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Objectives: To investigate the prediction of pathologic complete response (pCR)

in patients with non-small cell lung cancer (NSCLC) undergoing neoadjuvant

immunochemotherapy (NAIC) using quantification of intratumoral heterogeneity

from pre-treatment CT image.

Methods: This retrospective study included 178 patients with NSCLC who

underwent NAIC at 4 different centers. The training set comprised 108 patients

from center A, while the external validation set consisted of 70 patients from

center B, center C, and center D. The traditional radiomics model was contrasted

using radiomics features. The radiomics features of each pixel within the tumor

region of interest (ROI) were extracted. The optimal division of tumor subregions

was determined using the K-means unsupervised clustering method. The

internal tumor heterogeneity habitat model was developed using the habitats

features from each tumor sub-region. The LR algorithm was employed in this

study to construct a machine learning prediction model. The diagnostic

performance of the model was evaluated using criteria such as area under the

receiver operating characteristic curve (AUC), accuracy, specificity, sensitivity,

positive predictive value (PPV), and negative predictive value (NPV).

Results: In the training cohort, the traditional radiomics model achieved an AUC

of 0.778 [95% confidence interval (CI): 0.688-0.868], while the tumor internal

heterogeneity habitat model achieved an AUC of 0.861 (95% CI: 0.789-0.932).

The tumor internal heterogeneity habitat model exhibits a higher AUC value. It

demonstrates an accuracy of 0.815, surpassing the accuracy of 0.685 achieved

by traditional radiomics models. In the external validation cohort, the AUC values

of the twomodels were 0.723 (CI: 0.591-0.855) and 0.781 (95% CI: 0.673-0.889),

respectively. The habitat model continues to exhibit higher AUC values. In terms
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1414954/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1414954/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1414954/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1414954/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1414954/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1414954/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1414954&domain=pdf&date_stamp=2024-06-12
mailto:liaoyongde@hust.edu.cn
mailto:qiyu@zzu.edu.cn
mailto:lktj126@126.com
https://doi.org/10.3389/fimmu.2024.1414954
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1414954
https://www.frontiersin.org/journals/immunology


Ye et al. 10.3389/fimmu.2024.1414954

Frontiers in Immunology
of accuracy evaluation, the tumor heterogeneity habitat model outperforms the

traditional radiomics model, achieving a score of 0.743 compared to 0.686.

Conclusion: The quantitative analysis of intratumoral heterogeneity using CT to

predict pCR in NSCLC patients undergoing NAIC holds the potential to inform

clinical decision-making for resectable NSCLC patients, prevent overtreatment,

and enable personalized and precise cancer management.
KEYWORDS

non-small cell lung cancer, neoadjuvant immunochemotherapy, pathological complete
response, radiomics, intratumoral heterogeneity
Introduction

Neoadjuvant immunochemotherapy, a novel therapeutic approach

extensively employed in clinical settings, has demonstrated significant

improvements in progression-free survival (PFS) and overall survival

(OS) among patients with non small cell lung cancer (NSCLC) (1).

With the growing efficacy of neoadjuvant Immunochemistry (NAIC)

in the treatment of lung cancer, there has been an increase in the

proportion of patients achieving pathological complete response (pCR)

(2–4). The proportion of residual tumor cells after surgery is

prognostically relevant, with lower residual proportions indicating

better prognoses (5). Studies have shown that patients treated with

immunotherapy typically achieve good long-term survival outcomes

without requiring surgery (6), and the “wait-and-see” approach, which

avoids surgical organ preservation, proves to be an effective

management choice (7). While this patient group may have achieved

pCR, confirmation can only come through histopathological

examination of surgically excised specimens. Therefore, the

development of a non-invasive and effective method to safely

and accurately identify pCR in patients after NAIC remains a

significant challenge.

The advancement of artificial intelligence technology has led to

the widespread application of machine learning and deep learning

across various fields. Radiomics, as a burgeoning method for

medical image analysis, employs medical image data to extract

numerous quantitative features (8). These features are then

analyzed in conjunction with disease characteristics, treatment

responses, and patient prognosis (9). Some studies have

investigated the predictive value of radiomics features and deep

learning radiomics features for NAIC in lung cancer (10–12).

