

(1, 2). It is the fifth most common cancer and the third most

common cause of cancer-related deaths globally (3, 4). The

aggressive nature of the tumor and the disease’s often late

diagnosis strongly contribute to its mortality rate (5). Patients

with advanced STAD continue to have a poor prognosis, with a

poor five-year survival rate, despite improvements in surgical

methods and systemic therapies (6–8). While our primary focus is

on gastric adenocarcinoma (STAD), we also included GEO datasets

from lung adenocarcinoma and urothelial carcinoma to explore

whether the observed lactylation-related gene expressions and their

impact on immune response were consistent across different cancer

types. This comparative analysis aims to provide a broader

understanding of lactylation’s role in cancer biology. Among the

lactylation-related genes identified, PTMA was selected for further

experimental validation due to its significant association with

mitochondrial dysfunctions and its prognostic value in gastric

adenocarcinoma. PTMA’s role in immune modulation and cancer

progression makes it a promising candidate for understanding the

molecular mechanisms underlying lactylation’s impact on

cancer biology.

The complexity of gastric cancer, characterized by its genetic,

epigenetic, and environmental heterogeneity, complicates effective

treatment strategies (9, 10). The integration of molecular biology

and gene expression profiling has started to illuminate the diverse

molecular mechanisms underlying the pathogenesis of STAD (11,

12). These insights have led to the classification of gastric cancer

into distinct molecular subtypes, each with unique prognostic and

therapeutic implications (13–15). However, the clinical application

of these classifications and the development of targeted therapies

have been hindered by a limited understanding of the molecular

drivers and systemic immune responses’ interaction with the

tumor microenvironment.

Recent advancements in high-throughput technologies and

bioinformatics tools have provided unprecedented opportunities

to explore the complex biological landscape of gastric cancer (16,

17). Transcriptomic profiling, particularly through Gene Expression

Omnibus (GEO) datasets and the Cancer Genome Atlas (TCGA),

has offered valuable resources for identifying key molecular

signatures and pathways that could serve as potential diagnostic,

prognostic, and therapeutic targets (18, 19).

One of the pivotal aspects of this research is the study of gene

expression modulation via post-translational modifications

(PTMs), such as lactylation, which have recently been recognized

for their roles in cancer biology (20, 21). Lactylation, a relatively

new addition to the list of PTMs, has been implicated in various

cellular processes, including metabolism, immune response, and

gene expression regulation (22, 23). Exploring lactylation-related

gene sets in STAD may help identify novel aspects of gastric cancer

pathophysiology and identify promising targets for therapy.

Furthermore, the tumor microenvironment (TME), which

includes a complex array of fibroblasts, immune cells, and other
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stromal elements, plays a vital role in the progression and response

to therapy in gastric cancer (24, 25). Modern methods like spatial

transcriptomics and single-cell RNA sequencing (scRNA-seq)

provide a thorough analysis of the tumor microenvironment

(TME), offering valuable information about the cellular variability

and dynamic interactions inside the tumor that contribute to cancer

progression and treatment resistance (26–28).

In this context, the prognostic value of gene expression profiles

has been increasingly recognized. Building robust prognostic

models based on differential gene expression could significantly

improve the stratification of patients for tailored therapeutic

strategies. Additionally, with the advent of immunotherapy as a

powerful modality in cancer treatment, understanding the

interaction between the immune landscape of STAD and its

molecular subtypes could guide the development of more effective

immune-based therapies.

However, despite these technological advancements, the

translation of molecular findings into clinical practice remains

slow, and the impact on patient survival has been modest. This

underscores the need for continued research into the molecular

mechanisms of gastric cancer, leveraging the latest technologies to

bridge the gap between bench research and bedside application.

The present study aims to address these challenges by

employing comprehensive bioinformatic analyses to explore the

correlations between lactylation-related gene expressions and

mitochondrial-related genes and to identify those with prognostic

significance in gastric cancer. By integrating data from TCGA and

multiple GEO datasets, we utilized the TCGA dataset as the primary

training set for constructing the prognostic model. The GEO

datasets were subsequently used for validation to assess the

robustness and generalizability of our findings. This research

seeks to refine the molecular classification of gastric cancer,

enhance the understanding of its biological underpinnings, and

identify novel prognostic markers and therapeutic targets. By

applying cutting-edge technologies such as scRNA-seq and spatial

transcriptomics, the study will dissect the complex interactions

within the gastric cancer microenvironment, offering new

perspectives on the cellular processes that govern tumor behavior

and response to treatment. Lactylation, a newly recognized post-

translational modification, has been implicated in the regulation of

various metabolic processes crucial for cancer cell survival and

proliferation. In the context of cancer, particularly gastric

adenocarcinoma (STAD), lactylation can significantly impact

metabo l i c pathways , inc lud ing g lyco lys i s , ox ida t ive

phosphorylation (OXPHOS), and the tricarboxylic acid (TCA)

cycle. This modification can promote the glycolytic phenotype of

cancer cells, known as the Warburg effect, which supports rapid cell

growth and proliferation by enhancing glucose uptake and lactate

production. Additionally, lactylation has been associated with

alterations in mitochondrial function, leading to a shift from

oxidative phosphorylation to glycolysis, thereby influencing the

overall metabolic reprogramming in cancer cells. Understanding

the role of lactylation in these metabolic pathways could reveal

novel insights into cancer metabolism and potential

therapeutic targets.
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2 Materials and methods

2.1 Acquisition and processing of
transcriptomic data

RNA expression profiles and corresponding clinical data for

gastric adenocarcinoma (STAD) were selected from the TCGA

database, comprising 350 samples as the training set. This set was

utilized for model construction, while its stability and accuracy were

assessed in a validation group. All data were log2-transformed after

being converted to TPM format for further analysis. Additionally,

chip datasets from the GEO database were used for validation,

including GSE15459 (n=192), GSE15460 (n=248), GSE57303

(n=70), GSE62254 (n=300), and GSE84437 (n=433), with

GSE55696 (T=56, N=19) and GSE79973 (T=10, N=10) specifically

for differential gene analysis. The normalizeBetweenArrays function

from the limma package was utilized to standardize the data across

chip datasets. In addition to the TCGA-STAD dataset, we analyzed

GEO datasets from lung adenocarcinoma (GSE91061, GSE78220)

and urothelial carcinoma (IMvigor210) to examine the potential

impact of lactylation-related gene expressions on immune response

across various cancer types. This was intended to validate our

findings in STAD and investigate whether similar patterns could be

observed in other cancers.
2.2 Acquisition and processing of single
cell and spatial transcriptomics data

