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Despite the immune system’s role in the detection and eradication of abnormal

cells, cancer cells often evade elimination by exploitation of various immune

escape mechanisms. Among these mechanisms is the ability of cancer cells to

upregulate amino acid-metabolizing enzymes, or to induce these enzymes in

tumor-infiltrating immunosuppressive cells. Amino acids are fundamental

cellular nutrients required for a variety of physiological processes, and their

inadequacy can severely impact immune cell function. Amino acid-derived

metabolites can additionally dampen the anti-tumor immune response by

means of their immunosuppressive activities, whilst some can also promote

tumor growth directly. Based on their evident role in tumor immune escape, the

amino acid-metabolizing enzymes glutaminase 1 (GLS1), arginase 1 (ARG1),

inducible nitric oxide synthase (iNOS), indoleamine 2,3-dioxygenase 1 (IDO1),

tryptophan 2,3-dioxygenase (TDO) and interleukin 4 induced 1 (IL4I1) each serve

as a promising target for immunotherapeutic intervention. This review

summarizes and discusses the involvement of these enzymes in cancer, their

effect on the anti-tumor immune response and the recent progress made in the

preclinical and clinical evaluation of inhibitors targeting these enzymes.
KEYWORDS

cancer immunotherapy, immunosuppression, amino acid metabolism, tryptophan,
arginine, glutamine, IDO1, IL4I1
1 Introduction

Cancer arises from the accumulation of genetic and epigenetic alterations, conferring

selective growth advantage to transformed cells (1, 2). Associated with these alterations is

generally a diverse set of tumor-expressed antigens, including aberrantly expressed self-antigens

and neoantigens resulting from somatic mutations (3). Although this antigenic diversity

provides the immune system with ample opportunity to recognize and destroy cancerous

cells, an effective anti-tumor immune response is absent in many human cancers (4).

Mechanisms facilitating the immune escape of tumor cells include the downregulation or

loss of tumor antigens or antigen-presenting machinery, the impairment of T-cell trafficking
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and infiltration into tumors, and the induction of immunosuppressive

factors and cells in the tumor microenvironment (TME) (5, 6).

Over the recent decades, cancer immunotherapy has emerged as

a revolutionary approach to reinvigorate host anti-tumor immunity

(7). By alleviating negative regulation of T-cell activation, antibodies

targeting inhibitory immune checkpoint proteins, including

programmed death 1 (PD-1), its ligand PD-L1, and cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4), have produced durable

clinical responses in a subset of cancer patients (8–10). Other

immunotherapeutic treatment modalities, such as cytokine

therapy, cancer vaccines and adoptive cell transfer, have

additionally been developed to amplify pre-existing immune

reactivity in patients, or generate new tumor-specific immune

responses (7, 11). However, while cancer immunotherapies

represent attractive alternatives to conventional and targeted

therapies in terms of efficacy and tolerability, many patients

experience primary or acquired resistance (12, 13), necessitating

the development of alternative strategies or combinatorial therapies.

A critical hurdle for successful immunotherapeutic treatment of

cancer patients is the complex and heterogeneous nature of the TME

(14). Within this environment, tumor-induced accumulation of

immunosuppressive cells, such as regulatory T cells and myeloid-

derived suppressor cells (MDSCs), can promote profound tolerance to

cancerous cells (15, 16). Molecular mechanisms employed by these

suppressive populations as well as by tumor cells themselves include

the expression of inhibitory receptors or their ligands (8), and the

secretion of immunosuppressive cytokines (17). In addition,

upregulation of metabolic enzymes by any of these participants can

deprive the TME of nutrients essential to proliferating T cells, or expose

them to high levels of immunosuppressive metabolites (18). Finally, the

frequently hypoxic and acidic conditions surrounding tumor-

infiltrating T cells can further attenuate their function (19).

In this review, the role of a specific group of metabolic enzymes

—i.e., those metabolizing amino acids—in the escape of tumor cells

from immune surveillance will be summarized; advances in the

therapeutic targeting of these enzymes will be highlighted; and

current challenges and opportunities in this field will be discussed.
2 Amino acid-metabolizing enzymes
involved in tumor immune escape

Amino acids are integral to cellular homeostasis and proliferation,

serving as precursors for protein synthesis and constituting key

metabolic intermediates in energy production and various

biosynthetic pathways. In naïve T cells, only minimal uptake of

amino acids is required to maintain homeostasis, which is

attributable to the metabolically quiescent state of these cells (20).

However, upon cognate antigen engagement and co-stimulation, T

cells drastically alter their metabolism to meet the energetic and

anabolic needs of rapid growth and proliferation (21). Being

auxotrophic for most amino acids (22), this requires activated T cells

to strongly increase both essential and non-essential amino acid uptake

(23). In the case of tumor-infiltrating T cells, this has to be achieved

amidst the highly competitive and dynamic settings of the TME.
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Within the tumor landscape, metabolic reprogramming is not a

unique feature of activated T cells, as highly proliferative cancer

cells have similar metabolic requirements. Cancer cells often avidly

consume energetic nutrients, particularly glucose and glutamine

(24, 25), causing them to outcompete T cells for these respiratory

fuels and biosynthetic precursors. This voracious phenotype is

governed by the upregulation of transporter proteins as well as

metabolic enzymes, including the glutamine-metabolizing enzyme

glutaminase 1 (GLS1) (Figure 1A) (26, 27). Expression of other

amino acid-metabolizing enzymes can additionally be exploited by

either tumor or infiltrating immunosuppressive cells. These

enzymes include arginase 1 (ARG1) (28, 29), inducible nitric

oxide synthase (iNOS) (30, 31), indoleamine 2,3-dioxygenase 1

(IDO1) (32–34), tryptophan 2,3-dioxygenase (TDO) (35, 36) and

interleukin 4 induced 1 (IL4I1) (Figures 1B–E) (37). Not only may

the activities of these enzymes directly serve to potentiate tumor

malignant properties through different mechanisms, it is their

ability to promote tumor growth through suppression of immune

responses that is their main common denominator (28, 33, 36–39).

A common mechanism of immunosuppression exerted by

different amino acid-metabolizing enzymes relies on the amino

acid dependency of activated T cells. As in all eukaryotic cells, the

intracellular availability of amino acids in T cells is continuously

monitored through at least two distinct pathways, involving either

the general control nonderepressible 2 (GCN2) kinase (40) or the

mammalian target of rapamycin complex 1 (mTORC1) (41).

Activation of the GCN2 pathway occurs upon accumulation of

uncharged tRNAs consequent to amino acid withdrawal

(Figure 2A) (42), whereas T-cell receptor (TCR)-induced

mTORC1 signaling is inhibited upon insufficiency of selected

amino acids (Figure 2B) (41). Through independent mechanisms,

either perturbation induces a global reduction in translation

initiation. Moreover, GCN2 activation results in the selective

induction of genes aiding in cellular recovery, while mTORC1

inhibition promotes autophagy (Figures 2A, B) (40, 43). As a

consequence, amino acid deprivation can severely impact T

cell functionality.

A second suppressive mechanism shared by distinct amino acid-

metabolizing enzymes is the accumulation of immunosuppressive

metabolites within the TME. Among the different metabolites

generated by these enzymes, activation of the aryl hydrocarbon

receptor (AhR) is the most represented mechanism of

immunosuppression (Figure 2C) (36, 37, 44). The AhR is a ligand-

activated transcription factor expressed by most human cell types,

including various cells of the immune system, in which it regulates

the transcription of numerous target genes. Through sensing of a

broad range of exogenous and endogenous ligands, including

tryptophan-derived metabolites, the AhR controls various

physiological processes, including cell cycle progression, cellular

motility and immune cell function (45, 46).

In the following sections, each of the amino acid-metabolizing

enzymes involved in tumor immune escape will be discussed

separately, as this allows for the depth of review to be adequately

coordinated with the extent of knowledge available. As an

exception, IDO1 and TDO will be discussed jointly, as these

enzymes demonstrate highly overlapping mechanisms of action.
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3 The glutamine-metabolizing
enzyme GLS1

Glutamine is the most abundant free amino acid in humans,

both in circulation and in the intracellular environment (47). It is

considered conditionally essential, as it can be adequately obtained
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from de novo synthesis and protein turnover in healthy individuals,

but may become insufficient during critical illness or injury (48).

Aside from its key role in protein synthesis, glutamine contributes

to numerous biosynthetic pathways, including those directed

towards synthesis of nucleotides, non-essential amino acids, fatty

acids and glutathione (Figure 1A) (49). Moreover, glutamine can
FIGURE 1

Metabolic fates of amino acids and metabolites involved in tumor immunosuppression, with relevant amino acid-metabolizing enzymes indicated.
(A) Glutamine that has entered the cell is incorporated into proteins, contributes to the biosynthesis of nucleotides, asparagine and hexosamine,
and is imported into mitochondria. Within mitochondria, GLS1 and GLS2 convert glutamine into glutamate, which contributes to the generation
of tricarboxylic acid (TCA) cycle intermediates and derivatives, and to the cytosolic biosynthesis of non-essential amino acids and glutathione.
(B) Arginine can be metabolized to ornithine either extracellularly or cytosolically (as the final step of the urea cycle) by ARG1, or in the mitochondria
by ARG2. Ornithine can subsequently be used for a new cycle of ammonia detoxification, or can be converted into polyamines, proline or glutamate.
Alternative fates of arginine include incorporation into proteins and production of creatine, polyamines and nitric oxide (NO). (C) NO is produced
from arginine by nNOS, iNOS or eNOS, and can be converted into different reactive nitrogen species (RNS) that can alter the structure and function
of various biomolecules through nitration, S-nitrosylation or transition metal coordination. (D) Tryptophan serves as a fundamental protein building
block, and can be metabolized along the serotonin and kynurenine pathways to generate a variety of bioactive metabolites. (E) Tryptophan can
additionally be metabolized into indoles by both host cell-secreted IL4I1 and gut microbiota, of which the former also metabolizes phenylalanine
and tyrosine. Other metabolic pathways of phenylalanine and tyrosine are not shown in this figure.
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serve as a significant source of energy in cells with high energetic

demands (50). In non-proliferating cells, this role is primarily

reserved for glucose, which is efficiently used in glycolysis, the

tricarboxylic acid (TCA) cycle and oxidative phosphorylation for

generation of ATP and biosynthetic precursors (Figure 3A) (51). In

contrast, energy production in most cancer cells is shifted towards

the inefficient use of glucose in aerobic glycolysis (“the Warburg

effect”), achieved through re-programming of metabolic pathways

(52). This altered metabolism yields important glycolytic

intermediates required for various anabolic processes, but

concurrently restricts entry of glucose into the TCA cycle. To

compensate for this metabolic shift, cancer cells often become

addicted to exogenous glutamine, which can replenish TCA cycle

intermediates through its downstream metabolite a-ketoglutarate
in a process called glutaminolysis (Figure 3B) (51).

