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Introduction: Rupture of the gestational membranes often precedes major

pregnancy complications, including preterm labor and preterm birth. One major

cause of inflammation in the gestational membranes, chorioamnionitis (CAM) is

often a result of bacterial infection. The commensal bacterium Streptococcus

agalactiae, or Group B Streptococcus (GBS) is a leading infectious cause of CAM.

Obesity is on the rise worldwide and roughly 1 in 4 pregnancy complications is

related to obesity, and individuals with obesity are also more likely to be colonized

by GBS. The gestational membranes are comprised of several distinct cell layers

which are, fromoutermost to innermost: maternally-derived decidual stromal cells

(DSCs), fetal cytotrophoblasts (CTBs), fetal mesenchymal cells, and fetal amnion

epithelial cells (AECs). In addition, the gestationalmembranes have several immune

cell populations; macrophages are the most common phagocyte. Here we

characterize the effects of palmitate, the most common long-chain saturated

fatty acid, on the inflammatory response of each layer of the gestational

membranes when infected with GBS, using human cell lines and primary

human tissue.

Results: Palmitate itself slightly but significantly augments GBS proliferation.

Palmitate and GBS co-stimulation synergized to induce many inflammatory

proteins and cytokines, particularly IL-1b and matrix metalloproteinase 9 from

DSCs, CTBs, and macrophages, but not from AECs. Many of these findings are

recapitulated when treating cells with palmitate and a TLR2 or TLR4 agonist,

suggesting broad applicability of palmitate-pathogen synergy. Co-culture of

macrophages with DSCs or CTBs, upon co-stimulation with GBS and

palmitate, resulted in increased inflammatory responses, contrary to previous

work in the absence of palmitate. In whole gestational membrane biopsies, the

amnion layer appeared to dampen immune responses from the DSC and CTB

layers (the choriodecidua) to GBS and palmitate co-stimulation. Addition of the
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monounsaturated fatty acid oleate, the most abundant monounsaturated fatty

acid in circulation, dampened the proinflammatory effect of palmitate.

Discussion: These studies reveal a complex interplay between the immunological

response of the distinct layers of the gestational membrane to GBS infection and

that such responses can be altered by exposure to long-chain saturated fatty acids.

These data provide insight into how metabolic syndromes such as obesity might

contribute to an increased risk for GBS disease during pregnancy.
KEYWORDS

pregnancy, gestational membranes, group B Streptococcus, obesity, palmitate, preterm
prelabor rupture of membranes, preterm birth, inflammation
Introduction

The onset of labor and/or childbirth prior to term is often

preceded by the rupture of extraplacental, gestational (“fetal”)

membranes (1–3). Preterm premature rupture of membranes

(PPROM) is commonly associated with histological inflammation,

a condition termed chorioamnionitis (CAM). Acute, neutrophilic

CAM can be caused by infectious or non-infectious stimuli, but a

significant infectious cause of CAM is the bacterium Group B

Streptococcus (GBS) (4–9). Further consequences of GBS-

associated CAM include maternal and fetal sepsis and stillbirth

(10–16).

The gestational membranes differentiate along with the

trophectoderm during early human pregnancy. Both these tissues

contain multiple cell types derived from both the fetus and the

mother. The placenta is largely made up of cytotrophoblasts

(CTBs), a fetal cell type which differentiates into several distinct

forms. The gestational membranes are comprised of an outermost

layer, the decidua, dominated by maternal decidual stromal cells

(DSCs); a central chorion layer of fetal CTBs abutting the decidua;

an inner amnion comprised of fetal mesenchymal cells, and a single

layer of fetal amnion epithelial cells (AECs) lining the innermost

(fetal-facing) aspect of the membranes. The amnion has ample

extracellular matrix and basement membrane for structural

stability. Macrophages are the principle resident phagocyte within

uninflamed gestational membranes and there are cells of the

adaptive immune system there as well (17). The precise cause of

membrane rupture during CAM remains to be determined, but it

likely involves matrix metalloproteinases (MMPs) produced by

structural and immune cells of the membranes, and possibly the

bacteria themselves (18–20). Additionally, several pro-

inflammatory cytokines such as IL-6, IL-1b, IL-8, and TNF-a
have been associated with CAM and preterm birth (21, 22).

The interplay of saturated fatty acids, pregnancy, obesity, and

inflammation is complex. Saturated fatty acids are associated with

inflammation [reviewed in (23)]. In normal weight individuals

consuming a western diet, the monounsaturated fatty acid oleate
02
and the LCSFA palmitate comprise (on average) 31% and 27% of

fatty acids in the blood stream, respectively. The composition of

these fatty acids are changed during obesity, with palmitate being

the most abundant fatty acid in circulation at 33%, representing

approximately a 20% increase than in individuals of normal-weight

(24, 25). Thus, palmitate and oleate are often used to model the fatty

acid component of obesity in vitro. Furthermore, palmitate

specifically has been associated with inflammation, adverse

pregnancy outcomes, and in several other pregnancy-associated

conditions, including gestational diabetes mellitus and preeclampsia

(26–30). Pregnancy progressively increases the circulating

concentrations of fatty acids to increase energy availability, among

other effects (31). While we would expect the serum levels of

palmitate to increase during pregnancies complicated with obesity

similarly to non-pregnant conditions, the concentration of serum

palmitate in obese and normal weight pregnancies is also impacted

by fetal sex (32). For instance, the fatty acid profiles of maternal

plasma in obese pregnant persons differs from normal weight

controls in distinct ways depending on fetal sex: obese

pregnancies with female fetuses have higher maternal plasma

oleate levels relative to controls, while obese pregnancies with

male fetuses have lower levels of oleate than controls (32). There

are also differences in unsaturated fatty acids between male and

female placentas (33).