Single-cell datasets were sourced from the GEO database under

GSE184198, encompassing one primary tumor sample with 13,424

cells. R software and R packages, including Seurat, were used to

analyze the data. Quality control criteria for cells included

mitochondrial content under 20% and limits for UMI counts, and

gene counts set between 200-30,000 and 200-5,000, respectively. Data

normalization, selection of 2,000 variable genes, and scaling were

conducted using Seurat’s NormalizeData, FindVariableFeatures, and

ScaleData functions, with cell cycle effects regressed out

(vars.to.regress = c(“S.Score”, “G2M.Score”)). The subsequent

analysis involved dimension reduction techniques UMAP and t-

SNE, and the Louvain clustering algorithm, all implemented via

Seurat. To find differential genes between cell types or clusters, the

FindAllMarkers function was used, with thresholds set at log2FC >

0.25, expression proportion > 0.1, and p-value < 0.05. Spatial

transcriptomics data were obtained from GEO’s GSE251950,

comprising 10 tumor samples analyzed using quality-controlled

results from SpaceRanger software. Data transformation,

normalization, and highly variable gene selection were performed

using the SCTtransform algorithm, with average spot numbers at

3229 and average UMI, gene counts, and mitochondrial content at

9885.8, 3372.8, and 2%, respectively. Analysis and visualization were

conducted using Seurat software. The conditional autoregression-

based deconvolution (CARD) algorithm was used for deconvolution

analysis, utilizing single-cell annotation data to predict cell types for

each spot in spatial data. Visualization of cell types in spatial datasets
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was performed using CARD software. The AUCell package was

employed to calculate the activity scores for gene signatures related

to lactylation, immune response, and stromal characteristics. These

scores were used to evaluate the enrichment of these signatures across

different cell types, providing insights into their functional

implications within the tumor microenvironment.
2.3 Cell annotation analysis

Initially, we identified markers for various cell types: epithelial

cells (“EPCAM,” “KRT18”, “KRT19”, “CDH1”); fibroblasts

(“DCN,” “THY1”, “COL1A1”, “COL1A2”); endothelial cells

(“PECAM1”, “CLDN5”, “FLT1”, “RAMP2”); T cells (“CD3D”,

“CD3E”, “CD3G”, “TRAC”); NK cells (“NKG7”, “GNLY,”

“NCAM1”, “KLRD1”); B cells (“CD79A”, “IGHM,” “IGHG3”,

“IGHA2”); and mast cells (“KIT”, “MS4A2”, “GATA2”). We

specifically isolated and clustered epithelial cells based on these

markers to investigate tumour heterogeneity. To illustrate these

analyses, various visualizations were created, including UMAP, t-

SNE, bar charts, and heatmaps.
2.4 Acquisition of lactylation gene sets and
mitochondrial pathways

We acquired 332 lactylation-related genes from the “MSigDB

database”. Additionally, we retrieved a set of 177 human

mitochondrial-related genes from the msigdbr package and

utilized the ssGSEA algorithm to calculate their scores. After

filtering out gene sets containing fewer than five genes, 170 gene

sets remained for further analysis.
2.5 Prognostic gene identification and
consensus clustering analysis

We performed a correlation analysis between the scores of 332

lactylation-related genes and 170 mitochondrial-related gene sets,

identifying 304 genes associated with mitochondria. Subsequent

univariate Cox analysis was conducted with TCGA and five GEO

validation datasets, from which 12 genes were identified as having

prognostic significance (p < 0.05 in at least three datasets).

Clustering analysis using these 12 prognostic genes was

performed in the TCGA-STAD cohort using a method called

nonnegative matrix factorization (NMF), executed by the NMF

package. The optimal number of clusters was determined using the

cophenetic correlation. Based on the bioinformatic analysis, PTMA

was selected for wet lab experiments because it was identified as one

of the 12 prognostic genes showing significant differential

expression and association with mitochondrial dysfunctions. Its

involvement in immune regulation in gastric cancer was further

explored through in vitro experiments to validate its potential role

in cancer progression and therapeutic targeting.
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2.6 SNV analysis

Single nucleotide variant (SNV) mutation data were downloaded

from the TCGA database. To compare samples’ tumor mutation

burdens (TMB), the maftools package was utilized. Furthermore, we

used the Wilcoxon test to do a differential analysis between the risk

groups, setting the significance level at p < 0.05.
2.7 Analysis of cell communication

The CellChat package was utilized to evaluate communication

between cells. To generate a CellChat object, the CellChat function

was used to import the normalized gene expression matrix.

ProjectData, identifyOverExpressedGenes, and identifyOver

ExpressedInteraction functions were used to preprocess the data

using their default settings. Subsequently, potential ligand-receptor

interactions were identified using computeCommunProb,

filterCommunication, and computeCommunProbPathway

functions. Finally, the aggregateNet function was used to generate

cell communication networks.
2.8 Differential gene analysis and
enrichment analysis

Differential gene expression between tumor and adjacent

normal samples in the GEO and TCGA datasets was computed

using the limma package. A gene was considered significant if its

absolute fold change was more than 1.2 and its adjusted p-value

(Padj) was less than 0.05. Enrichment analysis for upregulated and

downregulated genes was performed separately using the

clusterProfiler package, employing the GSEA algorithm.