Glutamine can be transported into cells through many different

transporters of the solute carrier (SLC) family (53). Conversion of

glutamine into a-ketoglutarate is subsequently initiated by

glutaminase (GLS) enzymes, which catalyze the deamidation of

glutamine to glutamate and act as the rate-limiting enzymes for

glutamine entry into the TCA cycle. In mammalian cells, GLS is

encoded by two genes, GLS1 (or kidney-type glutaminase; KGA)

and GLS2 (or liver-type glutaminase; LGA). Expression of GLS1

occurs ubiquitously across human extrahepatic tissues (54, 55), and

is regulated by the c-Myc oncoprotein, which coordinately controls

cellular glutamine uptake (26, 27). Elevated tumoral GLS1

expression is found across a variety of cancer types, and is

frequently correlated with poor patient prognosis (56–60). In
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contrast, GLS2 is identified as a target gene of the tumor

suppressor protein p53 (61, 62), with expression restricted

primarily to the liver, pancreas, brain and pituitary gland (54, 55).

Along with its decreased expression in various cancer types (59, 63),

GLS2 is therefore generally regarded to have a tumor-suppressive

function. This may be related to its role in the promotion of an iron-

dependent form of cell death termed ferroptosis (64), or its ability to

act as a binding protein independent of its glutaminase activity (65).

In contrast, expression of GLS2 can also be promoted by the

oncogenic n-Myc protein (66), and upregulated GLS2 expression

in breast cancer tissues is found to be correlated with poor patient

prognosis (67, 68), indicating that the function of GLS2 may not be

strictly suppressive.

Following the discovery that glutamine is an indispensable nutrient

for the growth and survival of many cancer cells, several glutamine

metabolism-targeting strategies have been evaluated as potential

targeted anti-cancer therapies (Figure 3B). These include the selective,

allosteric inhibition of GLS1 using bis-2-(5-phenylacetamido-1,2,4-

thiadiazol-2-yl)ethyl sulfide (BPTES) (69) or its successors

telaglenastat (CB-839) (70) and IACS-6274 (IPN60090) (Figure 4A,

left) (71). Moreover, a number of competitive, irreversible inhibitors

with broad-spectrum activity against glutamine-utilizing enzymes have

been developed, also referred to as glutamine antagonists, which include

6-diazo-5-oxo-L-norleucine (DON) (72, 73) and its pro-drug

successors JHU-083 (74) and sirpiglenastat (DRP-104) (Figure 4A,

middle) (75). Finally, glutamine uptake can be competitively inhibited

using the SLC1A5/ASCT2 transporter antagonist V-9302 (Figure 4A,

right) (76). Starting clinical evaluation in the mid-1950s, DON has
FIGURE 2

Molecular pathways underlying immunosuppression in T cells upon amino acid depletion or metabolite accumulation. (A) The general control
nonderepressible 2 (GCN2) kinase is activated by uncharged tRNA, which accumulates in cells upon depletion of any amino acid. Activated GCN2
phosphorylates eIF2a, which halts global protein synthesis and induces ATF4 expression, which in turn induces the transcription of ATF4 target
genes that promote cellular recovery. (B) The mammalian target of rapamycin complex 1 (mTORC1) is recruited to the lysosomal surface upon
activation of the Ragulator-Rag complex by specific amino acids, including arginine and leucine, and is subsequently activated by T-cell receptor
(TCR)- and co-stimulatory signal-activated Rheb. Activated mTORC1 promotes protein synthesis through regulation of p70S6K and 4E-BP1 activity,
and inhibits autophagy. Amino acid depletion impedes these processes, as indicated by the dotted outlines and arrows. (C) The aryl hydrocarbon
receptor (AhR) is translocated to the nucleus upon binding of an agonist such as tryptophan-derived kynurenine (Kyn), indole-3-pyruvic acid (I3P) or
their downstream metabolites. In the nucleus, the AhR binds to the AhR nuclear translocator (ARNT) and induces the transcription of its target genes,
which are involved in a variety of physiological processes.
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already demonstrated promising anti-tumor activity in various cancer

types (77). However, clinical development of DON was discontinued

due to significant toxicities. Telaglenastat has since entered clinical

evaluation in 2014, but development was recently suspended after

failure of two phase II clinical trials (ClinicalTrials.gov identifiers:

NCT03428217 (78) and NCT04265534) and dissolution of developer

Calithera Biosciences, Inc. More recently, IACS-6274 (NCT05039801)

and sirpiglenastat (NCT06027086) entered clinical-stage development

as well. Importantly, although the mentioned therapeutic strategies

were initially solely perceived to exploit the dependence of tumors on

glutamine, it has been increasingly recognized that their effects extend

beyond those affecting the cancer cells, as will be discussed below.

In addition to directly supporting cancer cell proliferation,

excessive tumoral metabolism of glutamine may also deprive

tumor-infiltrating immune cells of an important nutrient. Similar

to cancer cells, activated T cells upregulate glutamine transporters

(including SLC1A5/ASCT2 and SLC38A1/SNAT1) and increase

glutaminolysis to accommodate the demands of rapid proliferation

(79–81). Moreover, sufficient levels of intracellular glutamine are

required for activation of TCR-induced mTORC1 signaling (81, 82),

as glutamine serves as a counter-substrate for import of the essential

amino acid and mTORC1 activator leucine (Figure 1A) (83).

Accordingly, glutamine-depriving conditions compromise the

growth and proliferation of activated T cells in vitro (79, 80),

whereas restoration of tumor interstitial glutamine levels by tumor-

specific GLS1 knockout increases T-cell infiltration and activity in

vivo (Figure 4B) (38). However, since different subsets of T cells

engage distinct metabolic programs (21, 84), their dependency on
Frontiers in Immunology 05
glutamine availability also diverges. In particular, limitation of

glutamine uptake inhibits the differentiation of naïve CD4+ T cells

under Th1- and Th17-skewing conditions (82), while glutamine

deprivation promotes their differentiation into CD4+CD25+FoxP3+

regulatory T cells (85, 86). These effects may at least partially be due

to compromised de novo synthesis of a-ketoglutarate (85),

nucleotides (86) or glutathione (87). In contrast to T cells, natural

killer (NK) cells do not appear to require glutamine for fueling their

metabolism, although glutamine deprivation does impair NK-cell

growth and functional responses due to its role in the regulation of c-

Myc expression (Figure 4B) (88).

Based on the evident role of GLS1 in cancer development,

selective targeting of this enzyme presents an attractive therapeutic

anti-cancer approach. This is supported by the direct anti-

proliferative effect exerted by different GLS1 inhibitors on cancer

cells of diverse origin in in vitro studies (70, 89, 90). However,

inhibition of GLS1 may also indirectly affect tumor growth through

the combined effect of elevated glutamine availability and inhibition

of glutaminolysis on immune cell function. Notably, although both

tumor cells and activated T cells upregulate glutaminolysis to fuel

their proliferation (25, 79), the metabolism and proliferative ability

of these cells is not equally disrupted by GLS1 inhibition (70, 91).

More specifically, different subsets of T cells are differentially

dependent on functional glutaminolysis, as genetic GLS1

disruption suppresses CD4+ T-cell differentiation into Th17 cells,

but promotes CD4+ Th1 and cytotoxic CD8+ T-cell differentiation

and function (Figure 4B). This is associated with the altered

epigenetic regulation of gene expression caused by modulation of
FIGURE 3

Glutamine and glucose metabolism in non-proliferating and proliferating cells. (A) In non-proliferating cells, glucose is primarily responsible for
energy generation through glycolysis, the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, whereas glutamine contributes to a number
of biosynthetic processes. (B) In proliferating cells, enhanced glucose import facilitates the production of energy and glycolytic intermediates
through aerobic glycolysis, which diverts pyruvate away from the TCA cycle. To meet the high demand for TCA cycle intermediates and derivatives,
glutamine import and glutaminolysis are considerably enhanced, which concurrently facilitates the upregulation of biosynthetic pathways requiring
glutamine or glutamate as a substrate. The excessive import or metabolism of glutamine by proliferating cells can be restricted through use of
selective GLS1 inhibitors, broad-spectrum inhibitors of glutamine-utilizing enzymes, or glutamine uptake inhibitors, of which relevant examples are
provided in the figure.
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a-ketoglutarate levels (84). Furthermore, restoration of glutamine

availability upon GLS1 inhibition restores NK-cell cytotoxicity,

which is not abolished by abrogation of NK-cell glutaminolysis

(88). In contrast, selective inhibition of GLS1 suppresses the

differentiation and immunosuppressive function of immature

myeloid cells as well as the polarization of macrophages towards

an anti-inflammatory phenotype (Figure 4B) (92–94).

Despite the complementary anti-proliferative effect exerted by GLS1

inhibitors on tumor cells and their stimulatory effect on the immune cell

compartment, monotherapy with BPTES or telaglenastat has

demonstrated variable efficacy in in vivo models (70, 90, 91, 93, 95).

Moreover, only limited single-agent activity has been observed for

telaglenastat in clinical trials (96, 97), which may be due to
Frontiers in Immunology 06
upregulation of compensatory metabolic pathways in the targeted

cancer cells (95, 98, 99). Broader blockade of glutamine-utilizing

enzymes or inhibition of glutamine uptake may at least partially

resolve these issues, although they would logically also disrupt the

metabolism of immune cells. Nonetheless, inhibition of glutamine-

utilizing enzymes by JHU-083 or sirpiglenastat does not disable the in

vivo anti-tumor immune response, but instead conditions T cells

towards a more proliferative, less exhausted phenotype (Figure 4B)

(74, 75, 100). This is attributed to the remarkable flexibility of T cells, but

not tumor cells, to use glucose for replenishment of TCA cycle

intermediates when glutamine metabolism is blocked (74).