An estimated 1 in 4 pregnancy complications can be tied to

obesity (34, 35), and this number is expected to rise as obesity rates

increase. During non-pregnant settings, individuals with obesity are

at an increased risk of rectovaginal colonization with GBS (36–38)

and thus at greater risk of GBS-related pregnancy complications

including CAM, preterm prelabor rupture of membranes, and fetal

sepsis (39, 40). The precise cause of greater GBS colonization in

obese pregnant people is unknown; however, the contribution of

LCSFAs to inflammation has been well established (41).

In this study, we sought to determine the impact of the LCSFA

palmitate on GBS-induced inflammation in different compartments

of the gestational membranes. We were particularly interested in

the potential for synergy between GBS and palmitate in the
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induction of proinflammatory cytokines, chemokines, and MMP

production throughout the gestational membranes, since these

peptides play significant roles in regulating the cellular

inflammatory response to infection and the integrity of the

extracellular matrix. We found that the DSC and CTB cell types

displayed synergy in IL-1b secretion when treated with GBS and

palmitate together. In contrast to previous work in the absence of

palmitate that showed suppression of macrophage activation by

both DSCs and CTBs (42), neither cell type inhibited activation of

primary placental macrophages or macrophages of the cell line

THP-1 in response to infection when palmitate was present. The

AEC layer was largely nonresponsive to GBS and palmitate co-

incubation and may actively inhibit the inflammation in the

choriodecidua when the membranes are intact. The differences of

each structural cell type of the gestational membrane in response to

GBS and palmitate suggest complex regulation and that paracrine

signaling between layers of the gestational membrane will

be necessary.
Materials and methods

Cell lines and reagents

These studies used a telomerase-immortalized human

endometrial stromal cell (THESC) uterine stromal cell line

(obtained from ATCC, Manassas, VA, USA) differentiated into

decidual stromal cells (DSC), as described below, the Jeg3

cytotrophoblast cell line (CTB, a kind gift from Dr. Carolyn

Coyne), and the Tohoku Hospital Pediatrics-1 (THP-1) human

monocytic leukemia-derived cell line (ATCC). DSCs were cultured

in DMEM/F12 without phenol red (Invitrogen, Carlsbad, CA, USA)

supplemented with 10% charcoal-stripped fetal bovine serum

(csFBS, HyClone, Logan, UT, USA) and 1% antibiotic

antimycotic solution (A/A) (Gibco, Waltham, Massachusetts,

USA). We induced decidualization in the THESC line over 7 days

with 0.5 mM 8-Br-cAMP,10 nM estradiol , and 1mM
medroxyprogesterone acetate (Sigma-Aldrich, St. Louis, MS,

USA) administered every 2 days to generate DSCs (43, 44).

Induction of prolactin and IGFBP1 secretion, indicative of

decidualization, was confirmed by ELISA (Alpha diagnostic

international, San Antonio, TX, USA). CTBs were cultured in

MEM without phenol red (Invitrogen) supplemented with 10%

csFBS and 1% A/A. THP-1 cells were cultured in RPMI 1640

(Invitrogen) with 10% csFBS and 1% A/A. THP-1 cells were

differentiated to adherent macrophage-like cells using phorbol

myristate acetate (PMA, 5 ng/mL; Sigma, St. Louis, MO, USA)

overnight, washing off nonadherent cells, and removing

macrophages by incubating adherent cells using Cell Dissociation

Buffer Enzyme-Free PBS-based (Gibco) for 5 minutes at 37°C and

subsequent cell scraping.

Palmitate and oleate were obtained from Nu-Chek Prep

(Elysian, MN, USA), dissolved in ethanol as in (45) and used at

a final concentration of 0.4 mM without an added carrier. This

concentration was selected based on circulating levels of palmitate

in obese and/or diabetic individuals (39, 40) and to align with the
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from a variety of groups (45–47). TLR4 agonist lipopolysaccharide

(LPS, ultrapure from E. coli K12 strain) and TLR2 agonist

PAM3CSK4 (PAM) were obtained from In vivoGen (San Diego,

CA, USA) and used at a final concentration of 1 mg/mL. The

clinical GBS isolate GB00112 (GB112) was obtained from Dr.