Functional databases included HALLMARK, GOBP, and KEGG,

with functional signatures sourced from the msigdb database. The

enrichplot package was used to visualize the enrichment results.
2.9 Establishment of tumor-related
risk features

A total of 101 different machine learning algorithm

combinations were evaluated to create a prognostic model. The

final model was selected based on the highest average C-index

across the testing sets, enabling the risk score to be created for each

patient. The prognostic model was initially constructed using the

TCGA dataset, which included 350 samples. This model was then

validated using five independent GEO datasets (GSE15459,

GSE15460, GSE57303, GSE62254, and GSE84437). The same

model parameters and thresholds were consistently applied across

all datasets to ensure comparability and validity of the results. The

TCGA and other cohorts’ cutoff values for grouping patients into

high-risk and low-risk groups were determined using the

surv_cutpoint function. We then studied how predictions

between the two groups varied and assessed the model’s accuracy.
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2.10 Risk features generated by machine
learning-based ensemble methods

We developed the highly accurate and stable AI-Driven

Prognostic Signature (AIDPS) model using 10 machine learning

algorithms and 101 algorithm combinations. The combined

algorithms included Supervised Principal Component (SuperPC),

Generalized Boosting Regression Model (GBM), Cox Partial Least

Squares Regression (plsRcox), CoxBoost, Ridge, Lasso, Stepwise

Cox, Random Survival Forest (RSF), Elastic Net (Enet), and Survival

Support Vector Machine (survival-SVM). The signature was

generated as follows: Univariate Cox regression analysis was

conducted to (a) identify prognostic genes across six datasets,

including TCGA-STAD (as previously mentioned); (b) fit

predictive models in the TCGA-STAD cohort using 101

algorithm combinations within a leave-one-out cross-validation

(LOOCV) framework; (c) test each model across five validation

datasets (GSE datasets); and (d) calculate Harrell’s Concordance

Index (C-index) for each model across all validation datasets,

selecting the model with the highest average C-index as the

optimal one.
2.11 Prediction of immune therapy
response and IPS analysis and immune
checkpoint analysis

The prediction of immune therapy responses involved

gathering datasets from GSE91061 (lung adenocarcinoma),

GSE78220 (lung adenocarcinoma), IMvigor210 (urothelial

carcinoma, UC), and Braun (renal cell carcinoma, RCC), and

calculating risk scores within each dataset to predict immune

therapy responses. Additionally, immune responses in the TCGA

dataset were predicted using the TIDE online analysis tool (http://

tide.dfci.harvard.edu/). Relevant Immune Prediction Score (IPS)

data were obtained from the TCIA database to examine differences

in IPS across risk groups. Correlations were analyzed between the

expression levels of immune checkpoint genes “HAVCR1”, “CD28”,

“ICOS,” “TNFRSF9”, “IL2RB”, “CD27”, “TNFSF14”, “CD40”,

“TNFSF18”, “TNFRSF18”, “CD276”, “PVR,” “VTCN1”, “CD200”,

“C10orf54”, “CD200R1”, “BTLA,” “IDO1”, “TIGIT,” “LAG3”,

“CD80”, “CD86”, “LAIR1”, “ADORA2A”, “CTLA4”, “KIR3DL1”,

“CEACAM1”, and risk scores.
2.12 Tumor immune infiltration analysis

The IOBR package was used to assess the level of immune

infiltration in STAD patients using data from six evaluation

methods (CIBERSORT, TIMER, MCPcounter, Estimate) and the

TCGA database. Heatmaps were created with this data to measure

the relative amounts of immune cell infiltration into the tumor

microenvironment (TME). The Estimate algorithm’s output

allowed for comparing the relative abundances of tumor,

immune, and stromal cells across various risk categories.
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2.13 Drug sensitivity analysis

The R package “oncoPredict” enabled investigators to evaluate

the association between risk ratings and dose sensitivity by

calculating a popular chemotherapeutic drug’s half-maximal

inhibitory concentration (IC50). The Wilcoxon rank-sum test was

used to compare the IC50 values between the two risk groups.
2.14 Patients and specimens

Tissue samples from STAD patients were systematically

collected at Jiangsu Province Hospital of Chinese Medicine

(Nanjing, China). Patients who underwent surgery as the primary

mode of treatment and who had completed clinical and follow-up

data met the inclusion criteria. Patients who had already received

preoperative chemotherapy or who had additional malignant

tumors were excluded. A total of 30 patients were selected for the

database. Both cancerous and paracancerous tissues resected during

the operation were collected for the study. The study protocol was

approved by the Jiangsu Province Hospital of Chinese Medicine’s

Ethics Committee (approval no. 2022NL12902), and informed

consent was obtained from each participating patient.
2.15 Cell culture and transfection

GES-1 and BGC-823 cells were sourced from the Chinese

Academy of Sciences Cell Bank, while AGS, NCI-N87, and

MKN45 cells were obtained from Procell Life Science &

Technology (Wuhan, China). The GES-1, MKN45, and NCI-

N87 cells were kept in the RPMI-1640 culture medium (Procell

Life Science & Technology, China), whereas BGC-823 and AGS

cells were cultured in a DMEM high glucose medium. Incubated at

37°C in a 5% CO2 environment, all cell lines were supplemented

with 10% fetal bovine serum (Procell Life Science & Technology,

China). Subsequently, 1 μg of short hairpin (sh)RNA targeting

PTMA (sh-PTMA; Guangzhou RiboBio Co., Ltd.) and 1 μg of

negative control shRNA (sh-NC; Guangzhou RiboBio Co., Ltd.)

were transfected into MKN45 and NCI-N87 cells. Real-time

quantitative PCR was used to verify the transfection

efficiency (Figure 1A).
2.16 Real-time PCR

Trizol reagent (TaKaRa Bio Inc., Japan) was used to extract total

RNA from tissues or cells, and a two-step RNA reverse transcription

kit (TaKaRa Bio Inc., Japan) was utilized for transforming the

extracted RNA into cDNA. The cDNA and primers were mixed

with RT-PCR SYBR Green (TaKaRa Bio Inc., Japan) for the RT-PCR

reaction. The reaction was conducted with the following cycling

parameters: an initial denaturation at 95°C for 30 seconds, followed

by 40 cycles of denaturation at 95°C for 5 seconds, annealing at 60°C

for 30 seconds, and extension at 72°C for 30 seconds.
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2.17 Cell proliferation assay

With the use of the CCK-8 kit (Seven, China), cell viability was

evaluated. A 96-well plate was seeded with a single-cell suspension

at a density of 5 × 10³ cells per well. After that, each well was filled

with a volume of 10 mL of CCK-8 solution every 24 hours, and each

well was left to incubate for two hours. A multifunctional enzyme-

linked immunosorbent assay reader was used to detect the optical

density (OD) at 450 nm.
2.18 Cell apoptosis

Following the manufacturer’s instructions, a Cell Apoptosis

Detection Kit with Annexin V-mCherry and SYTOX Green

(Beyotime, Shanghai, China) was used to identify cell apoptosis.