Furthermore, sirpiglenastat enhances CD4+ and CD8+ T-cell function

and decreases regulatory T-cell numbers (100), while JHU-083
FIGURE 4

Overview of glutamine metabolism and uptake inhibitors, and their effects on different cell types in the tumor microenvironment. (A) Chemical
structures of selective GLS1 inhibitors, broad-spectrum inhibitors of glutamine-utilizing enzymes, and a glutamine uptake inhibitor. For inhibitors
which are currently or have previously been evaluated in clinical trials, the current status of clinical development is indicated. (B) Effects of glutamine
deprivation and the different glutamine metabolism-targeting strategies on T cells, NK cells, myeloid cells and tumor cells. Effects shown in black
have a positive impact on the anti-tumor immune response, whereas effects shown in grey have a negative effect.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1440269
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Grobben 10.3389/fimmu.2024.1440269
promotes anti-tumor immunity by inducing apoptosis of MDSCs,

stimulating the conversion of immunosuppressive macrophages and

MDSCs into pro-inflammatory macrophages, and inhibiting the

expression of IDO1 in both myeloid and tumor cells (101). Inhibition

of glutamine uptake by SLC1A5/ASCT2 inhibitor V-9302 additionally

induces a marked reduction of tumor growth in vivo, which is

accompanied by enhanced activation and functionality of effector T

cells (Figure 4B). Compensatory upregulation of the glutamine

transporter SLC6A14/ATB0,+ by T cells, but not tumor cells, is

suggested to explain this unanticipated effective immune response (38).

The effectiveness of GLS1 inhibition may also be limited by the

exhaustion of T cells in vivo, as GLS1 deficiency over time induces

expression of PD-1 on T cells (84). Moreover, inhibition of GLS1, as

well as glutamine deprivation or inhibition of glutamine uptake,

results in upregulation of tumoral PD-L1 expression (Figure 4B) (102,

103). These observations indicate that dual targeting of glutamine

metabolism and the PD-1/PD-L1 interaction may improve the

therapeutic anti-tumor response. Accordingly, a-PD-1 or a-PD-L1
treatment, as well as blockade of CTLA-4, enhances the efficacy of

inhibitors targeting GLS1 (91, 102), glutamine-utilizing enzymes (74,

75) or glutamine uptake in vivo (104). Moreover, inhibition of GLS1

or glutamine-utilizing enzymes enhances the response to immune

checkpoint inhibitors in immune checkpoint blockade-resistant

mouse models (93, 101). In a phase II clinical trial, telaglenastat

combined with the PD-1 inhibitor nivolumab showed a modest

objective response rate in a-PD-1/PD-L1-refractory melanoma

patients based on preliminary results (NCT02771626) (105). In

contrast, a phase II study of telaglenastat in combination with

pembrolizumab (a-PD-1) and chemotherapy in patients with

metastatic non-small cell lung cancer was terminated due to lack of

clinical benefit (NCT04265534). Clinical evaluation of sirpiglenastat

combined with durvalumab (a-PD-L1), for which a phase I/II trial in
advanced stage fibrolamellar hepatocellular carcinoma patients has

recently been initiated (NCT06027086), may provide further clarity

on the effectiveness of combining glutamine metabolism-targeting

strategies with immune checkpoint blockade.

In conclusion, GLS1 inhibition and other glutamine

metabolism-targeting strategies have presented themselves as

promising approaches for cancer treatment, both through direct

targeting of glutamine-addicted tumor cells and through

enhancement of the anti-tumor immune response. The latter

effect appears to be at least partially owed to the plasticity of T

cells to accommodate perturbations in their glutamine metabolism,

although further efforts are required to completely understand the

mechanisms underlying this favorable phenomenon. Moreover, as

the discussed approaches have yet to demonstrate convincing

efficacy in clinical trials, a rational exploration of the drug

combination space may prove valuable for future clinical endeavors.
4 The arginine-metabolizing
enzyme ARG1

Similar to glutamine, arginine is classified as a conditionally

essential amino acid, as it must be provided through nutrition

during conditions of stress as well as during fetal and neonatal
Frontiers in Immunology 07
development (106). It is a highly versatile amino acid, serving as a

precursor for the synthesis of proteins, other amino acids and a

variety of biologically important metabolites, including nitric oxide

(NO), creatine, agmatine and polyamines (Figure 1B). The

metabolic fate of arginine is determined by the coordinated action

of a diverse set of highly regulated enzymes and arginine

transporters (107). Among these are the arginase (ARG) enzymes,

catalyzing the hydrolysis of arginine into the non-proteinogenic

amino acid ornithine and the waste product urea. This metabolic

conversion presents the final step of the urea cycle for ammonia

detoxification and provides ornithine as a substrate for polyamine

synthesis and interconversion into proline or glutamate (107).

In humans, ARG is expressed as two isoforms differing in

subcellular localization and distribution among cell and tissue

types (108). ARG1 is a cytosolic enzyme predominantly and

abundantly expressed in the liver as a key enzyme of the urea

cycle, although it is also expressed by cells of the myeloid lineage to

regulate immune responses (109–111). In contrast, mitochondrial

ARG2 has a more ubiquitous, extrahepatic expression pattern (109),

and is suggested to primarily function as a regulator of arginine

availability (112). Similar to ARG1, it can also be expressed by

various immune cells (113–116), although its role in the immune

system is still largely elusive. In accordance with their physiological

tissue distribution, expression of ARG1 by tumor cells is mainly

limited to hepatocellular carcinoma (117, 118), while ARG2,

although largely understudied compared to ARG1, is found in the

neoplastic cells of several human cancer types (39, 119–121).

Importantly, however, and in contrast to the GLS1 enzyme, the

main immunosuppressive activity exerted by ARG enzymes does

not stem from their expression by tumor cells, but rather from

ARG1 expressed by tumor-infiltrating immune cells.

A role for ARG1 in the immune system was first identified

based on its Th2-type cytokine-inducible expression in various

murine myeloid cell types, including macrophages and dendritic

cells (122, 123). However, the cell-type specificity and inducibility of

ARG1 expression in myeloid cells differs considerably between

humans and mice (Figure 5A) (124), complicating the translation

from murine studies to human subjects. In contrast to its murine

counterpart, human ARG1 is strictly and mostly constitutively

expressed by granulocytes, including neutrophils, granulocytic

MDSCs (G-MDSCs) and eosinophils (125, 126). For this reason,

murine ARG1-expressing myeloid cells other than granulocytes will

not receive focus in this review. However, this is not where the

discrepancies end, as murine myeloid cells mostly regulate

extracellular arginine levels through its uptake and subsequent

ARG1-mediated degradation (28). In contrast, human

granulocytes store ARG1 in their granules to become active only

upon exocytosis (Figure 5A) (110, 111, 125, 127), which is reported

to involve a proteolytic cleavage step (110, 111). Finally, murine G-

MDSCs have been found to release ARG1 in small extracellular

vesicles (128), which is a phenomenon currently only observed for

ARG1-expressing tumor cells in the human setting (129).

In patients with various cancer types, high ARG1 expression

and activity is found in both circulating and tumor-infiltrating

myeloid cells, with G-MDSCs as its major source (29, 117, 130–

132). Notably, granulocytes of glioblastoma patients are found to be
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in a degranulated state, while plasma ARG1 levels of these patients

are significantly increased (Figure 5B) (133). Furthermore, tumor-

infiltrating granulocytes in patients with non-small cell lung cancer

or renal cell carcinoma have decreased ARG1 levels compared to

their non-tumor-infiltrating counterparts (126, 134), despite having

increased ARG1 mRNA expression (126). These findings indicate

the tumor-associated release of granule-stored ARG1 in cancer

patients, which is in line with the elevated ARG1 levels and

activity, as well as decreased arginine levels, found in the plasma

of patients with diverse tumor types (Figure 5B) (29, 111, 117, 126,

134). Importantly, since the release of ARG1 occurs upon tumor

infiltration (134), arginine levels in the TME may be even further

reduced. In murine pancreatic tumors, near-complete depletion of

arginine is detected in tumor interstitial fluids, whereas ornithine

levels are increased compared to those in plasma samples (135).

Although ARG1 expression and its mode of action differs between

the murine and human myeloid compartment, this suggests that

myeloid cell-expressed ARG1 can efficiently deprive the TME of a

valuable nutrient.

Enhanced activity of ARG1 in the TMEmay directly support tumor

growth by supplying tumor cells with ornithine or ornithine-derived

polyamines, which are essential for cell growth and proliferation (136,

137), and by decreasing cytotoxic NO production (137). However, these

are not the sole mechanisms through which ARG1 promotes tumor

growth, as its activity can also adversely affect the activation and

function of tumor-infiltrating immune cells. In activated T cells,

arginine is not only required to keep up with the fast rate of

activation-induced protein synthesis, but it is also rapidly metabolized

by virtue of the upregulation of ARG2 and that of other enzymes

determining its downstream fate, including conversion into the

polyamine precursors agmatine and putrescine (138). To meet the
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enhanced uptake, which is achieved through upregulation of the

arginine transporter SLC7A1/CAT-1 (Figure 6A) (138, 139). When

extracellular arginine is superfluous, activated T cells shift their

metabolism from aerobic glycolysis towards oxidative phosphorylation

through sensing of arginine levels by different transcriptional regulators.

While this limits their differentiation, it instead favors the generation of

central memory-like T cells with greater survival capacity and enhanced

in vivo anti-tumor responses (138). In contrast, when extracellular levels

of arginine are depleted, intracellular arginine levels become insufficient,

despite attempts of T cells to restore them by increasing the import of its

precursor citrulline and upregulating the expression of the arginine

biosynthetic enzyme argininosuccinate synthetase (Figure 6A)

(140, 141).

Arginine-depriving conditions or ARG1-expressing cells

profoundly inhibit the activation-induced proliferation of T cells

(126, 142, 143). Over the years, a number of mechanisms

underlying this inhibitory effect have already been elucidated

(Figure 6B). A prime mechanism is the reversible reduction of

CD3z chain expression, which blocks cell surface re-expression of

the TCR complex after its antigen-induced internalization and thus

compromises T-cell signaling (142, 144). Accordingly, decreased

CD3z expression is found in the peripheral or tumor-infiltrating T

cells of cancer patients with high myeloid ARG1 expression (28, 29).