Shannon Manning (Michigan State University, East Lansing, MI,

USA) (48). GBS was cultured in Todd-Hewitt broth (THB)

overnight at 37°C, then pelleted and resuspended in PBS. GBS

was used at a multiplicity of infection (MOI) of 10 for DSC, CTB,

and AEC cells, and at an MOI of 100 for THP-1 cells. For

experiments using whole or separated (amnion physically

separated from choriodecidua) human gestational membrane

punches, 1 x 107 CFU of GBS was added to wells and

thoroughly mixed.
Human primary cell isolations

Human placental CTB isolation
These studies were conducted in accordance with the

Vanderbilt University Institutional Review Board (IRB#181998)

and Declaration of Helsinki. Pregnant people (aged 21-40 years)

meeting our recruitment criteria receiving elective (scheduled) non-

laboring but full-term Cesarean sections at Vanderbilt University

Medical Center were approached and consented for donation of

their placenta and gestational membranes. Exclusion criteria were:

clinical evidence of CAM, immunocompromised conditions,

collagen vascular disease, multi-fetal pregnancy, patients younger

than 21 years of age or older than 40, evidence of bacterial vaginosis,

cervical cerclage, third trimester bleeding, preeclampsia, diabetes

(gestational or preexisting), SARS-CoV2 infection, or major

medical conditions (chronic renal disease, sarcoidosis, hepatitis,

HIV, etc). Demographics and known variables of patients are

included in Supplementary Table 1.

Human placental macrophage isolation
Human placental macrophages from the villous core were

isolated as previously described (49). Briefly, placental cotyledon

tissue, separated from the maternal decidua basalis, was

vigorously washed with PBS to remove circulating blood. The

tissue was minced into small pieces and weighed to determine

final grams collected. Tissue fragments were placed into 250 mL

sterile bottles with sterile digestion solution containing 150 mg/
mL deoxyribonuclease, 1 mg/mL collagenase, and 1 mg/mL

hyaluronidase at 10 mL per gram of tissue. Placenta was

digested for 1 h at 37°C, shaking at 180 RPM. Digested tissue

was filtered through a 280 mmmetal sieve, followed by 180 and 80

mm nylon screens. Cells were centrifuged at 1500 RPM and

resuspended in 25% Percoll diluted in cold RPMI media

containing 10% FBS and 1% A/A (referred hereafter as RPMI

+/+) and overlaid onto 50% Percoll, plus 2 mL of PBS on top of

the density gradient. CD14+ macrophages were isolated by

positive selection after red blood cell (RBC) lysis (solution from

Invitrogen) using the magnetic MACS® large cell separation

column system according to the manufacturer’s instructions.
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Isolated CD14+ placental macrophages were plated and rested

overnight in RPMI+/+ at 37 °C with 5% CO2 before

experimentation. Purity of placental macrophage preparations

was determined to be 95.89 +/- 0.6986% based on CD68 positivity.

Human gestational membrane amnion epithelial
cell isolation

Gestational membrane was physically separated into amnion

and choriodecidua by peeling the layers from each other.

Choriodecidua was discarded and amnion was cut into

approximately 2-inch squares and added to a beaker containing

100mL warmed 0.25% Trypsin. Amnion was incubated in a

shaking incubator at 200RPM at 37°C for 60 minutes. Amnion-

trypsin solution was strained through a metal screen, flow-

through containing AECs saved, amnion squares returned to

beaker, and another 100 mL 0.25% trypsin was added. The

beaker with amnion and trypsin was returned to shaking

incubator for 30 minutes. Flow-through containing AECs was

strained through 70 mm strainer and divided into 50-mL conical

tubes resuspended in complete media. After 30 minute

incubation, amnion-trypsin solution was filtered, newborn calf

serum added to neutralize trypsin, flow-through was further

strained through 70 mm screens, and spun to pellet AECs.

Pellets were pooled, washed in PBS, spun down again to pellet,

and subjected to red blood cell lysis as per manufacturer’s

protocol. Cells were pelleted after RBC lysis step, resuspended

in complete media, counted, and plated in 24-well dishes at a

concentration of 1 x 106/mL, 1 mL per well. Wells were washed on

subsequent days and cells monitored until they formed a

connected, confluent epithelial cell monolayer.

Human gestational membrane punch
biopsy preparation

Human gestational membranes were washed in warm, sterile

PBS to remove blood and clots. Membranes were spread over a

sterile silicone pad and 12 mm punch biopsies were obtained. For

experiments using separated amnion and choriodecidua, amnion

was physically pulled from choriodecidua, then amnion and

choriodecidual membrane layers were spread individually over

the silicone pad and 12 mm biopsy punches made. Tissue punches

were added to wells of 24-well plates with 1 mL complete DMEM/

F12 media and rested overnight before infection.
Fatty acid treatment and infection

Media was aspirated from wells, cells or tissue rinsed with sterile

PBS, and then palmitate, oleate, vehicle control (ethanol), and/or

GBS was added to selected wells at the same time in antibiotic-free

media (RPMI 1640 or DMEM/F12, depending on cell type) with

10% csFBS. Cultures sat in antibiotic-free media with or without

GBS and fatty acids for 1 hour. Antibiotic/antimycotic was added to

wells to a concentration of 1x (from 100X stock), and then cultures

were incubated for an additional 24 hours. Media was then

harvested for ELISA.
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ELISA analysis was performed on supernatants from cultures as

per manufacturer’s protocol for each analyte (IL-1b, IL-8, TNFa,
CCL2, CCL5, G-CSF, GM-CSF, and MMP9) (R&D systems,