After incubating with Annexin V-mCherry and SYTOX Green for

20 minutes in a light-proof conditions, cells were rinsed with PBS

and combined with 400 μL of binding buffer for 30 minutes. An

FACSCanto II flow cytometer (BD Biosciences, San Jose, CA) was

used to analyze the apoptosis rate.
2.19 Cell migration and invasion assays

Transwell chambers having a pore size of 8.0 mm were utilized

to measure cell invasion and migration (Procell Life Science &

Technology, China). A 500 mL medium containing 10% FBS was

added to the lower chamber, while 1 × 104 cells were seeded onto

the upper chamber in a serum-free medium. For invasion assays,

the transwell membrane was coated with 1 mg/ml Matrigel (Procell

Life Science & Technology, China). After a 24-hour incubation at

37°C, cotton swabs were used to delicately remove non-migrating or

non-invading cells. Crystal violet was utilized to stain and count the

cells that invaded or migrated to the bottom of the membrane. The

cells were preserved with 4% paraformaldehyde.
2.20 Wound healing assay

A 6-well plate was seeded with cells, which were then cultured

until they reached 100% confluence. A scratch was produced in the

cell monolayer using a pipette tip. The cells were cultivated in a

serum-free medium for 24 hours following PBS washing. Images

were captured at 0 and 48 hours, and cell mobility within the

scratched area was analyzed using Image J.
2.21 Western blot

For 30 minutes, cell lysates were produced on ice using the

radioimmunoprecipitation assay (RIPA) buffer. Then, using a

bicinchoninic acid (BCA) kit (Beyotime, China), protein

concentrations were calculatedSample preparation involved

mixing the protein solution with 5× loading buffer (Beyotime,
frontiersin.org
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China) at a 1:4 ratio and heating the mixture for 10 minutes at 95°C.

The proteins were first separated on a 10% SDS-PAGE gel and

transferred to PVDF membranes (Millipore, USA). The membranes

were blocked with 5% skim milk for two hours at room

temperature. Following blocking, the membranes were incubated

with the following primary antibodies: b-actin (1:5000; Proteintech,

USA), c-caspase3 (1:1000; Abcam, USA), Bax (1:1000; Proteintech,

USA), Bcl-2 (1:1000; Abcam, USA), E-cadherin (1:1000; PTM

Biolabs, China), and Vimentin (1:1000; PTM Biolabs, China) at

4°C for 12 hours. The membranes were treated with primary

antibodies for one hour, followed by two hours of washing and

secondary antibody incubation at room temperature. Enhanced

chemiluminescence (Thermo Scientific, USA) was used to visualize

protein bands.
2.22 Statistical analysis

All data processing, statistical analysis, and graphing were done

using R software version 4.1.3. Pearson correlation coefficients were

used to assess the correlation between two continuous variables.

The T-test or the Wilcoxon rank-sum test was used to compare

continuous variables, while the chi-square test was used to analyze

categorical variables. We utilized the survival package to do Kaplan-

Meier and Cox regression analyses.
3 Results

3.1 Characterization of target gene sets

The heatmap illustrates the correlation between 332 lactylation-

related genes and 170 mitochondrial-related gene sets (Figure 2A).

A total of 304 lactylation-related genes were identified as relevant,

which associated with tumor microenvironment regulation,

immune response modulation, cell proliferation and apoptosis,
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metabolic reprogramming, and potential prognostic markers for

patient outcomes. Subsequently, their expression differences

between tumors and adjacent normal tissues were analyzed using

data from TCGA, GSE55696, and GSE79973 (Figure 2B),

identifying 280 differentially expressed genes in at least one

dataset. Next, a heatmap of the expression correlation of these

differential genes across TCGA, GSE55696, and GSE79973 was

generated (Figure 2C). Finally, these genes underwent univariate

Cox analysis in TCGA, five additional GEO validation datasets were

used, and a forest plot was constructed (Figure 2D). Twelve

prognostic genes were ultimately selected, which showed

prognostic significance in at least three datasets.
3.2 Functional characterization and
molecular subtyping

Using the Non-negative Matrix Factorization (NMF) algorithm,

the 12 prognostic genes were consistently clustered. Clustering

results indicated that dividing into three groups was most

appropriate. A consistency clustering heatmap and survival

analysis results for the three groups are shown, with significant

survival differences between groups C1 and C3, where C1 is

associated with a poorer prognosis (Figure 3A). Further analysis

was conducted to compare the composition of clinical indicators

such as age, gender, stage, and pathological grading among the three

groups, revealing differences that were not statistically significant

(Figure 3B). A comparison of immune subtypes from TCGA with

NMF grouping was also performed (Figure 3C). Due to the

significant survival differences between C1 and C3, a differential

gene analysis was conducted (Figure 3D). Gene enrichment analysis

was performed separately for upregulated and downregulated genes,

focusing on the functions associated with C1 and C3 (Figure 3E).