Arginine starvation also disrupts the cell cycle progression of

activated T cells, arresting them in the G0/G1 phase and thereby

hampering their proliferation (145). Cell cycle arrest is caused by

arginine deprivation-induced activation of the GCN2 pathway,

which blocks the upregulation of critical cell cycle progression

regulators by promoting a global arrest in de novo protein

synthesis (145, 146). Amino acid sensing by mTORC1 may
FIGURE 5

Expression of ARG1 by the murine and human myeloid compartment, and ARG1-related effects of granulocyte tumor-infiltration in cancer patients.
(A) Difference between ARG1 expression and site of activity in murine versus human myeloid cells. Murine ARG1 is expressed in various myeloid cell
types and acts predominantly intracellularly, whereas human ARG1 is solely expressed by granulocytes, which store ARG1 in granules to be released
for extracellular arginine degradation. (B) Effects of human granulocyte infiltration into tumors on the expression, granular release and activity of
ARG1 in cancer patients.
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additionally be involved in the effects of arginine starvation on T-

cell proliferation (147, 148). Finally, the actin-depolymerizing factor

cofilin is inhibited in T cells cultured under arginine-depriving

conditions. This impairs formation of the immunological synapse

between T cells and antigen-presenting cells due to stiffening of the

actin cytoskeleton and thereby hampers effective T-cell

activation (149).

Besides affecting T-cell activation and proliferation, arginine

depletion also specifically inhibits the T-cell production of several

cytokines, including IFNg, IL-5 and IL-10, which is associated with

their reduced mRNA expression, and secretion of the cytotoxic

protease granzyme B (Figure 6C) (142, 150). In contrast, T-cell

chemotaxis and the antigen-specific cytotoxicity of CD8+ T cells are

largely preserved (150, 151). Moreover, the viability of T cells remains

unaltered upon arginine depletion (142–144), allowing these cells to re-

gain their proliferative and cytokine secretory potential upon arginine

replenishment and re-stimulation (143). Arginine deprivation also

induces the generation of CD4+CD25+FoxP3+ regulatory T cells,

either from naïve CD4+ T cells or from a pre-existing natural

CD4+CD25+FoxP3− regulatory T cell population (147, 152–154).

This may require or be potentiated by TGF-b (147, 154) and

involves the mTORC1 signaling pathway (147). However, ARG1-

expressing MDSCs may also promote Th17 differentiation of naïve
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CD4+ T cells (155), indicating a complex role for arginine in T-cell

differentiation. Depletion of arginine additionally impairs NK-cell

proliferation and IFNg secretion, while effects on NK-cell viability

and cytotoxicity are still unclear based on the existence of contradictory

reports (117, 156–158). Moreover, arginine deprivation promotes the

expansion of immunosuppressive G-MDSCs in mice (159), while it

does not affect the activation, phagocytic functions or cytokine

production of murine macrophages (Figure 6C) (160).

In an effort to constrain the immunosuppressive effects exerted

by ARG1-expressing myeloid cells, several ARG-targeting small

molecule inhibitors have been developed. These are limited to only

dual inhibitors of ARG1 and ARG2, as the highly conserved active

sites of these enzymes encumber the development of isoform-specific

variants (161). The extensively studied (2S)-2-amino-6-

boronohexanoic acid (ABH) and Nw-hydroxy-nor-L-arginine (nor-

NOHA) were among the first inhibitors to be identified (Figure 7)

(162, 163), but poor pharmacokinetic properties have limited their

clinical application (164, 165). More recently, inhibitors with

considerably improved pharmacokinetic profiles have been

developed, which include numidargistat (INCB001158; CB-1158)

(117, 166) and OATD-02 (OAT-1746) (Figure 7) (167). Whereas

OATD-02 can inhibit both intracellular and secreted ARG enzymes

(167), numidargistat acts only extracellularly due to its inefficient
FIGURE 6

Regulation of immune cell function by arginine availability. (A) Arginine-associated changes in T cells upon their activation (center), and effects of
arginine abundance (right) versus depletion (left) on T-cell metabolism and function. (B) In the case of persisting arginine deprivation, T-cell
proliferation and function are affected through various mechanisms. These include the downregulation of CD3z expression resulting in blocked T-
cell receptor (TCR) re-expression (upper left), the general control nonderepressible 2 (GCN2)-dependent arrest of cell cycle progression (upper
right), the global reduction in protein synthesis upon inhibition of mammalian target of rapamycin complex 1 (mTORC1) signaling (lower right) and
the stiffening of the cytoskeleton due to inhibition of the actin-depolymerizing factor cofilin (lower left). Dotted outlines and arrows indicate
components and processes that are downregulated or inhibited. (C) Effects of arginine deprivation on different immune cell types in the
tumor microenvironment.
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ability to cross the cell membrane (117). Notably, this spares not only

the activity of crucial liver-expressed ARG1, but also that of ARG2,

which appears to function only within the cell. However,

consequences of ARG2 inhibition may be limited based on the

phenotype of ARG2-deficient mice (168). Furthermore, in vitro

studies indicate that inhibition of ARG2 may even be beneficial for

the anti-tumor T cell response (115, 169), whereas it may also directly

inhibit the growth of ARG2-expressing tumors (170). Alternative

approaches to directly or indirectly inhibit ARG activity have also

been reported, which include isoform-specific ARG antibodies (171,

172) and therapeutic peptide vaccines (173, 174).

ARG inhibition or myeloid cell ARG1 knock-out inhibits tumor

growth in various syngeneic mouse models, which has compellingly

been associated with changes of the TME immune cell composition

towards a tumor-hostile environment (28, 117, 151, 170, 175, 176).

Moreover, in different murine tumor models, inhibition of ARG

enhances the therapeutic efficacy of a-PD-(L)1 treatment (117, 151,

177). Based on these promising results, numidargistat has entered a

number of phase I/II clinical trials over the last several years. These

include two completed trials in patients with advanced solid tumors

in which numidargistat was studied as monotherapy and in

combination with the PD-1 inhibitor pembrolizumab

(NCT02903914) or retifanlimab (NCT03910530). Preliminary

phase I data reported for the former demonstrate a slight

improvement in the objective response rate of colorectal

carcinoma patients treated with numidargistat mono- or

combination therapy compared to historical control data, and an

increased number of intratumoral CD8+ T cells in post-treatment

biopsies (178). However, further clinical results will have to be

awaited to draw any firm conclusions on the benefit of ARG

inhibition for cancer treatment. The clinical evaluation of OATD-

02, which has just recently entered its first phase I trial in patients

with advanced and/or metastatic solid tumors (NCT05759923),

should also contribute to this quest.

Taken together, the growing body of research on the role of

myeloid cell-expressed ARG1 in cancer immune escape underscores

the promise of this enzyme as a target for cancer immunotherapy. To

date, this is mostly supported by in vitro studies performed on human

immune cells and in vivo studies with syngeneic mouse models.

Importantly, however, it remains to be determined whether the

differential expression of ARG1 between mice and humans poses

any problem for the translation of this approach towards cancer

patients. For this, data from clinical trials is pivotal, and these data
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should also provide insight as to whether extracellularly-restricted

ARG inhibitors may be more beneficial for cancer treatment

compared to inhibitors acting also intracellularly, or vice versa.
5 The arginine-metabolizing
enzyme iNOS

A different metabolic fate of arginine is its conversion into the

important signaling molecule NO. This reaction is catalyzed by

nitric oxide synthase (NOS) enzymes and yields citrulline as a by-

product that can be recycled back into its precursor arginine

(Figure 1C). Three distinct isoforms of NOS are encoded by the

mammalian genome, which are neuronal NOS (nNOS or NOS1),

inducible NOS (iNOS or NOS2) and endothelial NOS (eNOS or

NOS3). Both nNOS and eNOS are constitutively expressed enzymes

that can be triggered by calcium influx to transiently produce

nanomolar concentrations of NO (179). A calcium-independent

increase in eNOS activity can additionally be elicited by eNOS

phosphorylation (180). Under physiological conditions, nNOS

plays a fundamental role in neurotransmission, while eNOS is a

critical regulator of various cardiovascular functions, including

vasodilation (179). Distinctively, expression of iNOS can be

induced in a variety of cell types upon exposure to a broad range

of factors, including pro-inflammatory cytokines and hypoxia (181,

182), while it is concurrently subject to intricate regulation by NO

levels and arginine availability (183–185). iNOS is capable of

calcium-independently producing sustained micromolar levels of

NO, through which it primarily supports pathogen killing and

regulation of immune responses (179).

NO, the primary product of NOS activity, is a short-lived, highly

diffusible free radical (frequently denoted as •NO) capable of freely

crossing cellular membranes (Figure 8A). While NO is relatively

unreactive towards most biomolecules, it can very rapidly form

reactive nitrogen species (RNS) by reacting with molecules having

unpaired electrons, such as other free radicals and transition metal

ions (186). An important reaction partner of NO is superoxide anion

(O•−
2 ), which is formed by NOS enzymes upon depletion of the

substrate arginine or co-factor tetrahydrobiopterin (BH4) (187), but

can also be generated by other sources such as NADPH oxidase (188).

Reaction of NO with superoxide anion yields the powerful, but short-

lived oxidant peroxynitrite (ONOO−) (Figure 8A), which can

efficiently nitrate protein tyrosine residues upon its decomposition
FIGURE 7

Chemical structures of ARG1 inhibitors and their current status of clinical development.
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(186). Other NO-derived RNS (i.e., N2O3 and NO
+) can readily react

with the thiol side chain of cysteine residues to yield protein S-

nitrosylation (189). Both nitration and S-nitrosylation are highly

selective processes, and have the potential to greatly alter the structure

and function of target proteins (186, 189). In addition to protein

modification, NO-derived RNS can cause DNA damage by

modifying nucleic acids (190), and can generate nitrolipids capable

of activating cell-signaling pathways (191). Moreover, NO can

coordinate to transition metals bound by enzymes and

transcription factors, thereby altering their activity (Figure 8A)

(192). As a relevant exemplar, coordination of NO to the heme-

bound iron of soluble guanylate cyclase (sCG) induces production of

the second messenger cyclic guanosine monophosphate (cGMP),

which serves to regulate various physiological processes (193, 194).