Minneapolis, MN, USA).
Statistical analysis

All experiments were performed in multiple, independent

biological replicates as noted in each figure. Data points from

independent experiments are presented along with means and

analyzed with GraphPad Prism 6.0 software (GraphPad Software,

San Diego, CA). Data were analyzed by 2-way ANOVA with

multiple comparisons. Differences were considered statistically

significant for p < 0.05.
Results

Palmitate-supplemented media promotes
GBS proliferation

Prior to beginning experiments, we assessed whether palmitate

affected GBS growth. After 24 hours, THB media supplemented with

palmitate resulted in greater proliferation of GBS (Figure 1A) as

estimated by spectrophotometry (OD600). To control for the potential

GBS dosing differences between palmitate and non-palmitate groups,

we assessed cytokine production at multiplicity of infections (MOIs)

of 1, 10, and 100. Our standard MOI is 10, thus the addition of

palmitate has the potential to increase this MOI. When we assayed

supernatants of DSCs, CTBs, and THP-1 macrophages infected with

different MOIs of GBS, we found no differences between the MOIs of

10 and 100 (Figures 1B–D), and thus have reason to believe that

differences in cytokine production in the presence or absence of

palmitate throughout the manuscript resulted from the presence of

palmitate and not to changes in GBS MOI.
Palmitate and GBS co-stimulation induces
greater cytokine response in DSCs, CTBs,
and macrophages than either
treatment individually

To determine the effect of palmitate and GBS dual stimulation

on the choriodecidua, we induced decidualization in DSCs as

described in methods. DSC monocultures were then infected with

GBS, treated with palmitate, neither, or both. In our initial cytokine

screen, we found that IL-1b (Figure 1E) and CCL2 (Supplementary

Figure S1A) were both induced by GBS infection and by palmitate

treatment, and the combination of palmitate and GBS synergized,

producing more than the simple summation of the IL-1b produced

by each stimulus alone. MMP9 (Figure 1F), CCL5, and GM-CSF

(Supplementary Figures S1B, C) were all induced by palmitate and
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GBS combined, but not by either stimulus alone, also consistent

with a synergistic interaction. G-CSF was induced by palmitate both

during GBS infection and when uninfected (Supplementary Figure

S1D). Neither palmitate nor GBS significantly induced IL-8 or

TNFa secretion, although there was a trend for increased

production in the presence of palmitate in both cytokines

(Supplementary Figures S1E, F).

When treated with PAM or LPS to assess the applicability of

these findings to other pathogens, we observed similar, if not more

dramatic, results in DSCs (Supplementary Figure S2). Palmitate

synergized with both PAM and LPS induced greater IL-1b, IL-8,
CCL5, G-CSF, and CCL2 secretion, while MMP9, GM-CSF, and

TNFa levels did not change significantly between treatments (there

were non-significant trends towards increases) (Supplementary

Figure S2).

Moving inwards to cell types of the chorion, we used the Jeg3

cell line of CTBs as a model of chorionic trophoblasts, to assess the

impact of palmitate and GBS dual stimulation on the cytokine

response in CTBs alone. Narrowing the field of proteins measured

to focus on MMP9 and IL-1b, we found that palmitate stimulation

alone did not induce IL-1b secretion as in the DSCs (Figure 2A), but
Frontiers in Immunology 05
GBS infection did induce IL-1b production both with and without

palmitate, and palmitate stimulation further increased GBS-

induced IL-1b production in CTBs (Figure 2A). Similar to the

DSCs, palmitate induced MMP9 production in the presence or

absence of infection (Figure 2B). Stimulation of CTBs with

palmitate and TLR ligands PAM or LPS synergistically induced

greater TNFa, MMP9, and GM-CSF production (Supplementary

Figure S3).

We modeled the macrophage response to GBS and palmitate

stimulation using the macrophage-like cell line THP-1

differentiated with PMA. Similar to both the DSCs and CTBs,

GBS and palmitate stimulation increased IL-1b cytokine production
significantly more than either stimulation alone (Figure 3A). MMP9

was induced by GBS stimulation with no significant increases in the

presence of palmitate (Figure 3B). Macrophage responses to the

combination of PAM or LPS varied depending on the analyte: while

GM-CSF was induced synergistically when co-stimulated with

PAM or LPS and palmitate, MMP9 and TNFa varied: PAM

treatment resulted in additive effects for TNFa while LPS did not,

and LPS resulted in additive effects for MMP9 while PAM did not

(Supplementary Figure S4).
A B

D

E F

C

FIGURE 1

Long chain saturated fatty acid palmitate induces Group B Streptococcus growth, synergizes with GBS infection to induce IL-1b and MMP9 from
human decidual stromal cells. (A) OD600 reading of GB112 grown for 24 hours in THB broth with and without added palmitate. IL-1b secretion
measured by ELISA from the uterine stromal cell line THESC decidualized over 7 days with estrogen, progesterone, and cAMP (referred to as DSCs)
(B), the CTB cell line HTR-8 (C), and the macrophage cell line THP.1 (D) infected with GBS for 24 hours at MOIs of 1, 10, and 100. (E) IL-1b and
(F) MMP9 secretion measured by ELISA from uninfected or GBS-infected DSCs with or without added palmitate for 24 hours. For all experiments in
Figure 1, N = 3 or more separate experiments with averaged independent replicates. *p < 0.05, **p < 0.01, ***p < 0.001 by Student’s T-test (A–D),
or 2-way ANOVA (E, F). ns, not significant; L.O.D., limit of detection.
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Palmitate and GBS co-stimulation
modulates cell-cell interactions