Despite the demonstrated performance of traditional radiomics

and deep learning radiomics models in predicting the

effectiveness of NAIC for lung cancer, these models are unable to

capture the spatial heterogeneity of tumors. Typically, quantitative

boundary, shape, and texture features are extracted from the tuition

region of interest (ROI). This feature extraction method is based on
02
the assumption of uniform tumor heterogeneity. However, in

enhanced CT or MR images, changes in the tumor’s internal

perfusion give rise to distinct subregions within the tumor, each

representing different microstructures (13, 14). Analyzing the

subregions of tumors allows for a more accurate representation of

their spatial heterogeneity and a realistic restoration of their

intrinsic characteristics. Previous research and findings

demonstrated that quantitative analysis of MRI heterogeneity

in breast cancer prior to treatment can predict the efficacy

of neoadjuvant chemotherapy (15). However, quantitative

heterogeneity analysis within tumors has not been explored in the

context of NAIC for NSCLC.

Thus, the objective of this study is to perform radiomics analysis

of quantification of intratumoral heterogeneity in patients with NICA

for NSCLC using CT. We establish a quantitative measurement

method for tumor heterogeneity and assess whether comparing this

method with traditional radiomics model can improve the accuracy

of postoperative pCR prediction in patients with NAIC.
Materials and methods

Study sample

This study has received ethical approval from the Ethics

Committee of Tongji Medical College Affiliated Union Hospital of

Huazhong University of Science and Technology (approval number

UCT240116) as well as the Ethics Committees of the participating

institutions. As this was a retrospective study, the ethics committee

granted exemption from the requirement for informed consent. The

study conducted a retrospective screening of clinical and CT scans data

from non-small cell lung cancer patients who underwent neoadjuvant

immunochemotherapy at Tongji Medical College Affiliated Union

Hospital of Huazhong University of Science and Technology (Center

A), Zhengzhou University First Affiliated Hospital (Center B), Yichang

Central Hospital (Center C), and Anyang Cancer Hospital (Center D).
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It was registered and accessible on the clinical trials website (https://

www.clinicaltrials.gov/) under the registration number NCT06285058.

Inclusion criteria for the study included patients who met the

following criteria: (1) Diagnosis of NSCLC confirmed through

biopsy pathology and clinical classification as stage IB to III; (2)

Received a minimum of two cycles of neoadjuvant immunotherapy

in combination with chemotherapy induction therapy; (3)

Underwent postoperative pathological evaluation of treatment

response in the primary tumor lesion and lymph nodes following

the International Association for the Study of Lung Cancer (IASLC)

guidelines. Exclusion criteria for the study involved patients who

met the following criteria: (1) Absence of contrast enhanced CT

image; (2) Incomplete or thick slice CT images of the chest; (3)

Interval exceeding one month between the chest CT imaging

examination before treatment and treatment initiation; (4)

Incomplete or missing clinical pathological data.

The patient’s clinical and pathological data include factors such

as age, gender, smoking history, tumor history, family history, pre-

treatment clinical staging, tumor location, pathological type, and

postoperative pathological response. Staging was performed using

the 8th edition of the TNM staging system by the IASLC (16). A

flowchart, as depicted in Figure 1, was utilized in this study. This

study adhered to the Transparent Reporting of a Multivariate
Frontiers in Immunology 03
Prediction Model for Individual Prognosis or Diagnosis

(TRIPOD) guidelines (17).
Pretreatment evaluation and
neoadjuvant administration

Prior to initiating neoadjuvant therapy, a thorough evaluation of

the patient’s diagnosis and staging is necessary, which primarily

involves chest-enhanced CT, abdominal-enhanced CT or ultrasound,

whole-body bone scintigraphy, brain-enhanced MRI, and positron

emission tomography-CT (PET-CT), among others. Pathological

diagnosis should be performed using techniques such as

bronchoscopy, ultrasound bronchoscopy, and CT-guided

percutaneous lung puncture. Immunotherapy drugs commonly

used include pembrolizumab, nivolumab, sintilizumab,

camrelizumab, tislelizumab, and durvalumab, among others.