It is broadly acknowledged that NO plays an important role in

both cancer development and subsequent progression. NO-

producing NOS enzymes are aberrantly expressed in a variety of

human tumors (195), with effects of elevated NO levels being

dependent on the cellular source, concentration, local chemical

environment and cellular target (196). Among the three isoforms,

iNOS has most extensively been studied in cancer based on its

frequent detection in tumor cells, tumor-infiltrating immune cells

and tumor-associated fibroblasts. Overexpression of eNOS has

additionally been found in the vascular endothelial cells of a myriad

of cancer types (195). Although the elevated expression of NOS
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enzymes, particularly iNOS, has recurrently been associated with

tumor malignancy and poor patient prognosis, it is increasingly

recognized that the role of NO in cancer is inherently complex

owing to its diverse spectrum of cellular sources and biological

effects (196). Notably, NO acts as a double-edged sword in cancer

by predominantly exerting pro-tumorigenic effects at relatively low

concentrations, such as inducing DNA damage, tumor cell metabolic

reprogramming and neovascularization, while suppressing tumor

growth at higher concentrations by inducing apoptosis (Figure 8B)

(195, 197). Furthermore, dependent on its concentration, NO can

either stimulate or suppress the anti-tumor immune response, as will

be discussed below.

Early research has indicated that NO promotes an effective immune

response when present at low, physiological concentrations. This is for

instance achieved through the cGMP-dependent induction of Th1- and

Th17-cell differentiation (198, 199), the suppression of regulatory T-cell

generation (200), and the inhibition of T-cell apoptosis through caspase

S-nitrosylation (Figure 8B) (201). However, within the TME, the

production of NO is often considerably enhanced due to the presence

of iNOS-expressing tumor cells, macrophages and MDSCs, resulting in

NO concentrations capable of significantly hampering immune

responses. At elevated concentrations, NO inhibits T-cell activation

and proliferation by impeding activation-induced protein tyrosine

phosphorylation, which may occur through nitration or S-

nitrosylation of crucial protein residues, or through a cGMP-
FIGURE 8

Molecular and cellular effects of nitric oxide (NO), and therapeutic strategies to alter NO levels for cancer treatment. (A) Reactivity of NO and NO-
derived species with biomolecules. NO can directly alter protein function through metal coordination (top right), whereas various NO-derived
species can nitrate and S-nitrosylate proteins (left) as well as nitrate lipids and DNA (lower right and bottom). (B) Effects of low and high
concentrations of NO on tumor development (top) and the anti-tumor immune response (bottom). (C) NO-donors and NOS inhibitors as opposing
strategies to alter NO levels and thereby affect tumor development and the anti-tumor immune response. (D) Chemical structure of the pan-NOS
inhibitor L-NG-monomethyl-arginine (L-NMMA).
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dependent pathway (Figure 8B) (202–207). In addition, these and other

NO-dependent mechanisms can prime T cells to undergo apoptosis

(204, 208, 209). High concentrations of NO also suppress the in vitro

polarization of CD4+ T cells towards both Th1 and Th17 phenotypes

(210–213), while an effective immune response may further be

precluded by the NO-induced generation of CD4+CD25+FoxP3−

regulatory T cells (214). Moreover, besides affecting the functionality

of T cells, high concentrations of NO can impair effector functions of

NK cells through nitration of crucial signaling proteins (215), and

induce phenotypic and metabolic reprogramming of macrophages and

dendritic cells (Figure 8B) (216–218).

An effective immune response also relies on the ability of T cells

to infiltrate tumor tissues and to successfully recognize their cognate

tumor antigens (Figure 9). While low concentrations of NO

stimulate the expression of cellular adhesion molecules mediating

the migration of T cells from blood vessels into the tumor stroma

(219), high concentrations act suppressive, thereby hampering the

infiltration of T cells into tumor tissues (Figure 9A) (219–221).

Moreover, NO-induced nitration of the chemoattractant CCL2 can

cause successfully migrated T cells to remain trapped in the tumor

stroma (222). In contrast, nitrated CCL2 has an unaltered ability to

recruit MDSCs into the tumor core (222), while accumulation and

induction of MDSCs is further promoted by iNOS-dependent

upregulation of vascular endothelial growth factor (VEGF)

secretion (Figure 9A) (223). NO-mediated nitration can also

abrogate the recognition of tumor antigens by T cells (Figure 9B),

as nitration of even a single tyrosine residue in major

histocompatibility complex (MHC)-presented peptides can hinder
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their interaction with the TCR (224, 225). Moreover, MDSCs from

peripheral lymphoid organs can induce nitration of TCR and CD8

molecules on T cells upon antigen-specific cell–cell contact,

rendering them insensitive to stimulation by the presented

antigen (226, 227). Tumor-infiltrating MDSCs, which greatly

upregulate iNOS expression in response to the hypoxic TME, can

additionally affect nearby cells without requiring antigen-specific

interaction (228). This allows them to nitrate MHC class I

molecules on neighboring tumor cells, thereby disturbing their

peptide presentation and allowing them to become resistant to

antigen-specific cytotoxic T cells (229). Furthermore, NO-derived

peroxynitrite can inhibit proteasomal activity in tumor cells,

resulting in decreased generation of antigenic peptides (230).

Finally, through inducing the downregulation of MHC class II

gene transcription, NO can also negatively affect the function of

antigen-presenting cells (Figure 9B) (231).

Based on the pivotal role of NO in cancer development, different

therapeutic strategies aimed at the modulation of NO levels have

already been considered for cancer treatment. Noteworthy in this

context is the clear dichotomy presented by the assessment of both

NO-donating molecules and NOS inhibitors. NO donors are studied

for their ability to directly induce the apoptosis of tumor cells or to

sensitize them to other therapies (232), but they will evidently frustrate

the immune system as well. In contrast, NOS inhibitors may serve as

targeted therapies to revert the pro-tumorigenic effects of NO on tumor

cells (233), while they may also reinvigorate anti-tumor immune

responses (Figure 8C). During the recent decades, a large number of

NOS inhibitors has already been developed and evaluated in clinical
FIGURE 9

Effects of nitric oxide (NO) and peroxynitrite levels on tumor immune cell infiltration and T-cell antigen recognition. (A) Effect of low (left) and high
levels of NO (right) on the migration and infiltration of T cells and MDSCs into the tumor. High concentrations of NO suppress migration of T cells
into tumors [1], and nitration of the chemoattractant CCL2 further precludes T-cell infiltration into the tumor core [2]. MDSC recruitment into the
tumor core is not affected by CCL2 nitration [3], whereas MDSC accumulation and induction is promoted by iNOS-induced upregulated VEGF [4].
(B) Effects of NO-derived peroxynitrite on the recognition of antigens on tumor and antigen-presenting cells by T cells. Peroxynitrite can hinder
recognition through nitration of MHC class I- or II-presented peptides [1], nitration of TCR [2] and CD8 molecules on T cells [3], nitration of MHC
class I molecules [4], downregulation of antigenic peptide generation through inhibition of proteasomal activity [5] and downregulation of MHC class
II gene transcription [6].
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trials for various disease indications. These include both pan- and

isozyme-selective inhibitors of the NOS enzymes (234). In murine

cancer models, treatment with either type of inhibitor has been shown

to reduce tumor growth (30, 233, 235, 236), but availability of in vivo

data on the contribution of the immune system to this effect is still very

limited (235, 237). Since peroxynitrite may be the major NO-derived

effector molecule responsible for T-cell dysfunction, peroxynitrite

neutralization or blockade of its formation may also present an

attractive therapeutic strategy, which has already demonstrated

efficacy in murine models (207, 222). Only recently, the first phase I/

II clinical trial evaluating the use of an NOS inhibitor for anti-cancer

therapy has been completed (NCT02834403). Results from this trial

demonstrate a promising efficacy for the pan-NOS inhibitor L-NG-

monomethyl-arginine (L-NMMA; Figure 8D) in combination with

docetaxel chemotherapy in triple-negative breast cancer patients, and

show modest differences in circulating immune cell composition

between responders and non-responders (238). Moreover, L-NMMA

is currently being evaluated in a phase I trial in combination with

pembrolizumab (a-PD-1) in patients with different solid tumors

(NCT03236935), which may yield further clarification on the effects

of NOS inhibition on the anti-tumor immune response.

Overall, there is accumulating evidence that the complex,

multifaceted role of iNOS in cancer includes the facilitation of

tumor immune escape. Distinctive from the action of other amino

acid-metabolizing enzymes, this may not only involve the direct

suppression of T-cell responses, but also the impediment of their

tumor infiltration and antigen recognition. However, as in vivo data

on the effects of NOS inhibitors on the anti-tumor immune

response are currently still largely lacking, attention should be

directed towards studying these inhibitors in more complex

models. Simultaneously, such studies can contribute to our

understanding of whether the use of either pan- or isozyme-

selective NOS inhibitors should be the preferred approach for

future clinical trials.
6 The tryptophan-metabolizing
enzymes IDO1 and TDO

Unlike glutamine and arginine, tryptophan is an essential

amino acid that is exclusively obtained by humans through

dietary intake. In addition to serving as a fundamental protein

building block, tryptophan is a precursor for various bioactive

compounds. These include metabolites generated along the

serotonin pathway and indoles produced by the gut microbiota or

by host cells (Figures 1D, E) (37, 239). However, the vast majority of

tryptophan degradation occurs through the kynurenine pathway,

which is initiated and rate-limited by the paralogous enzymes IDO1

and IDO2, and the evolutionarily unrelated TDO. Each of these

enzymes catalyzes the oxidation of tryptophan to yield N-

formylkynurenine, which is then rapidly hydrolyzed to

kynurenine and can be further metabolized into an array of

downstream molecules (Figure 1D) (240).

Expression of IDO1, the most extensively studied enzyme of the

kynurenine pathway, is highly inducible across a broad range of cell

and tissue types, with IFNg serving as its main inducer (241, 242).
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While initially recognized for its role in the defense against infectious

pathogens (243), IDO1 is now widely acknowledged as a critical

regulator of immune responses. Existence of the closely related

enzyme IDO2 was not discovered until two decades later (244, 245),

and its physiological relevance is still to be fully elucidated (246, 247).

Although it is expressed in a number of human tissues (245), IDO2

displays only low tryptophan-metabolizing activity (248) and

frequently suffers from genetic polymorphisms compromising or

ablating its activity (245). Nonetheless, studies performed with

IDO2-deficient mice have indicated a role for the enzyme in

controlling inflammation (249), and it has recently been associated

with post-acute sequelae of SARS-CoV-2 (or long COVID-19

syndrome) (250). Finally, expression of TDO is mainly restricted to

the liver and the brain, where it constitutively regulates systemic and

brain tryptophan homeostasis (251, 252). In addition, TDO has been

implicated in the maintenance of brain morphology and the

regulation of brain function (252).