DSCs and CTBs can suppress macrophage cytokine production

(42, 50). To assess whether this happens in the context of IL-1b or

MMP9 in the presence of GBS and/or palmitate, we combined
Frontiers in Immunology 06
immune and structural cells (decidualized THESC cells (DSCs) or

CTBs (Jeg3 cell line)) with THP-1 macrophages at a ratio of 10

structural cells to 1 macrophage (10:1). We found that IL-1b was

still significantly induced by GBS and palmitate during co-culture

(Figures 4A, B), and not suppressed. However, neither co-culture

system appeared to augment IL-1b production over what

macrophages alone produced (Figure 3). When using primary

CTBs with primary placental macrophages instead of Jeg3 CTBs

and THP-1 macrophages, we found that palmitate and GBS also

induced IL-1b synergistically, but that the combination of CTBs

with primary placental macrophages was not synergistic

(Figure 4C). In the co-culture system, MMP9 was induced

significantly in DSC-macrophage co-culture only during GBS and

palmitate treatment together (Figure 4D). GBS and palmitate

together increased MMP9 expression over baseline in CTB-

macrophage co-culture (Figure 4E). In primary placental CTB

and macrophage co-cultures, MMP9 was not induced by any

treatment and in fact trends towards suppression with GBS and

palmitate treatment (Figure 4F).
Whole and separated human gestational
membrane punches exhibit a range of
responses to GBS and palmitate
co-stimulation

We next assessed the IL-1b and MMP9 responses to GBS and

palmitate in whole human gestational membrane biopsy specimens

obtained from term, nonlaboring c-sections. Interestingly, we found

that GBS induced IL-1b expression, but palmitate addition to GBS

did not synergistically induce IL-1b (Figure 5A). To tease apart this

finding, we matched the data from each untreated membrane punch

to its own corresponding palmitate-stimulated membrane punch (e.g.

punched from the same patient’s membranes) in both infected and

uninfected conditions. During uninfected conditions, there was very

little induction of IL-1b by palmitate, and palmitate-stimulated IL-1b
levels were on a spectrum ranging from suppression to induction

(Figure 5A). During GBS stimulation, there was a clear divide in

punches from the same membranes with and without palmitate:

roughly equal numbers of punches had their IL-1b induced as had IL-
1b suppressed by palmitate during GBS infection (Supplementary

Figure S5A). Organizing the data by maternal body-mass index

(BMI), fetal sex, age, or GBS colonization status was unable to

resolve the discrepancy (data not shown).

To resolve the discrepancy in IL-1b production from whole

membrane punch responses to GBS and palmitate compared to

isolated cell lines and co-cultures, we next separated amnion from

choriodecidua and repeated the experiment quantifying IL-1b from

culture supernatants (Figures 5B, C; Supplementary Figure S5C). In

the choriodecidua, GBS and palmitate synergized to induce IL-1b as

seen in the cell lines. Conversely, the amnion did not show significant

IL-1b induction under any condition and in fact, palmitate treatment

trended non-significantly towards suppression of IL-1b (Figure 5C).

MMP9 production was induced 5-fold with GBS stimulation

alone in whole membrane punches, which was significantly greater

than the 2.5-fold increase with GBS and palmitate together
A

B

FIGURE 3

LCFA palmitate synergizes with GBS to induce IL-1b secretion from
macrophages but not MMP9. (A) IL-1b and (B) MMP9 secretion
measured by ELISA from PMA-stimulated human monocyte cell line
THP-1 uninfected or GBS-infected with or without added palmitate
for 24 hours. N = 5 or more separate experiments with averaged
independent replicates. *p < 0.05 by 2-way ANOVA. ns,
not significant.
A

B

FIGURE 2

LCFA palmitate induces MMP9 secretion and synergizes with GBS to
induce IL-1b secretion from human cytotrophoblasts. (A) IL-1b and
(B) MMP9 secretion measured by ELISA from cytotrophoblast cell
line HTR8 uninfected or GBS-infected with or without added
palmitate for 24 hours. N = 3 or more separate experiments with
averaged independent replicates. **p < 0.01, ***p < 0.001, ****p <
0.0001 by 2-way ANOVA. ns, not significant.
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(Figure 5D). The response of paired samples showed a consistent

pattern of each patient’s MMP9 secreted from membrane punches

decreasing with palmitate addition (Supplementary Figure S5B).

We next assessed the contribution of the choriodecidua versus the
Frontiers in Immunology 07
amnion in this response and found that no conditions alone or

together induced MMP9 from either the choriodecidua or the

amnion (Figures 5E, F; Supplementary Figure S5D). This was

distinct from the results obtained with cell lines (Figures 1, 2).
A B

D E F

C

FIGURE 5

Whole and separated human extraplacental membrane punches have differential IL-1b and MMP9 responses to palmitate and GBS. (A–C) IL-1b and (D–F) MMP9
secretion from whole and separated human extraplacental membrane punches after 24 hours of culture with GBS and palmitate. (A, D) Whole membrane
punches show increase in IL-1b and MMP9 during GBS infection that is not tied to palmitate treatment. (B) GBS and palmitate synergize in the choriodecidua to
induce IL-1b, while there is no induction of MMP9 secretion (E) from any treatment. (C, F) Amnion punches do not induce IL-1b or MMP9 significantly under any
treatments. N = minimum of 3 separate experiments with averaged independent replicates. *p < 0.05, **p < 0.01, ***p < 0.001 by 2-way ANOVA.
A B