Chemotherapy primarily involves platinum-based standard dual-

drug regimens, administered in cycles every 3 weeks for a

treatment duration of 2-4 cycles. The treatment plan, treatment

cycle, and surgical timing for the patient are determined by the

multidisciplinary team (MDT) based on the patient’s treatment

response and overall condition.
FIGURE 1

An illustration of the overall research design.
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Histopathologic assessment and definition
of pCR

In accordance with the IASLC guidelines, proficient

pathologists assessed the postoperative pathological response of

the primary tumor and lymph nodes in NSCLC patients who

underwent NAIC. pCR is defined as the absence of viable tumor

cells (ypT0 and ypN0) in both the tumor bed and lymph nodes.
CT acquisition and preprocessing

Supplementary S1 provides comprehensive details regarding the

acquisition and reconstruction parameters of CT scans conducted

at four different centers. Non-ionic iodine contrast agent (350mg/

ml) was administered to all patients during the scanning process,

with an injection volume ranging from 60 to 80 milliliters and an

injection rate of 2 to 3 milliliters per second. The bone

reconstruction algorithm is employed for the purpose of

reconstruction. Patients are instructed to hold their breath after

taking a deep inhalation in a supine position while scanning the area

from the lung apex to the level of bilateral costophrenic angles.

Finally, arterial phase chest enhanced CT images in digital imaging

and communications in medicine (DICOM) format are

downloaded from picture archiving and communication systems

(PACS). Manual segmentation of lesions is conducted using ITK-

SNAP (version 3.8.0, 0) by a radiologist with 10 years of experience

and a thoracic surgeon with 5 years of experience. The segmented

tumors are jointly verified by senior radiologists and thoracic

surgeons. In case of controversial situations, a consensus will be

reached through discussions involving four doctors. To assess

robustness, a random selection of 50 cases was made to estimate

the intra-group correlation coefficients (ICCs), where a value of ≥

0.75 indicates robustness.
Frontiers in Immunology 04
Radiomics feature extraction and lesion
voxel radiomics feature extraction

Extracting radiomics features from ROI using PyRadiomics

(http://pyradiomics.readthedocs.io). Radiomics features are

divided into three groups: (I) geometric shape, (II) intensity, and

(III) texture. Geometric features describe the three-dimensional

shape characteristics of tumors. The intensity feature describes the

first-order statistical distribution of voxel intensity within tumors.

Texture features describe patterns or second-order and higher-

order spatial distributions of intensity. For a comprehensive list and

explanation of the extracted radiomics features, please refer to

Supplementary S2. Resample CT images and segmented ROI, and

use PyRadiomics to extract radiomics features of each pixel within

the tumor ROI. Please refer to Supplementary S3 for the extracted

voxel radiomics features. As shown in Supplementary S4, different

radiomics features are visualized at each pixel of lesion ROI.
Intratumoral subregion segmentation and
subregional feature extraction

As shown in the Figure 2, the K-Means clustering algorithm is used

to cluster the radiomics features of each pixel in the tumor ROI. Use the

Calinski-Harabas index (CH) to determine the optimal number of sub

regional divisions. Calculate the value of the CH for each variable with

K values ranging from 2 to 10. The elbow rule determines the optimal

number of clusters by plotting a contour curve of the system clustering

analysis. As the number of clusters increases from 2 to 10, the contour

value significantly decreases from 4. The optimal number of clusters,

which is K=4, corresponds to the turning point in the curve. The best

results are attained with 4 clusters, as demonstrated in Supplementary

S5. Supplementary S6 provides a visualization depicting the number of

clusters in a pCR patient.
FIGURE 2

Flow chart of intratumoral Subregion Segmentation.
frontiersin.org

http://pyradiomics.readthedocs.io
https://doi.org/10.3389/fimmu.2024.1414954
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ye et al. 10.3389/fimmu.2024.1414954
Extracting radiomics features from clustered tumor subregions

using PyRadiomics (http://pyradiomics.readthedocs.io). Since

tumor lesions undergo subregional segmentation, shape features

are no longer applicable, and radiomics features are categorized into

intensity and texture. The extracted features are divided into: first-

order statistics (n=360), GLCM (n=440), GLRLM (n=320), GLSZM

(n=320), NGTDM (n=100), and GLDM (n=280). We extract the

above radiomics features from each subregion, and the radiomics

features extracted from habitat 1 are named feature_h1, and so on.
Features selection and prediction
model constriction

To ensure balanced data, minimize differences resulting from

feature distribution, prevent overfitting, and enhance the model’s

generalization ability, Z-score regularization was initially employed

to standardize the extracted radiomics data to have a mean of 0 and

a variance of 1. Features selection was conducted using a t-test, and

features with a p-value less than 0.05 were further analyzed. The

Pearson correlation coefficient was used to filter features, retaining

only one of two features if their correlation coefficient exceeded 0.9.