The immunoregulatory function of IDO1 is one also commonly

exploited by tumors, and has additionally been ascribed to TDO

expressed in the context of cancer. While normally silenced in many

tissues, IDO1 is highly expressed in the tumor cells of a wide range

of human cancer types (33). This constitutive or inducible

expression can be initiated by loss of the tumor suppressor

protein BIN1 (253), or gain-of-function mutation of the KIT

proto-oncogene (Figure 10) (254). Moreover, constitutive IDO1

expression can further be maintained by autocrine signaling

involving the cyclooxygenase-2 (COX-2)/prostaglandin E2

(PGE2) pathway (255) or a self-sustaining autocrine loop

involving activation of the AhR by tryptophan metabolites

(Figure 10) (256). Besides its presence in tumor cells, IDO1 is

also expressed by various cells residing in the TME or tumor-

draining lymph nodes, including dendritic cells, MDSCs,

macrophages, endothelial cells, fibroblasts and mesenchymal stem

cells (257–262). Across different tumor types, expression of IDO1 is

inversely correlated with infiltrating CD3+ and CD8+ T cells as well

as NK cells, while being positively correlated with regulatory T-cell

frequency (263–268). In addition, elevated IDO1 expression

correlates with tumor progression as well as poor survival in both

solid and hematological cancers (269).

Expression of TDO can be detected in cancers of various tissue

origins as well (35, 36), despite normally being confined to only specific

tissue types. Constitutive expression of TDO in tumor cells can be

regulated similarly to that of IDO1, involving signaling via the COX-2/

PGE2 and AhR pathways (270, 271), while other TDO-regulating

pathways have been described as well (Figure 10) (272, 273).

Upregulated expression of TDO is additionally (or even

predominantly) found in the stroma of various tumor types

(274, 275), which includes its expression by pericytes and fibroblasts

(274, 276). Elevated TDO expression is correlated with decreased

survival in a number of human cancer types (277–280), and inversely

correlates with CD8+ T-cell infiltration in human glioma tissues (36). In

contrast to both IDO1 and TDO, gene expression of IDO2 is limited in

human tumor tissues (37), and tryptophan-metabolizing activity fully

resides with co-present IDO1 in IDO2-expressing tumors (281).

Furthermore, although IDO2 is also expressed by dendritic cells

(245), it remains unclear what role it serves in these cells (282, 283).
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Elevated metabolism of tryptophan by either IDO1 or TDO can

adversely affect T-cell responses through both depletion of

tryptophan levels and accumulation of its metabolites (Figure 11).

While tryptophan depletion may act by activation of the GCN2

kinase pathway or repression of mTORC1 activity (284, 285),

kynurenine and its downstream derivatives can operate as

agonists of the AhR (Figure 2) (36, 44, 286, 287). Kynurenine

uptake by T cells may additionally be potentiated by the depletion of

tryptophan, as kynurenine and tryptophan are competitively

transported into T cells by the SLC7A5/LAT1 transporter (288).

IDO1-expressing cells inhibit the proliferation of activated T cells

(257, 289, 290) and induce CD8+ T-cell anergy (284), which is at

least partially ascribed to tryptophan depletion-induced GCN2

activation (284). Underlying molecular mechanisms affecting the

T cells include their arrest in the mid-G1 cell cycle phase (289) and

the GCN2-dependent downregulation of CD3z expression in the

CD8+ subset, which impairs their cytotoxic effector function

(Figure 11) (291). Notably, tryptophan metabolites may also

contribute to suppression of T-cell proliferation as well as induce

T-cell death (292–294), with AhR activation and potentially

consequently enhanced fatty acid degradation as recently

proposed cell death-inducing mechanisms (278, 295).

Furthermore, elevated tryptophan metabolism upregulates PD-1

expression on CD8+ T cells through activation of the kynurenine–

AhR signaling pathway (296–298), and concurrently inhibits the

production of IFNg by these cells (291, 299). On the other hand,

IDO1-expressing cells promote the activity of immunosuppressive
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T cells through GCN2-dependent activation of resting regulatory T

cells and inhibition of their reprogramming into Th17-like effector

cells (300–302). Moreover, tryptophan depletion and metabolite

accumulation promote the conversion of naïve CD4+ T cells into

CD4+CD25+FoxP3+ regulatory T cells, which can involve

modulation of either the GCN2, mTORC1 or AhR signaling

pathway (Figure 11) (44, 147, 291).

The tryptophan-metabolizing activities of IDO1 and TDO can

also have detrimental consequences for NK cells, which are mostly

attributed to the action of kynurenine or its downstream

metabolites (Figure 11). Effects exerted by these molecules include

the inhibition of NK-cell proliferation and the induction of NK-cell

death (293, 294). Moreover, kynurenine downregulates the

expression of activating NK-cell receptors (303), as well as NK

receptor ligand on tumor cells (304), with consequential inhibition

of NK-cell cytotoxic activity and IFNg production (303, 305). The

generation of an immunosuppressive microenvironment can

further be driven by the effects of excessive tryptophan

metabolism on dendritic cells, macrophages and MDSCs

(Figure 11). In particular, through modulation of the GCN2

pathway, tryptophan depletion enhances the tolerogenicity of

dendritic cells (306) and polarizes macrophages towards a

suppressive phenotype (307). The latter effect can also be induced

through kynurenine-dependent AhR signaling (297, 308), which

additionally promotes chemokine-mediated recruitment of these

macrophages by tumors (308). Furthermore, IDO1 promotes the

expansion and suppressive capacity of MDSCs (309), and indirectly
FIGURE 10

Regulation of IDO1 and TDO expression in tumor cells. IFNg-induced expression of IDO1 is STAT1- and NF-kB-dependently increased upon loss of
the tumor suppressor protein BIN1 [1]. Constitutive expression of IDO1 can additionally be enhanced through constitutive activation of the
oncogenic KIT-PI3K-Akt-mTOR pathway upon KIT gain-of-function mutation [2]. Moreover, constitutive expression of both IDO1 and TDO is
regulated through autocrine signaling involving the COX-2/PGE2 pathway [3] and through a positive feedback loop in which IDO1- and TDO-
generated metabolites such as kynurenine (Kyn) promote expression of IDO1 and TDO through the AhR pathway [4]. For IDO1, the former pathway
has been demonstrated to involve either KIT-PI3K-Akt-mTOR signaling or the PKC-dependent regulation of GSK3 and b-catenin (b-cat) activity,
while the latter pathway involves autocrine IL-6/JAK/STAT3 signaling. Expression of TDO in tumor cells can also be C/EBPb- and p38-dependently
induced by IL-1b [5], and can be tumor cell type-dependently increased or decreased through glucocorticoid signaling [6]. Only pathway
components with a demonstrated involvement in the different regulatory pathways are shown in the figure.
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recruits them to the tumor through the action of IDO1-induced

regulatory T cells (Figure 11) (268).

In contrast to different immune cells, tumor cells can rather

efficiently adapt to tryptophan-deprived conditions (Figure 11).

While activation of the GCN2 pathway in malignant cells

downregulates protein synthesis, it concurrently upregulates

tryptophan transport (310) and tryptophanyl-tRNA synthetase

expression (311), allowing the cells to readily utilize available

tryptophan for protein synthesis to support proliferation. Notably,

even upon sustained tryptophan deprivation, tumor cells continue

protein synthesis, which was recently shown to result in the

generation of frame-shifted and tryptophan-to-phenylalanine-

substituted proteins (312, 313). Consequences of these aberrant

proteins for cellular physiology are, however, still unclear and

tumor cell presentation of resultant aberrant peptides may even

elicit immunogenic responses (312, 313). Tryptophan metabolism

can also directly promote the survival and proliferation of tumor

cells through accumulation of kynurenine (36, 314, 315), which

additionally stimulates their migratory ability (270, 316). Moreover,

the activity of IDO1 is involved in promoting neovascularization,

thereby further supporting tumor growth (309, 317), while

expression of TDO by tumor-associated pericytes suggests a

similar role for TDO (Figure 11) (274).

Despite the abundant in vitro evidence indicating a tumor-

promoting role for IDO1, elucidation of the effects exerted by IDO1

in vivo have been complicated by the expression of IDO1 in both

tumor cells and non-malignant host cells of cancer patients, of

which contributions vary among cancer types (275). This

encumbers the reproduction of tumors and their TME in

syngeneic mouse models, which is further obstructed by the

scarcity of murine cell lines naturally expressing IDO1 (318), as is

also the case for TDO (319). However, using IDO1-deficient mice,
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host IDO1 has been found to play a role in promoting tumor

growth, MDSC accumulation and expression of PD-1 by CD8+ T

cells in a model of Lewis lung carcinoma (320). In murine models of

colon, skin and brain cancer, however, host IDO1 deficiency does

not diminish tumor growth (321–323), although it modestly

enhances the efficacy of immune checkpoint blockade therapies

(322) or decreases regulatory T-cell infiltration (323). Notably,

ablation of host IDO1 expression also induces loss of IDO1

inhibitor efficacy in different tumor models, which would be

suggestive of a suppressive role for host IDO1, although

deficiency in host IDO1 itself paradoxically does not alter tumor

growth in these models (324, 325). On the other hand, tumor cell-

specific knockdown of IDO1 can inhibit tumor growth, decrease

regulatory T-cell accumulation and improve survival in murine

cancer models (321, 326). An important role for tumor-expressed

IDO1 is further corroborated by the effective IDO1 inhibitor-

mediated suppression of tumor growth in IDO1-deficient hosts

(327). Moreover, IDO1 overexpression in tumor cells has been

shown to promote tumor growth in vivo (33, 268), which is

associated with decreased infiltration of effector T cells, and

increased numbers of regulatory T cells and MDSCs (268). Based

on in vivo models, tumor cell-expressed IDO1 thus appears to

considerably contribute to the promotion of tumor growth, whereas

a role for host IDO1 remains to be further substantiated.