D E F

C

FIGURE 4

Palmitate and GBS synergize to induce IL-1b secretion from DSC-Mj and CTB-Mj co-cultures, while MMP9 secretion is more complicated. (A–C)
IL-1b and (D–F) MMP secreted protein by ELISA in co-cultures of cell line and primary structural and immune cells. (A, D) ELISA data of co-cultures
of DSCs with THP-1 Mj over 24hrs of palmitate treatment and GBS infection. (B, E) Co-cultures of HTR8 CTBs and THP-1 Mjs over 24hrs of
palmitate treatment and GBS infection. (C, F) primary placental CTBs co-cultured with primary placental Mj over 24hrs of palmitate treatment and
GBS infection. N = minimum of 4 separate experiments with averaged independent replicates. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 by
2-way ANOVA. ns, not significant.
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AECs are largely nonresponsive to
individual or co-treatment with GBS
or palmitate

We next determined the response of primary amnion epithelial

cells (AECs) obtained from human placenta to GBS and/or

palmitate. The AECs did not induce IL-1b over the limit of

detection in response to GBS or palmitate alone or in

combination (Figure 6A). However, there was a nonsignificant

trend towards suppressed MMP9 in all treatment groups relative

to controls, similar to the nonsignificant MMP9 trend seen in

primary CTB-Mj co-cultures (Figure 6B).
Addition of the unsaturated fatty acid
oleate blocks palmitate and GBS-
associated IL-1b induction

There are reports in the literature that unsaturated fatty acids can

alleviate palmitate-induced changes to inflammation (51). We thus
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added the unsaturated fatty acid oleate to DSC, CTB, and THP-1

macrophage cultures with and without GBS infection and palmitate

treatment andmeasured IL-1b secretion. We did not measure MMP9

with oleate due to the inconsistent induction in the presence of

palmitate across the cell lines used. In DSCs, palmitate and GBS still

synergistically induced IL-1b, oleate did not induce IL-1b, and the

addition of oleate to palmitate was sufficient to significantly suppress

palmitate-induced IL-1b secretion (Figure 7A). In CTBs, palmitate

and GBS synergistically induced IL-1b, while the addition of oleate

did not. The addition of oleate to palmitate during GBS infection was

unclear: oleate and palmitate during GBS infection did not differ

significantly from oleate and GBS stimulation or palmitate and GBS

stimulation, while oleate/GBS and palmitate/GBS did differ

significantly (Figure 7B). Finally, THP-1 macrophages stimulated

with palmitate and GBS synergistically induced IL-1b, while oleate

and GBS did not induce IL-1b, and, similarly to the DSCs, the

addition of oleate to palmitate during GBS infection suppressed IL-1b
production (Figure 7C).
Discussion

In this manuscript, we have shown in vitro and ex vivo that

distinct layers of the gestational membranes respond differently to

the saturated fat palmitate in the presence or absence of the

common vaginal commensal bacterium GBS. We demonstrate

that palmitate enhances GBS proliferation (Figure 1), which may

partially explain the increased complications due to GBS in people

with obesity during pregnancy, due simply to the increased

proliferation of GBS (52, 53). While independent layers in the

choriodecidua respond to GBS and palmitate stimulation with

synergy in cytokine and MMP induction, the amnion epithelium

does not contribute to this phenotype and is largely unaffected by

GBS and palmitate stimulation, both in isolated primary

amnion epithelial cells and in gestational membrane punch

biopsies, where the amnion has been separated from the

choriodecidua. This was not surprising, as the broad dampening

of inflammation by the amnion is well-established (54–56).

Furthermore, we have shown that macrophages (either cell line or

primary placental macrophages) co-cultured with structural cells of

the choriodecidua in the presence of palmitate and GBS are not

suppressed by the structural cells as can be seen in the absence of

palmitate in previous work (42, 50). Different patterns of analyte

induction in the presence or absence of GBS-palmitate synergy may

be due to signaling and transcription factors controlling the

particular analytes in a particular cell type; for instance, while IL-

1b is reliably induced synergistically from GBS and palmitate in

combination, MMP9 synergy is less reliable. IL-1b is controlled at

many levels and processed from a pro-form to an active form, while

MMP9 is largely controlled at the transcriptional level with the

association of coactivators distinct from IL-1b (57). Synergy

between palmitate and GBS stimulation likely depends entirely on

the signaling pathways to, and regulation of, each particular analyte.

Sensitization deriving from one stimulus then augmenting other

stimuli has been shown during pregnancy before (58–62), although
A

B

FIGURE 6

Primary human amnion epithelial cells (AECs) do not induce IL-1b or
MMP9 under any treatments. (A) IL-1b and (B) MMP9 secretion
measured by ELISA from uninfected or GBS-infected AECs with or
without added palmitate for 24 hours. For all experiments, N = 4 or
more separate experiments with averaged independent replicates.
ns, not significant 2-way ANOVA. L.O.D., limit of detection.
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this has largely been shown for the interplay between viral

stimulation or viral PAMPs and subsequent stimulation.