Regression feature selection was performed using the Least

Absolute Shrinkage and Selection Operator (LASSO) algorithm,

and cross-validation was used to determine the weights of features

for different Lambda values. The penalty coefficient obtained from

cross-validation served as the basis for model training, and features

with a coefficient greater than 0 were filtered out, with the

corresponding formula printed.

PyRadiomics is utilized to extract the radiomics features of each

subregion, based on the optimal number of clusters. The radiomics

features from each subregion are fused and incorporated into the

LR algorithm to construct a prediction model for analyzing

intratumoral heterogeneity.
Model evaluation and statistical analysis

The diagnostic performance of the model was evaluated using

criteria such as AUC, accuracy, specificity, sensitivity, PPV, and

NPV. The decision curve analysis (DCA) evaluation model was

employed to predict the net benefit of NAIC efficacy. Additionally,

the model calibration curve was utilized to demonstrate the

comparative effect between the constructed prediction model and

the perfect fit. The Hosmer Lemeshow test was used to determine

the difference between predicted and true values.

Statistical analysis was conducted using SPSS software (version

27.0, IBM) and Python software (version 3.5.6; http://

www.python.org). The independent sample t-test was performed to

analyze continuous variables, expressed as mean ± standard

deviation. The correlation between categorical variables was

analyzed using the chi-square test or Fisher’s exact test, and the

results were represented as a ratio. Pearson correlation test was

employed to analyze the correlation between features and avoid

highly repetitive features. If the correlation coefficient between any

two features exceeds 0.9, only one feature is retained. LASSO
Frontiers in Immunology 05
regression was utilized to select non-zero variables as important

features and incorporate them into the prediction model. The

significance level was set at p<0.05.
Results

Patient characteristics

A total of 250 patients who underwent NAIC were screened in

four hospitals, based on the inclusion criteria. Patients were

excluded based on the following criteria: 26 patients who did not

undergo pre-treatment chest enhanced CT examination, 15 patients

with incomplete CT images or who underwent thick slice scanning;

12 patients who had chest CT imaging examinations before

treatment with a time interval of more than 1 month between the

start of treatment, and 19 patients with incomplete clinical and

pathological data or other missing information. In total, 178

patients were included in the study, comprising 108 patients from

Center A, 49 from Center B, 13 from Center C, and 8 from Center

D. The training set consisted of 108 patients from Center A, while

the external validation set comprised 70 patients from Center B,

Center C, and Center D, as illustrated in Figure 3.

Table 1 presents the general statistical analysis of patient data.

Out of the patients who received NAIC, 64 achieved pCR, while 114

did not, resulting in a pCR rate of 36.0%. The study included 155

male cases (87.1%) and 23 female cases (12.9%). The study

identified statistically significant differences (p < 0.05 for all) in

various factors, including gender, family history and T stage.

Conversely, no statistically significant differences were observed

between the two groups in terms of smoking, tumor history,

location of lesion, pathological type, N stage and clinical stage.

Table 2 demonstrates that the distribution of clinicopathological

characteristics is similar in both the training cohort and external

validation cohort.
Construction of radiomics feature model

The PyRadiomics package was utilized in this study to extract

1834 features from the ROI for each patient. Following

reproducibility evaluation using ICCs, 1326 features were deemed

reliable and selected for further analysis. 42 features exhibiting

statistical differences between the pCR group and the non-pCR

group were selected using a t-test. Subsequently, Pearson

correlation coefficient analysis was conducted on these features to

examine the pairwise correlations among them. Only features with a

correlation coefficient greater than 0.9 were retained, selecting one

representative feature. Ultimately, 22 features were chosen for

subsequent analysis. Employing LASSO regression screening, 8

features with non-zero coefficients were selected from the initial set

of 22 features to create a Rad score. Figure 4A displays the mean

standard error (MSE) of LASSO regression, Figure 4B illustrates the

coefficients for cross-validation of LASSO regression, and Figure 4C

presents the coefficient values of the final selected non-zero features.

The selected 8 traditional radiomics features were incorporated into
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http://pyradiomics.readthedocs.io
http://www.python.org
http://www.python.org
https://doi.org/10.3389/fimmu.2024.1414954
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ye et al. 10.3389/fimmu.2024.1414954
FIGURE 3

Flowchart shows patient exclusion for each dataset.
TABLE 1 Comparison of clinical and pathological characteristics between pCR group and non- pCR group.