Since discovery of the immunosuppressive role of IDO1 in

tumor development, a great number of IDO1 inhibitors has been

developed (328, 329). Preclinical evaluation of promising inhibitors

has demonstrated their lymphocyte-dependent monotherapeutic

efficacy in different murine tumor models (268, 299, 325, 327,

330). Moreover, IDO1 inhibition enhances the in vivo efficacy of a-
CTLA-4 and a-PD-(L)1 therapy (322, 331–333), which may in part

be related to the induction of IDO1 observed upon immune
FIGURE 11

Effects of elevated tryptophan (Trp) metabolism by IDO1 and/or TDO on different immune cells, tumor cells and neovascularization. Molecular
pathways, effector molecules or cells that are implicated in these effects are indicated within brackets. The molecular pathways include the general
control nonderepressible 2 (GCN2) signaling pathway activated by Trp depletion, the mammalian target of rapamycin complex 1 (mTORC1) signaling
pathway inhibited by Trp depletion, and the aryl hydrocarbon receptor (AhR) signaling pathway activated by kynurenine (Kyn) and downstream
metabolites, as illustrated in Figure 2. Dotted outlines and arrows indicate components and processes which are downregulated or inhibited in
response to elevated Trp metabolism.
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checkpoint blockade (330, 331). Similar induction of IDO1 also

appears to occur in patients, as indicated by the elevation of

systemic kynurenine-to-tryptophan ratios in a-PD-1-treated

sarcoma, melanoma and renal cell carcinoma patients (334, 335).

Contrary to inhibitors of IDO1, only relatively few selective TDO

inhibitors have been reported (336–339). Development of TDO

inhibitors is complicated by the small size and lipophilicity of the

TDO active site (337), explaining the general suffering of TDO

inhibitors from limited potency or drug-likeness (339).

Nonetheless, inhibitors such as the orally bioavailable LM10 and

PF06845102/EOS200809 have enabled evaluation of the

immunosuppressive effect of TDO in murine tumor models (35,

319). While TDO overexpression in tumor cells can promote tumor

growth through suppression of the anti-tumor immune response

(35, 36), inhibition of TDO can restore tumor suppression (35) and

enhance the efficacy of CTLA-4 blockade therapy (319). Preclinical

and early clinical development of several dual IDO1/TDO

inhibitors is currently also ongoing (340–342), which may serve a

role for tumors co-expressing IDO1 and TDO or those upregulating

TDO upon IDO1 inhibition.

While clinical evaluation of selective TDO inhibitors for cancer

treatment is still to be awaited, various IDO1 inhibitors have already

entered clinical development, frequently in combination with

immune checkpoint blockade (329). Epacadostat (INCB024360)

was the first IDO1 inhibitor to advance into a phase III clinical trial

(ECHO-301/KEYNOTE-252) after showing promising efficacy in

advanced melanoma patients when combined with a-PD-1

antibodies in two nonrandomized, uncontrolled phase II trials

(343, 344). However, the phase III trial failed to demonstrate an

improved progression-free survival for the combination of

epacadostat with pembrolizumab (a-PD-1) compared to

pembrolizumab alone (345). Thereupon, several other phase III

trials were terminated early, withdrawn or downscaled to

randomized phase II trials, along with the suspension of several

phase I and II evaluations (346). Nonetheless, a number of phase I

and II trials has also been initiated since the failure of ECHO-301,

suggesting that IDO1 inhibition may still have a future as an

immunotherapeutic approach for cancer treatment.

Extensive discussion about factors underlying the disappointing

clinical results has also since arisen (Figure 12) (347–349). Concerns

have been raised as to whether the dosing of epacadostat in the

ECHO-301 trial was sufficient to obtain adequate intratumoral and

intracellular concentrations required for maximal IDO1 inhibition

(Figure 12A) (347). Based on results of a phase I dose escalation, the

chosen dose of 100 mg twice daily yields an appreciable, though

sub-maximal, reduction in plasma kynurenine levels (350).

Considering the reported association of immune checkpoint

blockade with induction of IDO1 (330, 331, 334, 335), dosing

based on its monotherapeutic profile could thus have proven to

be insufficient. Regrettably, the degree of IDO1 inhibition was

evaluated in neither plasma nor tumor biopsies of patients

enrolled in the ECHO-301 trial. The same argument of therapy-

induced IDO1 induction should also question a-PD-1 antibodies as
preferred combination partners for IDO1 inhibitors. Moreover,

restriction of kynurenine-mediated PD-1 induction in tumor-
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infiltrating T cells upon IDO1 inhibition may even cause PD-1

blockade to be redundant (Figure 12B) (296–298). Stratification of

patients based on IDO1 expression or activity could also have

improved the chance of observing a clinical benefit upon IDO1

inhibition, but this is still only rarely applied in clinical trials

(Figure 12C) (347, 349, 351).

IDO1 can also exert immunosuppressive effects independent of

its enzymatic activity (352–354). This involves non-catalytic signaling

events initiated by the enzyme (352, 353), which are likely not

inhibited by active site-targeting inhibitors, and may even be

enhanced by them (355) (Figure 12D). Such effects were recently

suggested to partially account for the IDO1-dependent immune

suppression observed in human glioma (354) and were

demonstrated to promote tumor growth in a melanoma mouse

model (356), but it remains to be determined whether they also

serve a role in different tumor types. Other possible explanations for

the outcome of the ECHO-301 trial include a potential compensatory

role of TDO, IDO2 and/or IL4I1 (Figure 12E) (37, 348), and

activation of AhR signaling by IDO1 inhibitors themselves

(Figure 12F) (349, 357). Although these mechanisms are unlikely to

account for the disappointing results (349), only thorough evaluation

of clinical samples will allow their unequivocal rejection. Finally, a

recent study performed with treatment-naïve ovarian cancer patients

demonstrates that IDO1 inhibition by epacadostat induces

overproduction of tumoral nicotinamide adenine dinucleotide

(NAD+), which reduces T-cell proliferation and functionality in

vitro and mitigates IDO1 inhibitor efficacy in vivo (Figure 12G)

(358). Blockade of NAD+ generation or signaling may therefore

present a promising combination strategy for IDO1 inhibition

(358). Alternatively, patients may benefit from the direct targeting

of downstream effector pathways of tryptophan metabolism, such as

AhR or GCN2 signaling (297, 359), or the selective depletion of

kynurenine by kynureninase treatment (360), rather than inhibition

of upstream IDO1 or TDO. Moreover, peptide vaccines are being

developed and clinically tested to target IDO1-expressing cells rather

than the enzyme itself (361), and degraders are in development to

target both enzymatic and non-enzymatic IDO1 activities (362).

However, these strategies remain to be further validated in

preclinical or clinical studies.

Collectively, the extensive prognostic, preclinical and early-

phase clinical evidence linking deranged tryptophan metabolism

to immunosuppression and tumor growth once positioned IDO1

inhibitors at the forefront of experimental immunotherapy. While

this perception has since been challenged by the failure of the

ECHO-301 trial, it remains evident that tryptophan metabolism

holds promise as a targetable pathway for cancer treatment.

Nonetheless, this development urges for a deeper understanding

to be attained of both the mechanisms underlying IDO1-mediated

immunosuppression and the effects of tryptophan metabolic

pathway inhibition, to which the examination of clinical samples

may strongly contribute. Moreover, the improved design of clinical

trials using patient stratification and monitoring of target

engagement could contribute to further validation of the target,

whereas alternative or combinatorial strategies should also still offer

hope for cancer patients.
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7 The aromatic amino acid-
metabolizing enzyme IL4I1

The final amino acid-metabolizing enzyme with a proposed role

in tumor immune escape is IL4I1, which is a secreted L-amino acid

oxidase (LAAO) first characterized by its interleukin 4-inducible
Frontiers in Immunology 17
expression in murine and human B cells (363, 364). IL4I1 catalyzes

the conversion of L-amino acids into their respective a-keto acids

with concomitant release of hydrogen peroxide (H2O2) and

ammonia (NH3), and has a preference for aromatic substrates,

specifically phenylalanine, tyrosine and tryptophan (Figure 1E) (37,

365–367). Although five isoforms of IL4I1 are encoded by the
FIGURE 12

Potential factors underlying clinical failure of IDO1 inhibitor treatment. (A) The dosing of IDO1 inhibitor may be insufficient to obtain adequate
intratumoral and intracellular concentrations required for maximal IDO1 inhibition. (B) a-PD-1 and a-PD-L1 antibodies may not be the ideal
combination partners for IDO1 inhibitors based on the induction of IDO1 expression upon treatment with these antibodies (left), and the aryl
hydrocarbon receptor (AhR)-dependent reduction of PD-1 expression on tumor-infiltrating T cells upon IDO1 inhibition (right). (C) A lack of patient
stratification based on expression or activity of IDO1 may also underly the absence of clinical efficacy. (D) IDO1 may induce immunosuppression
through a non-catalytic function that is not restrained (and may even be enhanced) by inhibitors targeting the IDO1 active site. (E) Compensatory
tryptophan (Trp) metabolism by either TDO, IDO2 and/or IL4I1 may negate the effects of IDO1 inhibition, either due to reduced competition for
substrate or as a consequence of enzyme upregulation. IL4I1 catalyzes a different reaction compared to the other enzymes, but can also produce
agonists of the AhR such as indole-3-pyruvic acid (I3P). (F) IDO1 inhibitors may act as AhR agonists themselves, thereby nullifying the reduced
activation of AhR by kynurenine (Kyn). (G) Inhibition of IDO1 may induce nicotinamide adenine dinucleotide (NAD+) overproduction through
induction of transporter and metabolic enzyme expression, with consequential suppression of T-cell proliferation and function. Dotted arrows and
outlines indicate processes which are inhibited or downregulated, whereas bold arrows indicate upregulated processes.
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human genome, expression of only two isoforms has been found in

humans (363, 368). These isoforms diverge in their secretory signal

peptide sequence, but yield identical proteins upon signal peptide

cleavage (368). Expression of the first IL4I1 isoform is chiefly found

in lymphoid tissues (364, 369), while the second isoform is highly

expressed in the testis and can also be found in specific cells of the

brain (368). Within human lymphoid tissues, IL4I1 expression is

primarily restricted to professional antigen-presenting cells (364,

366, 370), with considerably higher levels found in macrophages

and dendritic cells compared to those in B cells (371). Moreover,

IL4I1 is expressed by human Th17 and Th17-like cells (372–374)

and is found in MDSCs of tumor-bearing mice (31, 375). While the

physiological roles of IL4I1 remain to be fully elucidated, the

enzyme has been ascribed various immunoregulatory functions,

including regulation of B-cell physiology (376).