This synergistic production of cytokines and MMPs is not

specific to live GBS, as shown by the ability of a TLR4 agonist

(LPS) to induce synergy in cytokine expression when administered

with palmitate (Supplementary Figure S2). Because we observed

cytokine augmentation when palmitate was combined with live

GBS [a gram-positive bacterium) as well as a purified TLR4 agonist

(LPS, a gram-negative pathogen-associated molecular pattern

(PAMP)], this suggests broad applicability of our findings to

different bacterial species and strains, both gram positive and

gram negative. Further, it suggests that palmitate-induced

alterations to GBS proliferation and metabolism are not the

primary cause of increased inflammation in the gestational

membranes, since the synergistic inflammation occurs with

isolated PAMPs as well. We observed a relative inability of TLR2
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agonist PAM3CSK4 to induce cytokines or MMPs on its own or in

combination with palmitate when applied to DSCs. This lack of

stimulation was recapitulated in CTBs as well (Supplementary

Figure S3), with the exception of GM-CSF, where PAM3CSK4

was able to induce GM-CSF alone and synergize with palmitate.

However, PAM3CSK4 was able to induce several cytokines alone

(IL-1b, CCL5, GM-CSF), but not MMP9, and synergize with

palmitate in THP-1 macrophages similar to live GBS and purified

LPS (Supplementary Figure S4). Additional experimentation needs

to be carried out to address the discrepancy between TLR2

activation and palmitate synergy in structural cells versus

immune cells (such as macrophages) to determine the mechanism

(s) at play, such as specific pathway activation or suppression, or

receptor expression. Additional approaches could include using

Pam2Cys or lipoteichotic acid (LTA), which utilize a different

heterodimer of TLR2; while PAM3CSK4 utilizes a TLR1-TLR2
A B

C

FIGURE 7

Oleate ameliorates the synergistic induction of IL-1b from palmitate and GBS dual stimulation in DSC, CTB, and Mj cell lines. IL-1b secretion
measured by ELISA from (A) DSC, (B) CTB, and (C) THP-1 Mj when infected with GBS and treated with palmitate and/or oleate. N = minimum of 4
separate experiments with averaged independent replicates. *p < 0.05, ***p < 0.001, ****p < 0.0001 by 2-way ANOVA. ns, not significant.
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heterodimer, LTA and Pam2Cys utilize a TLR2-TLR6 heterodimer.

The discrepancy between PAM3CSK4 and GBS-induced activation

of cytokine and MMP may have to do with the activation of the

TLR1/2 versus TLR2/6 heterodimers (63).

There are many varied fatty acids in the bloodstream, and one

limitation of this study is the use of palmitate in isolation, or in

combination with a single unsaturated fatty acid (oleate), instead of

looking at the effects of a cocktail of saturated and unsaturated fatty

acids in varying proportions on the cell types found within the

gestational membrane. We acknowledge this shortcoming as a

necessary oversimplification for the purposes of in vitro

experimentation. Palmitate was chosen as it is the most abundant

saturated fatty acid in circulation during obesity and can be the

dominant circulating fatty acid. Furthermore, it is the most

common saturated fatty acid used for in vitro experiments of

obesity in the literature, and as such there is a large body of

knowledge surrounding its mechanisms, making it an ideal

candidate to study our models presented here in a reductionist

manner. Continuing this line of inquiry using distinct mixtures of

fatty acids, and the use of our previously-published metabolic

cocktail (glucose, insulin, palmitate) (64) will more accurately

reflect the milieu seen in vivo. However, defining basic patterns of

synergy between infectious stimuli and a fatty acid using a

reductionist approach gives us a base from which to determine

the relative contributions of different fatty acids and sugars to the

inflammatory state of the gestational membranes. The mechanism

behind palmitate-induced inflammation remains unclear. There is

much discrepancy in published work as to whether palmitate can

signal through TLR4 (65–71) or not (72). As such, the mechanism

behind synergy of GBS and palmitate is also unclear, but it is likely

that palmitate stimulates a pathway or receptor independent of

TLR4 signaling because palmitate treatment augments the

inflammatory response to TLR4 agonists in macrophages, CTBs,

and LPS (Supplementary Figures S2-S4). This includes the

induction of: IL-1b, IL-8, CCL2, CCL5, and G-CSF in DSCs;

TNFa, MMP9, and GM-CSF in CTBs; and MMP9 and GM-CSF

in macrophages.

The condition of “diabesity”, a combination of type-2 diabetes

and obesity, may more accurately reflect the reality of which

pregnant individuals experience a greater rate of pregnancy

complications than BMI alone. The inability of BMI to assess

body fat distribution (abdominal versus distributed) or muscle

mass adds heterogeneity into the system. Additionally, metabolic

syndrome, a classification that encompasses the risk of developing

type-2 diabetes and cardiovascular disease, can be found in

individuals with any BMI (73). Access to patient electronic

medical records containing bloodwork results such as circulating

hemoglobin A1C or lipids, or a waist-to-hip ratio, could more

accurately stratify our human gestational membrane punch data to

reveal patterns that maternal BMI does not.