Characteristics Total
(n=178)

Non-pCR group
(n=114)

pCR group
(n=64)

p value

Age(years), Mean ±SD 60.243±8.079 60.492±7.554 59.783±8.982 0.575

Gender, n (%) 0.007

Female 23(12.9) 21(18.4) 2(3.1)

Male 155(87.1) 93(81.6) 62(96.9)

Smoking, n (%) 0.153

Yes 110(61.8) 66(57.9) 44(68.8)

No 68(38.2) 48(42.1) 20(31.2)

Family history, n (%) 0.016

Yes 4(2.2) 0(0.0) 4(6.2)

No 174(97.8) 114(100.0) 60(93.8)

Tumor history, n (%) 1.000

Yes 2(1.1) 1(0.9) 1(1.6)

No 176(98.9) 113(99.1) 63(98.4)

Location of lesion, n (%) 0.294

(Continued)
F
rontiers in Immunology
 06
 frontiersin.org

https://doi.org/10.3389/fimmu.2024.1414954
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ye et al. 10.3389/fimmu.2024.1414954
TABLE 1 Continued

Characteristics Total
(n=178)

Non-pCR group
(n=114)

pCR group
(n=64)

p value

right 88(49.4) 53(46.5) 35(53.7)

left 90(50.6) 61(53.5) 29(45.3)

Pathological type, n (%) 0.448

Squamous carcinoma 133(74.7) 82(71.9) 51(79.7)

adenocarcinoma 40(22.5) 29(25.4) 11(14.4)

other 5(2.8) 3(2.6) 2(3.1)

T stage, n (%) 0.003

T1 23(12.9) 7(6.1) 16(25.0)

T2 64(36.0) 41(36.0) 23(35.9)

T3 60(33.7) 43(57.7) 17(26.6)

T4 31(17.4) 23(20.2) 8(12.5)

N stage, n (%) 0.865

N0 14(7.9) 10(8.8) 4(6.2)

N1 35(19.6) 23(20.1) 12(18.8)

N2 116(65.2) 72(63.2) 44(68.8)

N3 13(7.3) 9(7.9) 4(6.2)

Clinical stage, n (%) 0.734

II 23(12.9) 14(12.3) 9(14.1)

III 155(87.1) 100(87.7) 55(85.9)
F
rontiers in Immunology
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pCR, pathological complete response.
TABLE 2 Patient characteristics across different cohorts.

Characteristics Total
(n=178)

Training
(n=108)

Validation
(n=70)

p value

Age(years), Mean ±SD 60.243±8.079 60.193±6.927 60.30±9.643 0.932

Gender, n (%) 0.023

Female 23(12.9) 9(8.3) 14(20.0)

Male 155 (87.1) 99(91.7) 56(80.0)

Smoking, n (%) 0.387

Yes 110(61.8) 64(59.3) 46(65.7)

No 68(38.2) 44(40.7) 24(34.3)

Family history, n (%) 0.647

Yes 4(2.2) 2(1.9) 2(2.9)

No 174(97.8) 106(98.1) 68(07.1)

Tumor history, n (%) 0.153

Yes 2(1.1) 0(0.0) 2(2.9)

No 176(98.9) 108(100.0) 68(97.1)

Location of lesion, n (%) 0.424

(Continued)
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the machine learning algorithm, LR, to construct a traditional

radiomics model.

As depicted in Figure 4D, the AUC of this model was 0.778 (95%

CI: 0.688-0.868) in the training cohort and 0.723 (95% CI: 0.591-

0.855) in the external validation cohort. Figures 4E and 4F depict the

confusion matrix of the traditional radiomics model. In the training

set, the traditional radiomics model achieved an accuracy of 0.685,

sensitivity of 0.854, specificity of 0.582, PPV of 0.556, and NPV of

0.867. In the external validation set, the model achieved an accuracy

of 0.686, sensitivity of 0.739, specificity of 0.660, PPV of 0.515, and

NPV of 0.838.
Construction of habitat model

Habitats radiomics features are extracted from four tumor

subregions using PyRadiomics. The features extracted from each

subregion are collectively referred to as feature_h1, feature_h2,

feature_h3, and feature_h4. Habitat 1, Habitat 2, Habitat 3, and

Habitat 4 each extract 1820 features. These features are then fused,

screened, and used to construct a model. A total of 7280 habitats
Frontiers in Immunology 08
radiomics features were extracted from the 4 tumor subregions. A total