Elevated expression of IL4I1 has been detected in various

human cancer types, including both solid tumors and lymphomas

(37, 369, 370). In melanoma and ovarian cancer patients, IL4I1

expression or activity is additionally found to increase with disease

progression or metastasis (37, 377, 378). Among solid and non-B-

cell malignancies, IL4I1 is only rarely expressed by tumor cells, but

instead can often be found in tumor-associated macrophages (370,

379). Contrarily, although IL4I1 expression by macrophages is a

common feature of B-cell lymphomas as well, several subtypes also

frequently express IL4I1 in neoplastic cells, in keeping with its

natural expression in B cells (370). Moreover, whereas high IL4I1

expression appears to portend a poor prognosis in several solid

tumor types (37, 378, 380–383), high levels of IL4I1 are correlated

with superior outcome in follicular and diffuse large B-cell

lymphoma (370, 384). This suggests a dichotomous role for IL4I1

in solid tumors compared to B-cell lymphomas, which may be

related to the physiological regulatory role of IL4I1 in B-cell

activation (376), but requires further substantiating evidence.

Similar to other amino acid-metabolizing enzymes, IL4I1 is

capable of inhibiting the proliferation of activated human T cells

(Figure 13) (366). This effect was initially solely ascribed to the

IL4I1-mediated generation of H2O2, since phenylpyruvic acid, the

a-keto acid product of major substrate phenylalanine, only affects T
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cells at very high concentrations (366). Treatment of human T cells

with H2O2 results in the downmodulation of CD3z expression,

IFNg production and cytotoxic activity (366, 385, 386). Moreover,

at higher concentrations or prolonged exposure, H2O2 can induce

T-cell death (387, 388), which preferentially targets effector rather

than regulatory T cells (389). IL4I1 activity additionally promotes

the differentiation of naïve CD4+ T cells into CD4+CD25+FoxP3+

regulatory T cells, which has been suggested to involve

phenylalanine deficiency-induced inhibition of mTORC1

signaling (390). Based on the relatively low affinity of IL4I1 for

phenylalanine (391), however, it seems unlikely that IL4I1 is

capable of depleting this amino acid, indicating that another

mechanism may underly the observed effect. Finally, IL4I1 is

capable of raising the activation threshold of CD8+ T cells while

restraining their differentiation into memory T cells (392), and

promoting the polarization of macrophages towards a suppressive

phenotype (Figure 13) (393, 394).

More recently, IL4I1 has additionally been recognized for its

ability to generate AhR ligands upon degradation of one of its other

substrates (37). Metabolism of tryptophan yields the a-keto acid

indole-3-pyruvic acid, which can subsequently be converted into

indole-3-lactic acid, indole-3-acetic acid, indole-3-aldehyde and

kynurenic acid (Figure 1E) (37, 395). Each of these metabolites

has previously, albeit generally not consistently, been associated

with AhR agonism (37, 286, 395–398), with indole-3-pyruvic acid

serving as its most potent activator (37). Addition of indole-3-

pyruvic acid, but not the a-keto acid derivative of phenylalanine or

tyrosine, to human T cells induces the expression of AhR target

genes, and reproduces the inhibition of their proliferation observed

with supernatants of IL4I1-expressing cells (Figure 13) (37). IL4I1 is

also reported to inhibit TCR signaling through a mechanism

independent of its enzymatic activity (399), but an effect of IL4I1-

mediated tryptophan metabolism was not considered in this study

and may underly these observations. The activity of IL4I1 can

additionally directly affect tumor cells, as evidenced by the

enhanced proliferation, motility and invasive capacity of IL4I1-

expressing tumor cells of different tissue origin (37, 383, 400), which

may at least in part be due to indole-3-pyruvic acid-mediated
FIGURE 13

Effects of elevated phenylalanine, tyrosine or tryptophan metabolism by IL4I1 on T cells, macrophages and tumor cells. Molecular pathways and
effector molecules that are implicated in these effects, such as activation of the aryl hydrocarbon receptor (AhR) by indole-3-pyruvic acid (I3P) or
other tryptophan metabolites, are indicated within brackets. Dotted outlines and arrows indicate components and processes which are
downregulated or inhibited in response to elevated metabolism by IL4I1.
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activation of the AhR pathway (37). Similarly, AhR signaling may

be involved in the IL4I1-induced suppression of tumor cell

ferroptosis (Figure 13) (367).

Across human cancer types, IL4I1 gene expression associates

more strongly with a pan-tissue AhR activation signature compared

to that of either IDO1 or TDO, indicating IL4I1-generated

metabolites as key AhR activators in cancer (37). While this is

corroborated by the ability of IL4I1 to activate the AhR in various

models and the high expression of IL4I1 in cancer tissues (37), it is

argued by another study demonstrating only poor correlation

between the expression of IL4I1 and individual AhR target genes

in a number of tumor types (391). Moreover, IL4I1 demonstrates a

roughly 50-fold lower affinity for tryptophan compared to IDO1

(391), whereas its expression is on average only moderately higher

than that of IDO1 across different tumor types (37). Although this

may partially be compensated for by the considerably higher AhR-

activating potency of indole-3-pyruvic acid compared to IDO1-

generated metabolites (37), it remains unclear whether IL4I1 is

capable of achieving significant AhR activation in most tumor types.

Nonetheless, metabolomics studies have demonstrated high levels

of the phenylalanine- and tyrosine-derived metabolites

phenylpyruvic acid and 4-hydroxyphenylpyruvic acid in ovarian

cancer patient samples (377, 401). While there is currently no

indication for a role of these metabolites in cancer development or

immunosuppression, these findings suggest considerable activity of

IL4I1 in these patients. Accordingly, when IL4I1 is relieved from

competition for tryptophan upon inhibition of IDO1, IL4I1-

mediated AhR activation could present a mechanism of resistance

against IDO1 inhibition (37, 377). While this remains to be

validated in specimens of patients treated with an IDO1 inhibitor,

it may argue for the treatment of patients with a combination of

IDO1 and IL4I1 inhibitors, or with an AhR inhibitor.

The in vivo effect of IL4I1 expression on tumor growth and the

anti-tumor immune response has currently been studied in only a

limited number of models. In melanoma-challenged, tumor

antigen-immunized mice, IL4I1 expression by tumor cells

facilitates tumor outgrowth, which is mediated by suppression of

the tumor antigen-specific CD8+ T-cell response (402). Similarly,

tumoral IL4I1 overexpression reduces CD8+ T cell infiltration into

tumors of non-immunized melanoma-transplanted mice (403),

although it does not affect tumor growth likely due to the poorly

immunogenic, highly aggressive nature of this model (402, 403). In

contrast, knock-out of IL4I1 in B cells reduces the growth of

melanoma cells in transplanted mice, which is accompanied by

increased proportions of effector memory T cells and reduced

proportions of regulatory T cells and G-MDSCs in the tumor

microenvironment (404). In a model of spontaneous melanoma,

IL4I1 expression and activity increases with disease progression

(404, 405), while IL4I1 deficiency enhances tumor control and

associates with reduced G-MDSC and macrophage infiltration as

well as enhanced CD4+ T-cell, CD8+ T-cell and B-cell infiltration

into the tumor (405). Similarly, IL4I1-deficient mice challenged

with chronic lymphocytic leukemia present with reduced tumor

burden, which is accompanied by enhanced CD8+ T-cell

functionality and reduced frequency of total and activated
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regulatory T cells (37). Finally, in a model of Lewis lung carcinoma,

IL4I1 knock-out inhibits tumor growth and increases the

proportions of CD8+ T cells and pro-inflammatory macrophages,

while decreasing the proportion of regulatory T cells and

immunosuppressive macrophages (406). Overall, these results

corroborate the findings of enhanced MDSC and regulatory T-cell

infiltration and reduced CD8+ T-cell infiltration in cancer patients

with high IL4I1 expression (37, 378, 406).

Similar as observed for IDO1, a-PD-1 treatment can also induce

IL4I1 upregulation in cancer patients, and IL4I1 is suggested to

potentially constitute a resistance mechanism to immune checkpoint

blockade (37). Moreover, IL4I1 induces expression of the inhibitory

checkpoint proteins PD-1 and TIM3 on CD8+ T cells upon co-

culture with patient-derived tumor organoids (Figure 13) (407),

suggesting that IL4I1 inhibitors may need to be combined with

immune checkpoint blockade for effective cancer treatment.

Whereas only few inhibitors of IL4I1 have yet been disclosed (408–

411), the preclinical inhibitor CB-668 has demonstrated both

monotherapeutic efficacy and favorable combinatorial efficacy with

a-PD-L1 therapy in tumor-bearing mice (412).

Taken together, although the field studying the role of IL4I1 in

cancer immune escape is still in its relative infancy compared to that

of IDO1, the pharmacological targeting of IL4I1 offers new

prospects for the treatment of cancer patients. A more

comprehensive understanding of the consequences of IL4I1

expression and its inhibition in cancer is, however, required to

determine whether this enzyme indeed constitutes an effective

immunotherapeutic target. As the development of IL4I1

inhibitors is currently ongoing, disclosure of complementary

studies addressing these aspects may be expected in the near future.
8 Concluding remarks

Cancer immunotherapy has revolutionized the treatment of

malignant tumors, with immune checkpoint blockade as major

breakthrough therapy being approved for an ever-expanding list of

clinical indications. However, despite the impressive durable

responses observed in a subset of cancer patients, diverse resistance

mechanisms limit the effectiveness of immunotherapeutic

interventions. Amino acid-metabolizing enzymes can serve as

important mediators of tumor immune evasion, as activated T cells

and other immune cells have a high need for amino acids and can be

adversely affected by accumulation of amino acid-derived

metabolites. Inhibition of tumor- or immunosuppressive cell-

expressed GLS1, ARG1, iNOS, IDO1, TDO and/or IL4I1 therefore

constitutes a promising approach to alleviate tumor-induced immune

suppression, either as monotherapy or in combination with other

treatment modalities.

Clinical successes of inhibitors of amino acid-metabolizing

enzymes are, however, still limited to date, indicating that our

understanding of the involved complex pathways remains

incomplete. This urges for both the extension of preclinical

research as well as the thorough investigation of samples collected

during clinical studies. As various clinical trials are currently also
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still ongoing, valuable insight into the efficacy of different inhibitors

is also still to be expected. However, identification of novel targets

such as IL4I1, exploration of alternative strategies such as targeting

of downstream pathways (e.g., the AhR pathway) and rational

selection of combination therapies should additionally receive

adequate focus, as these may well serve to overcome the current

limitations of cancer immunotherapies.
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