The pathways enriched from these genes were calculated for their

ssGSEA scores related to the 12 lactylation genes, and a correlation

heatmap analysis was performed (Figure 3F).
FIGURE 1

(A) Relative expression of PTMA in adjacent normal tissues and tumor tissues: The comparison was made between adjacent normal tissues (blue)
and tumor tissues (red). Statistical significance: “**” indicates p < 0.01 between adjacent and tumor groups. (B) Relative expression of PTMA in
different cell lines: The comparison was made between the normal gastric mucosa cell line GES-1 (blue) and gastric cancer cell lines AGS (red), NCI-
N87 (green), BGC-823 (purple), and MKN45 (orange). Statistical significance: “**” indicates p < 0.01 compared to GES-1. “**” denotes statistical
significance (“*” p < 0.05, “**” p < 0.01). Sample sizes are indicated within the plots. Statistical comparisons were made using the Student’s t-test.
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3.3 Functional characterization—single cell
and spatial transcriptomics

The cell classification results from single-cell data are displayed,

using the 12 prognostic genes with the AUCell package to calculate

lactylation scores in each cell. Cells classified as stromal, including
Frontiers in Immunology 07
fibroblasts and other supportive tissue types within the tumor

microenvironment, exhibited higher lactylation scores compared

to epithelial cells. The function AUCell_exploreThresholds within

the AUCell package was used to determine thresholds and divide

cells into two groups. Differential gene and enrichment analyses

were conducted to explore functional differences between these
FIGURE 2

Characterization of target gene sets. (A) Correlation heatmap between 332 lactylation genes and 170 mitochondrial-related gene sets. (B) Volcano
plots were generated to illustrate the differential expression of lactylation genes between tumors and adjacent normal tissues in the TCGA,
GSE55696, and GSE79973 datasets. (C) Heatmap of expression correlation of differential genes across TCGA, GSE55696, and GSE79973. (D) Forest
plot of hazard ratios (HR) for the combined analysis in TCGA and five GEO validation datasets.
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groups (Figure 4A). We present the analysis results of a spatial

transcriptomics sample, showing the distribution differences of

immune, epithelial, and stromal cells. Lactylation scores in the

spatial samples were also calculated, revealing high lactylation areas,
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primarily in the stromal regions, consistent with the single-cell

results (Figure 4B). The results indicated a negative correlation

between epithelial cells and lactylation scores, while immune and

stromal cells showed positive correlations. Subsequently, functional
FIGURE 3

Functional characterization and molecular subtyping. (A) NMF clustering results, consistency heatmap, and survival analysis for 12 prognostic genes.
Clusters C1, C2, and C3 represent gene clusters identified based on expression patterns in the cohort. The clustering was performed using
hierarchical clustering, and the genes within each cluster exhibit distinct expression profiles. (B) Bar charts of clinical indicators such as age, gender,
stage, and pathological grading in NMF subgroups. (C) Sankey diagram showing the composition of immune subtyping from TCGA and NMF
grouping. (D) Volcano plot of gene differences between groups C1 and C3. (E) GSEA plots for upregulated and downregulated genes. (F) Heatmap of
pathway enrichments correlated with ssGSEA scores of 12 lactylation genes.
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enrichment analysis for the high lactylation group was

conducted (Figure 4C).
3.4 Development of a prognostic model
based on differential genes

Using the 12 prognostic genes, 101 algorithms were used to build

models; the training set was TCGA, and the testing sets were five

GEO datasets. The best model, determined by the average C-index

across the five testing sets, was identified as RSF+SuperPC

(Figure 5A). The AUC values for 1, 3, and 5 years were computed

using the six datasets (Figure 5B). Bar charts displaying the C-index

of the optimal model across different datasets are shown (Figure 5C).
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The survival analysis results from the six datasets indicated that the

high-risk group had a poorer prognosis (Figure 5D).
3.5 Comparison of prognostic models

Risk and PCA plots for the six datasets are presented (Figures 6A,

B). Subsequently, risk scores were compared with other clinical

indicators, and the risk score’s C-index was found to be superior to

most clinical indicators (Figure 6C). We then collected 15 prognostic

models published in the last 1-2 years and compared their C-index.

While our prognostic model did not perform the best in the TCGA

cohort, it generally outperformedmost other models in the remaining

five testing datasets (Figure 6D).
FIGURE 4

Single-cell analysis of lactylation-related gene expression and its association with immune, epithelial, and stromal cell populations in the tumor
microenvironment. (A) Single-cell analysis showing lactylation scores across various cell types, including immune cells, fibroblasts (considered as
stromal cells), and epithelial cells, lactylation grouping, UMAP plots of lactylation scores, violin plots of lactylation analysis, and GSEA plots for
functional enrichment in high and low lactylation groups. The gradient from blue to cyan reflects a continuum of lactylation levels, indicating
transitional states between low (blue) and high (cyan) lactylation scores among the cell populations. (B) H&E staining images of immune, epithelial,
and stromal cells and lactylation scores in spatial transcriptomics data. (C) Correlation plots of epithelial (Pearson’s r = -0.21, p < 2.2e-16) and
stromal scores (Pearson’s r = 0.53, p < 2.2e-16) with lactylation, curve plots of epithelial, immune, and stromal scores arranged by ascending
lactylation, and GSEA plots for high lactylation functional enrichment.
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3.6 Development of the nomogram model

Results of the analyses, both univariate and multivariate, of risk

scores and clinical indicators are shown (Figure 7A) with the

corresponding forest plots. A nomogram incorporating risk scores

and clinical indicators is displayed (Figure 7B). Decision curve analysis
Frontiers in Immunology 10
(DCA) reveals that the outcomes from the nomogram and risk scores

demonstrate superior performance compared to other clinical

indicators (Figure 7C). Calibration curves for 1, 3, and 5 years are

presented (Figure 7D). Survival analysis using the nomogram

scores found that higher scores are associated with poorer

prognosis (Figure 7E).
FIGURE 5

Construction of prognostic models based on differential genes. (A) Heatmap of C-indexes for 101 algorithms and five validation datasets. (B) AUC
values for 1, 3, and 5 years across six datasets. (C) Bar chart of the optimal model’s C-index across various datasets. The error bars represent the
standard error of the C-index values across these datasets. (D) Survival analysis results for six datasets.
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3.7 Tumor immune infiltration and
TMB analysis