of 221 features exhibiting statistical differences were selected between

the pCR group and the non-pCR group using a t-test. Subsequently, a

Pearson correlation coefficient analysis was conducted on these

features, retaining only those with a correlation coefficient greater

than 0.9. Finally, 101 features were chosen for further analysis. By

employing LASSO regression screening, 16 features with non-zero

coefficients were selected from the initial 101 features to establish the

tumor’s internal heterogeneity habitat score. Figure 5A displays the

MSE of LASSO regression, Figure 5B illustrates the coefficients

obtained through cross-validation in LASSO regression, and

Figure 5C presents the coefficient values of the final selected non-

zero features. The 16 selected radiomics features of the habitat are

incorporated into the machine learning algorithm, LR, to construct a

model for tumor internal heterogeneity habitat. The AUC of this model

was 0.861 (95% CI: 0.789-0.932) in the training group and 0.781 (95%

CI: 0.673-0.889) in the external validation group, as depicted in

Figure 5D. Figures 5E and 5F display the confusion matrix of the

tumor internal heterogeneity habitat model. In the training set, the

tumor internal heterogeneity habitat model achieved the following

performance metrics: accuracy of 0.815, sensitivity of 0.659, specificity
TABLE 2 Continued

Characteristics Total
(n=178)

Training
(n=108)

Validation
(n=70)

p value

right 88(49.4) 56(51.9) 32(45.7)

left 90(50.6) 52(48.1) 38(54.3)

Pathological type, n (%) 0.605

Squamous carcinoma 133(74.7) 79(73.1) 54(77.1)

adenocarcinoma 40(22.5) 25(23.1) 15(21.4)

other 5(2.8) 4(3.7) 1(1.4)

Clinical T stage, n (%) 0.206

T1 23(12.9) 11(10.2) 12(17.1)

T2 64(36.0) 45(41.7) 19(27.1)

T3 60(33.7) 34(31.5) 26(37.1)

T4 31(17.4) 18(16.6) 13(18.6)

Clinical N stage, n (%) 0.881

N0 14(7.9) 8(7.5) 6(8.6)

N1 35(19.7) 20(18.5) 15(21.4)

N2 116(65.1) 71(65.7) 45(64.3)

N3 13(7.3) 9(8.3) 4(5.7)

Clinical stage, n (%) 0.371

II 23(12.9) 12(11.1) 11(15.7)

III 155(87.1) 96(88.9) 59(84.3)

pCR, n (%) 0.488

Present 64(36.0) 41(38.0) 23(32.9)

Absent 114(64.0) 67(62.0) 47(67.1)
pCR, pathological complete response.
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of 0.910, PPV of 0.818, and NPV of 0.813. In the external validation

queue, the model achieved an accuracy of 0.743, sensitivity of 0.783,

specificity of 0.723, PPV of 0.581, and NPV of 0.872.
Comparison of the radiomics feature
model and habitat model

The performance of the radiomics model and habitats model in

the training cohort and external validation cohort is summarized in
Frontiers in Immunology 09
Table 3. Figure 6A and Figure 6D display the ROC curves and

corresponding AUC results of two prediction models, namely the

traditional radiomics model and the tumor heterogeneity habitat

model, used for predicting pCR in NAIC for NSCLC. The

evaluation is performed on both the training and external

validation cohorts. Figures 6B and 6E illustrate the decision

curves of the two prediction models in the training and validation

sets, respectively. The utilization of these two prediction models

yields a higher overall net benefit in predicting pCR for patients

undergoing NAIC in NSCLC, as compared to non-intervention
B C

D E F

A

FIGURE 4

Radiomics feature selection based on LASSO algorithm and construction of the radiomics model. (A) the MSE of LASSO regression. (B) the
coefficients for cross-validation of LASSO regression. (C) Selected features weight coefficients. (D) The ROC curves of the radiomics model in the
training and validation cohorts. (E) Confusion matrix for radiomics model in the training cohort. (F) Confusion matrix for radiomics model in the
external validation cohort. LASSO, least absolute shrinkage and selection operator; MSE, mean standard error; ROC, receiver operating characteristic.
B C