Risk values for the three NMF classified groups are displayed,

showing significant differences (Figure 8A). A correlation analysis

was conducted between risk scores and the ‘50 hallmark gene sets’

from the Molecular Signatures Database (MSigDB), which

represent distinct biological states and processes, commonly used

to assess pathway activity in cancer research (Figure 8A). Tumor
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Mutational Burden (TMB) was calculated using mutation data,

revealing significant differences among risk groups (Figure 8A). The

differences between the two groups’ stromal, immunologic, and

ESTIMATE scores are shown. The immune cell infiltration

variations between the groups were depicted using the

CIBERSORT algorithm. Further estimations of immune

infiltration levels were made using other algorithms such as

MCP-counter and TIMER, correlating them with risk scores, and

displayed using a heatmap (Figure 8B).
FIGURE 6

Comparison of prognostic models. (A, B) Risk plots and PCA diagrams for six datasets. Heatmap showing the expression of the 12 prognostic genes
across patient samples in the TCGA-STAD cohort. Rows represent genes, and columns represent patient samples. The colors indicate the gene
expression levels, with darker colors representing higher expression. The heatmap illustrates the association between gene expression and risk
scores. (C) Bar chart of C-indexes comparing risk scores with other clinical indicators. (D) C-index chart comparing our prognostic model with 15
other recent models across six datasets.
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3.8 Immunotherapy analysis and drug
sensitivity analysis

Correlation analysis was conducted between immune scores

and commonly used immune checkpoint genes, showing mostly

negative correlations. Using the TCGA dataset, the TIDE algorithm

was utilized to predict immune response scenarios. The results
Frontiers in Immunology 12
showed notable variations in the response compositions of the two

risk groups, with the non-responsive group exhibiting higher risk

scores. Results incorporating the Immune Phenotype Score (IPS)

indicated that the low-risk group had higher IPS scores (Figure 9A).

Survival analysis results from datasets including GSE91061 (lung

adenocarcinoma), GSE78220 (lung adenocarcinoma), IMvigor210

(urothelial carcinoma, UC), and Braun (renal cell carcinoma, RCC)
FIGURE 7

Development of a nomogram model. (A) Forest plots of univariate and multivariate analysis results for risk scores and clinical indicators.
(B) Nomogram integrating risk scores with clinical indicators. (C, D) DCA plots and calibration curves for 1, 3, and 5 years. (E) Survival analysis results
using Nomogram scoring.
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are displayed along with the risk scores for the two immune

response groups (Figure 9B). Drug sensitivity analysis showed

that Bortezomib_1191 and Dactinomycin_1911 were sensitive in

the low-risk group, while Dasatinib_1079 and BMS-754807_2171

were sensitive in the high-risk group (Figure 9C). The analysis of

GEO datasets from lung adenocarcinoma and urothelial carcinoma
Frontiers in Immunology 13
revealed similar trends in immune cell infiltration and

responsiveness associated with lactylation-related gene

expressions, suggesting that these variations could have broader

implications beyond STAD. These findings support the hypothesis

that lactylation may play a universal role in modulating the tumor

immune microenvironment across different cancer types.
FIGURE 8

Immune infiltration and tumor mutation burden (TMB) analysis across different risk groups in cancer patients. (A) Boxplot of Risk Scores (RS) across
Clusters, Correlation Heatmap of Gene Expression and Boxplot of Log10(TMB) in High vs. Low-Risk Groups. (B) Boxplots of Various Immune Scores
in High vs. Low-Risk Groups. StromalScore: Measures the presence of stromal cells in tumor tissue. ImmuneScore: Quantifies the infiltration of
immune cells in the tumor microenvironment. ESTIMATEScore: Represents the combined presence of stromal and immune cells. TumorPurity:
Estimates the proportion of tumor cells in the sample. Heatmap of Immune Cell Infiltration and ssGSEA Results of Immune Cell Populations.
Heatmap showing immune cell infiltration levels across patient samples. Rows represent different immune cell types, and columns represent patient
samples. The color intensity reflects the level of immune cell infiltration, with darker colors indicating higher infiltration. This heatmap helps to
visualize the relationship between immune infiltration and risk stratification.
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3.9 Differential cell communication in
single-cell high and low prognostic
risk cells

In the single-cell RNA sequencing dataset GSE184198, risk

scores were calculated using the risk model for each cell, and the

median value was used to group the cells. A Cellchat cell

communication study was then conducted to compare the

differences between the two groups (Figure 10). The differences in
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communication between the groups between epithelial, myeloid,

and T & NK cells are displayed.
3.10 Expression of PTMA in tissues
and cells

Based on our differential gene expression analysis, the PTMA

gene was identified as significantly overexpressed in gastric cancer
FIGURE 9

Analysis of immune therapy and drug sensitivity. (A) Heatmap of correlations between risk scores and immune checkpoint genes, bar charts for TIDE
composition, box plots of TIDE risk values, and IPS box plots. (B) Survival analysis results and risk scores for immune response groups in GSE91061
(lung adenocarcinoma), GSE78220 (lung adenocarcinoma), IMvigor210 (urothelial carcinoma, UC), and Braun (renal cell carcinoma, RCC) datasets.
(C) Box plots showing differential sensitivity to Bortezomib_1191, Dactinomycin_1911, Dasatinib_1079, and BMS-754807_2171 between high and
low-risk groups.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1451725
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yin et al. 10.3389/fimmu.2024.1451725
tissues compared to adjacent non-cancerous tissues. Among the 12

identified prognostic genes, most were part of the initial set of 304

lactylation-related and mitochondrial-related genes. However,

PTMA, while not included in the initial sets of 332 lactylation-

related genes or 170 mitochondrial-related genes, was identified as

one of the 12 prognostic markers based on its significant association

with mitochondrial dysfunction and its role in cancer progression,

as determined through univariate Cox analysis. Subsequent RNA

extraction from clinical samples confirmed the elevated expression

of PTMA in tumor tissues, as demonstrated in Figure 1A.

Furthermore, PTMA expression was determined in four gastric

cancer cell lines (AGS, NCI-N87, BGC-823, and MKN45) and the

normal gastric mucosa cell line GES-1. The findings were consistent

with the trend observed in human tissues, indicating higher PTMA

expression in gastric cancer cells (Figure 1B). These results suggest

that the PTMA gene is highly expressed in gastric cancer.
3.11 Silencing PTMA inhibited the
malignant behavior of gastric cancer cells

The PTMA gene, one of the 12 identified prognostic markers,

exhibited significant overexpression in gastric cancer tissues

compared to normal tissues. Functional assays demonstrated that

PTMA knockdown led to reduced proliferation, increased
Frontiers in Immunology 15
apoptosis, and decreased migration and invasion of gastric cancer

cells, aligning with its predicted role in modulating tumor behavior

as suggested by the bioinformatic analysis. To explore the role of

the PTMA gene in STAD, we selected two cell lines, MKN45 and

NCI-N87, and knocked down the PTMA gene (Figure 11A). As

shown in Figures 11B, C, the proliferation ability of both gastric

cancer cell lines was significantly reduced at all time points

following PTMA knockdown. Figure 11D demonstrates that the

apoptosis rate of tumor cells notably increased after PTMA

knockdown. Furthermore, PTMA knockdown significantly raised

the expression of the apoptosis-promoting proteins Bax and c-

caspase3 while lowering the expression of the apoptosis-inhibiting

protein Bcl-2, according to Western blot data (Figure 11E). This

suggests that PTMA knockdown promotes apoptosis in gastric

cancer cells.

In the Transwell invasion and migration assays (Figure 12A),

MNK45 with PTMA knockdown exhibited significantly reduced

invasion and migration abilities. Wound healing assays

(Figure 12B) also showed a marked reduction in migration

following PTMA knockdown. Western blot data shows PTMA

knockdown expression with decreased Vimentin protein

expression and increased E-cadherin protein expression

(Figure 12C). These results strongly suggest that inhibiting PTMA

expression negatively correlates with the malignant behavior of

gastric cancer cells.
FIGURE 10

Differences in cell communication between high and low prognostic risk cells at the single cell level. (A) Bubble plot demonstrating enhanced cell
communication differences between high-risk and low-risk groups in myeloid, epithelial, and T&NK cells. (B) A bubble plot illustrates the reduction in
cell communication differences between high-risk and low-risk groups in T&NK, myeloid, and epithelial cells.
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4 Discussion

The study presented here offers a comprehensive analysis of

lactylation-related gene sets and mitochondrial-related genes in the

context of gastric adenocarcinoma (STAD), leveraging large

datasets like TCGA and various GEO datasets. A greater

understanding of the tumor microenvironment and the cellular

dynamics at work is made possible by integrating single-cell RNA

sequencing and spatial transcriptomics, which is essential for

improving our comprehension of STAD’s molecular pathogenesis

and therapeutic responses. This discussion will highlight the

findings, contrast them with existing research, and consider the

implications of these results for future gastric cancer research and

treatment strategies. Our findings indicate that lactylation-related

genes significantly influence mitochondrial function and metabolic

reprogramming in STAD. Specifically, lactylation can enhance

glycolysis by modifying key glycolytic enzymes and histones,

which promotes the expression of glycolytic genes and supports

cancer cell proliferation. Additionally, by altering mitochondrial

proteins and enzymes involved in oxidative phosphorylation

(OXPHOS) and the TCA cycle, lactylation contributes to a

metabolic shift favoring glycolysis. This metabolic reprogramming

is a hallmark of cancer cells, allowing them to thrive in the hypoxic
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tumor microenvironment. These insights suggest that targeting

lactylation and its related metabolic pathways could offer new

therapeutic strategies for STAD by disrupting cancer cell

metabolism and enhancing the efficacy of existing treatments.

Our study has highlighted several critical areas in the pathology

of STAD. While our findings indicate significant correlations

between lactylation-related gene expressions and mitochondrial-

related genes, it is important to note that these results are

exploratory. The lactylation-related gene sets offer a novel

perspective on metabolic reprogramming in cancer cells and its

potential impact on tumor behavior, which warrants further

investigation to establish any causal relationships. First, the

prognostic gene sets identified through differential expression

analysis and their correlation with patient outcomes provide

valuable insights into the biological underpinnings of STAD. The

lactylation-related gene sets offer a novel perspective on metabolic

reprogramming in cancer cells and its impact on tumor behavior.

Second, single-cell and spatial transcriptomics have uncovered

significant heterogeneity within the tumor microenvironment,

especially in the distribution and role of stromal and immune

cells, which are pivotal in modulating tumor progression and

response to therapies. By extending our analysis to include lung

adenocarcinoma and urothelial carcinoma, we demonstrated that
FIGURE 11

(A) RT-qPCR detected the knock-down efficiency of PTMA in NCI-N87 and MKN45 cell lines. (B) Cell viability of the MKN45 cell line before and after
PTMA knockdown was detected by CCK8. (C) The cell viability of the NCI-N87 cell line before and after PTMA knockdown was detected by CCK8. (D)
The apoptosis level of the MKN45 cell line before and after PTMA knockdown was detected by flow cytometry. (E) Western blot analysis assessed the
expression of apoptosis-related proteins before and after PTMA knockdown in the MKN45 cell line. “**” denotes statistical significance (“**” p < 0.01).
Sample sizes are indicated within the plots. Statistical comparisons were made using the Analysis of Variance (ANOVA).
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the variations in lactylation-related gene expressions and their

effects on immune response might be applicable across multiple

cancer types. This not only reinforces our findings in STAD but also

opens avenues for further research into the universal roles of

lactylation in cancer biology. The experimental validation of

PTMA underscores its potential as a key regulator in gastric

adenocarcinoma. The results support its role in modulating both

mitochondrial function and immune responses, which are critical

aspects of cancer progression. These findings provide a foundation

for considering PTMA as a therapeutic target, potentially enhancing

the effectiveness of treatments that disrupt lactylation processes.