D E F

A

FIGURE 5

Habitats radiomics feature selection based on LASSO algorithm and construction of the radiomics model. (A) the MSE of LASSO regression. (B) the
coefficients for cross-validation of LASSO regression. (C) Selected features weight coefficients. (D)The ROC curves of the habitats model in the
training and validation cohorts. (E) Confusion matrix for habitats model in the training cohort. (F) Confusion matrix for habitats model in the external
validation cohort. LASSO, least absolute shrinkage and selection operator; MSE, mean standard error; ROC, receiver operating characteristic.
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patients. The calibration curves of the two prediction models,

depicted in Figures 6C and 6F, showcase the performance of

these models in relation to perfect fitting, across both the training

and validation groups. The Hosmer Lemeshow test serves as a

model fitting indicator, assessing the disparity between predicted

and true values. A p-value greater than 0.05 indicates a successful

passing of the Hosmer Lemeshow test, implying no significant

difference between the predicted and true values. In the training

cohort, the p-values of the Hosmer Lemeshow test for the radiomics

model and the habitat model are 0.325 and 0.452, respectively. The

model fit of the external validation group is slightly inferior when

compared to the training group.
Discussion

The study comprised a total of 178 patients diagnosed with

NSCLC who underwent NAIC. A model utilizing CT-extracted
Frontiers in Immunology 10
imaging features prior to treatment was constructed to predict pCR.

The results demonstrated that the habitat model, constructed

through quantitative analysis of tumor internal heterogeneity,

achieved an AUC value of 0.861 in the training group,

outperforming the traditional radiomics model with an AUC of

0.778. In the validation group, the tumor internal heterogeneity

habitat model exhibited an AUC value of 0.781, surpassing the AUC

of the traditional radiomics model at 0.723.

NAIC is an emerging adjuvant therapy for lung cancer

primarily aimed at inhibiting tumor immune escape, activating

the body’s immune response, and eliminating tumor cells (18).

Nevertheless, variations in the efficacy of NAIC exist, and currently,

there are no effective screening methods to identify individuals who

respond favorably to NAIC. Traditional radiological methods face

challenges in evaluating their effectiveness. Radiomics can extract

features from CT images of lung cancer, establish a predictive model

for assessing the efficacy of NAIC in lung cancer, enable early

identification of drug resistance, and offer guidance for optimizing
TABLE 3 Discrimination performance comparison of the prediction models for pCR.

AUC ACC Sensitivity Specificity PPV NPV

Rad model

Training 0.778 0.685 0.854 0.582 0.556 0.867

Validation 0.723 0.686 0.739 0.660 0.515 0.838

Habitat model

Training 0.861 0.815 0.659 0.910 0.818 0.813

Validation 0.781 0.743 0.783 0.723 0.581 0.872
pCR, pathological complete response; AUC, area under curve; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value.
B C

D E F

A

FIGURE 6

The performance of radiomics model and habitats model in the training and the external validation cohorts. The AUC, DCA and Calibration curves of
radiomics model and habitats model in the training cohort (A, B, C) and the external validation cohort (D, E, F). AUC, area under the receiver
operating characteristic curve; DCA, decision curve analysis.
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and modifying therapy plans (19). Yang et al. (3) developed a

predictive model utilizing radiomics features extracted from CT

scans taken before and after NAIC to predict pathological response,

achieving an AUC of 0.85 and an accuracy of 81%. Similarly, Han

et al. (20) extracted radiomics features from CT data obtained

before and after NAIC for lung cancer and constructed a model to

predict MPR, achieving a maximum AUC value of 0.850. Liu et al.

(10) enrolled 89 patients with lung cancer who received NAIC and

incorporated clinical data and radiomics features to build a

nomogram model that integrated both types of features. The

training set yielded an AUC of 0.84 and an accuracy of 80%.

Deep learning, a complex machine learning algorithm, has

demonstrated superior performance in language and image

recognition compared to preceding technologies. The application

of deep learning in medical image processing has garnered growing

attention. Deep learning-based models have exhibited satisfactory

performance in predicting the primary pathological response to

NAIC in patients with NSCLC. Lin et al. (11) conducted a

retrospective analysis of clinical and imaging data from 62

patients with NSCLC who underwent NAIC. They extracted

radiomics and deep learning features from lung cancer lesions

and constructed an integrated model that combines clinical

features, radiomics features, and deep learning features to achieve

accurate efficacy prediction. She et al. (21) integrated multicenter

data and developed a model for predicting MPR in patients

undergoing NAIC using deep learning features. In the external

validation set, the deep learning model achieved an AUC of 0.72 for

MPR prediction. In conclusion, radiomics and deep learning

models based on artificial intelligence have demonstrated

significant potential in predicting the effectiveness of NAIC for

lung cancer. These models can aid physicians in early identification

of patient responses and drug resistance, thereby offering valuable

insights for optimizing and transitioning immunotherapy

treatment plans.

Despite the high predictive performance of traditional

radiomics and deep learning radiomics models, these models fail

to capture the spatial heterogeneity of tumors in their features.

Tumor heterogeneity can be categorized into two types: spatial

heterogeneity in the spatial dimension and temporal heterogeneity

in the temporal dimension (22). Spatial heterogeneity in tumors

pertains to the distinct characteristics and distribution of internal

cells and tissues. Tumors are heterogeneous entities consisting of

diverse cell types, such as tumor cells, blood vessels, immune cells,

and fibrous tissue (23). Such heterogeneity frequently results in

irregular tumor growth patterns, along with inconsistent

distribution and density of cells. The spatial heterogeneity of

tumors profoundly influences tumor treatment. Tumor cells in

distinct regions may exhibit varying sensitivities to therapeutic

drugs, while the low oxygen and nutrient-deprived areas within

the tumor may pose challenges for drug delivery (24). Therefore, it

is crucial to understand and consider the spatial heterogeneity of

tumors when developing effective treatment strategies. Neoadjuvant

therapy patients who are ineligible or temporarily unfit for surgery

cannot have the tumor completely removed and evaluate tumor

heterogeneity through pathology. The development of artificial
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intelligence radiomics enables quantitative imaging, which

quantifies and analyzes tumor imaging data, thereby obtaining

digital information that is more accurate, objective, and

reproducible. Analyzing the subregions of tumors enables a better

reflection of their spatial heterogeneity and a more realistic

restoration of their characteristics. Utilizing this quantitative data

to comprehend tumor heterogeneity aids in tumor diagnosis,

classification, grading, and evaluation of treatment response,

thereby assisting doctors in formulating personalized treatment

strategies (25, 26). Tumor heterogeneity plays a crucial role in

predicting tumor progression, assessing therapeutic effects, and

devising personalized treatment plans (27). This study aimed to

analyze the internal microscopic manifestations of tumors using

imaging and investigate the spatial manifestations of tumor

heterogeneity. Additionally, it introduced a habitat model for

analyzing tumor internal heterogeneity to predict pCR in NAIC

patients with NSCLC. The K-means unsupervised clustering

method was employed to partition tumor subregions, and the

habitat model, which extracted subregional radiomics features,

notably enhanced the predictive performance of radiomics. The

habitat model, constructed using subregional radiomics features,

plays a crucial role in predicting the efficacy of NAIC for NSCLC.

This model can provide additional tumor information, enhance the

objectivity and accuracy of efficacy evaluation, optimize treatment

plan selection and adjustment, and improve treatment effectiveness

and safety.

This study has several limitations and shortcomings. Firstly, as a

retrospective study, it may be prone to selection bias. Additionally,

there might be statistical gender differences between the training

group and validation group, potentially impacting the model’s

accuracy. Future prospective clinical studies are needed to

validate the model’s accuracy and enhance its performance.

Secondly, although it is a multicenter study, the inclusion of

patient data from each center was not substantial. Future research

endeavors to accomplish large-scale, multicenter validation.

Thirdly, this study solely incorporated pre-treatment CT data and

excluded CT data after neoadjuvant therapy. Integrating temporal

analysis alongside spatial heterogeneity could enhance the

predictive model’s performance. Subsequent research will analyze

both spatial and temporal heterogeneity to construct predictive

models with enhanced accuracy. Fourthly, this study omitted

patient pre-treatment puncture specimen information, such as

PD-L1 expression, TMB, and sequencing data. In the future, it is

worth considering the incorporation of puncture pathology data

and the development of a multimodal prediction model to further

enhance the model’s accuracy.

In conclusion, radiomics analysis utilizing CT image was

performed to evaluate the intratumoral heterogeneity in NSCLC

patients undergoing NAIC treatment. The tumor heterogeneity

analysis habitat model, when compared to conventional radiomics

models, exhibits enhanced accuracy in predicting postoperative

pCR in patients with NAIC. This approach has the potential to

aid in clinical decision-making for patients with resectable NSCLC,

prevent unnecessary treatment, and facilitate personalized and

precise cancer management.
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