Recent studies have begun to explore the role of lactylation in

cancers. For instance, Zhang et al. reported that lactylation of

histone lysine residues could promote gene expression related to

glycolysis in cancer cells, thereby facilitating cancer progression

(29). Our findings align with this perspective, suggesting lactylation

may play a similarly critical role in STAD. However, our research

extends this by mapping specific lactylation-related genes that

correlate with prognosis, which has not been extensively

documented in previous studies. Our study further refines

molecular subtyping in STAD by incorporating novel biomarkers

from our analysis. This approach has been foundational in studies

like The Cancer Genome Atlas Research Network’s 2014

publication, which classified gastric cancer into four molecular

subtypes. While this classification has significantly advanced the

field, our study provides additional layers of molecular
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characterization, particularly highlighting the importance of

metabolic reprogramming and mitochondrial dysfunction. Our

prognostic models, built on differential gene expression and

validated across multiple datasets, have shown superior

performance compared to many existing models. For instance,

Cristescu et al. developed a prognostic model that utilized gene

expression data but did not incorporate the latest single-cell and

spatial profiling technologies, which may account for the enhanced

accuracy of our models (30).

The immune landscape of STAD, particularly as related to

immunotherapy, has been a focus of recent research. A study by

Thorsson et al. highlighted the variability of the immune

environment across cancers and its implicat ions for

immunotherapy (31). In addition to our findings on lactylation-

related pathways in STAD, it is important to consider broader

therapeutic and diagnostic implications for gastric cancer

treatment. For example, understanding the incidence and

outcomes of secondary infections in septic cancer patients is

crucial for managing complications associated with STAD

treatment (32). Incorporating this knowledge could lead to more

effective and holistic patient management strategies. Furthermore,

investigating traditional herbal medicines as adjunctive therapies

has shown potential in enhancing treatment outcomes in colorectal

cancer, and similar strategies might be applicable to gastric cancer

to improve therapeutic efficacy and patient outcomes (33). Recent

advances in cancer nanotechnology, such as the development of
FIGURE 12

(A) A Transwell assay detected cell migration and invasion capability alterations before and after PTMA knockdown. (B) The capacity of cells to
migrate was tested using the wound healing assay before and after PTMA knockout. (C) Western blot analysis of the changes in the expression levels
of invasion and migration-related proteins before and after PTMA knockdown. “**” denotes statistical significance (“**” p < 0.01). Sample sizes are
indicated within the plots. Statistical comparisons were made using the ANOVA.
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dendrimeric nanosystems and mesoporous silica/organosilica

nanoparticles, have shown great promise in overcoming drug

resistance and improving cancer immunotherapy (34, 35). These

innovative technologies could be applied to target lactylation-

related pathways, potentially enhancing the therapeutic

effectiveness for STAD. Additionally, emerging diagnostic

techniques like single-exosome profiling have identified specific

exosome subpopulations as early diagnostic biomarkers and

therapeutic targets in colorectal cancer (36). Utilizing similar

approaches in STAD could facilitate earlier detection and more

targeted treatment strategies.

Moreover, the therapeutic potential of natural products derived

from various microorganisms for treating cancers, such as cervical

cancer, underscores the importance of exploring diverse therapeutic

avenues (37). These natural products could be repurposed for

STAD treatment, offering new, less toxic options for patients.

Finally, targeting specific proteins, such as HJURP, which play

key roles in cancer progression across multiple types of cancer,

could provide new insights and pathways for developing targeted

therapies in STAD (38). These broader perspectives highlight the

need for future research to adopt a multifaceted approach that

integrates molecular findings with advanced therapeutic strategies,

ultimately enhancing the effectiveness of cancer treatments and

improving patient outcomes.

Our analysis complements this by showing how lactylation

influences the immune microenvironment in STAD, providing a

potential link between metabolic states and immune responsiveness.

This could lead to more tailored immunotherapeutic strategies that

consider the tumor’s molecular and immunological profiles.

The findings from our study on STAD emphasize the potential

for novel research directions, particularly in targeting metabolic

pathways and enhancing immunotherapy efficacy. Given the

significant role that lactylation and mitochondrial functions play in

STAD, future therapeutic strategies could involve the development of

inhibitors that specifically disrupt lactyl-CoA production or the

lactylation process itself, aiming to impair the tumor’s ability to

thrive under metabolic stress. Moreover, understanding the

interaction between lactylation and the immune microenvironment

offers opportunities to enhance the efficacy of immunotherapy.

Modifying lactylation levels may increase the visibility of cancer

cells to immune cells, potentially making immunotherapies more

effective. While our study primarily focuses on the role of lactylation-

related genes in STAD, we acknowledge the potential interactions

between lactylation and other post-translational modifications

(PTMs), such as acetylation and phosphorylation. These

interactions could have significant implications for mitochondrial

function and tumor metabolism. Although a comprehensive

investigation into these crosstalk mechanisms is beyond the scope

of the present study, we propose this as an important direction for

future research to further elucidate the regulatory networks involved

in cancer metabolism. Additionally, our study’s detailed molecular

and cellular characterization supports the advancement of precision

medicine approaches. By identifying specific molecular drivers and

cellular interactions within individual tumors, treatments can be

more effectively tailored to the unique characteristics of each

patient’s cancer, offering a pathway to more personalized and
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effective treatment strategies for STAD. While the prognostic

model developed in this study demonstrates strong predictive

power, its translation into clinical practice presents several

challenges. First, the requirement for advanced genomic sequencing

and specialized bioinformatics analyses may not be feasible in all

clinical settings, potentially limiting its immediate application.

Additionally, variability in gene expression across different patient

populations poses a challenge to the model’s generalizability. To

address these limitations, further validation in diverse patient cohorts

and the development of more accessible testing methodologies are

necessary. Furthermore, standardization of protocols and compliance

with regulatory requirements will be crucial for the successful

integration of this model into clinical practice. Future efforts will

focus on overcoming these barriers to facilitate the clinical adoption

of this prognostic tool, with the aim of enhancing personalized

treatment strategies for patients with gastric adenocarcinoma.

This study enriches the current understanding of gastric

adenocarcinoma through an intricate gene expression analysis,

especially focusing on novel areas like lactylation. The application

of cutting-edge technologies has uncovered layers of complexity

within the tumor microenvironment previously unexplored in such

depth. By contrasting these findings with existing literature, it is

evident that this research not only corroborates many known

aspects of gastric cancer but also provides new avenues for

therapeutic intervention and prognostic evaluation. As we move

forward, it will be essential to integrate these findings into clinical

trials and therapeutic development to truly transform patient care

in gastric adenocarcinoma.
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