We expected to see an increase in inflammatory mediators

upon co-stimulation of whole human gestational membrane

punches with palmitate and GBS. However, for the analytes we

selected for these experiments, we were unable to find consistent

patterns or statistical significance between treatments. We had 11
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patients and 24 membrane punches for each patient allowing for

biological and technical replicates for each patient. As shown in

Supplementary Table 1, the BMI of most patients was between the

overweight and morbidly obese categories by BMI. However, 1)

there was not a direct relationship between BMI and magnitude of

cytokine induction (data not shown), and 2) palmitate and GBS

did synergize in IL-1b production from the membrane punches of

roughly half the patients, while the other half of patients’

membrane punches showed no synergy or decreased production

upon palmitate stimulation. We were similarly unable to show a

direct correlation between BMI and these cytokine induction

patterns. Sorting by fetal sex, maternal GBS status, ethnicity, or

gestational age also did not uncover any correlation between

magnitude or direction of cytokine induction. It is very possible

that with a larger N value of patient samples, the impact of

particular patient variables could be observed. Recent studies

have found that male placentas from pregnancies of obese

people had significantly increased levels of fetal placental

macrophages, which could easi ly have an impact on

inflammatory responses in the gestational membranes (74). The

gestational membrane punch biopsies we used, even when

separated, likely contained up to 13% immune cells (75). And

fetal sex also has an impact on how many and what kind of

circulating maternal fatty acids accumulate in the placenta (32,

33), which could add another confounder to data from human

gestational membranes: the impact of increased saturated fatty

acids (already pro-inflammatory) and unsaturated fatty acids

(which may be anti-inflammatory) already present in the

membrane punches.

Additionally, a better understanding of the metabolic conditions

that drive the molecular underpinnings of infection and inflammation

during pregnancy can inform immunological interventions to

ameliorate the risk of adverse perinatal outcomes. IL-1b is a

tantalizing target because this molecule has been implicated as an

important biomarker associated with chorioamnionitis, PPROM, and

preterm labor (21). IL-1b is a pro-inflammatory cytokine that perturbs

maternal-fetal tolerance (76). Our work demonstrates that palmitate

and GBS infection promote IL-1b production, underscoring the role

both metabolic dysfunction and infection could play in pregnancy

homeostasis. There is an association between absolute levels of IL-1b
and pregnancy complications: as levels of IL-1b increase, the likelihood
of preterm deliveries increases (77). Accordingly, there is likely

biological relevance for the synergy of GBS and palmitate: it is not

just presence or absence of IL-1b that can result in pregnancy

complications, but the greater the IL-1b levels, the greater the

likelihood of pregnancy complications, and thus the combination of

palmitate and GBS inducing more IL-1b in than either one alone

would predispose pregnant people with both stimuli to a greater

likelihood of pregnancy complications.
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SUPPLEMENTARY FIGURE 1

Cytokine induction by GBS, palmitate, or both in DSCs infected with GBS and/
or treated with palmitate. ELISA analysis of secreted cytokines from DSCs. (A)
CCL2, (B), CCL5, (C)GM-CSF, (D)G-CSF, (E) IL-8, and (F) TNFa each followed
different patterns of induction by 24 hour infection and/or treatment with

GBS and/or palmitate. N =minimum of 3 separate experiments with averaged

independent replicates. *p < 0.05, **p < 0.01, ****p < 0.0001 by 2-way
ANOVA. ns, not significant.

SUPPLEMENTARY FIGURE 2

Secreted inflammatory protein induction by TLR2 and 4 agonists in
conjunction with palmitate in DSCs. (A) IL-1b, (B) MMP9, (C) IL-8, (D) CCL2,
(E) CCL5, (F) GM-CSF, (G) G-CSF, (H) TNFa each follow different patterns of

induction by 24hr stimulation with TLR2 and 4 ligands PAM3CSK4 (PAM) and
LPS, respectively. N = minimum of 3 separate experiments with averaged

independent replicates. *p < 0.05, **p < 0.01, ****p < 0.0001 by 2-way
ANOVA. ns, not significant.

SUPPLEMENTARY FIGURE 3

Secreted inflammatory protein induction by TLR2 (PAM) and 4 (LPS) agonists

in conjunction with palmitate in CTBs. (A) TNFa, (B) MMP9, and (C) GM-CSF.
N = minimum of 3 separate experiments with averaged independent

replicates. *p < 0.05, **p < 0.01, ****p < 0.0001 by 2-way ANOVA. ns,
not significant.

SUPPLEMENTARY FIGURE 4

Secreted inflammatory protein induction by TLR2 (PAM) and 4 (LPS) agonists

in conjunction with palmitate in THP-1 macrophages. (A) TNFa, (B) MMP9,
and (C) GM-CSF. N = minimum of 3 separate experiments with averaged

independent replicates. *p < 0.05, **p < 0.01, ****p < 0.0001 by 2-way
ANOVA. ns, not significant.

SUPPLEMENTARY FIGURE 5

Matched sample and side-by-side comparison of IL-1b and MMP9 secretion

from membrane punches from human extraplacental membrane.(A) IL-1b
and (B) MMP9 ELISAs of 24hr supernatants from individual patient’s

membrane punches matched with line between treatments with GBS and
palmitate. (C) IL-1b and (D) MMP9 ELISA of CHD and AMN for side-by-side

comparison of protein secretion between adjacent extraplacental membrane
layers. (A, B) N = 11 independent experiments with averaged independent

replicates; (C, D) N = 5 independent experiments with averaged independent
replicates. * p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 by 2-way

ANOVA. ns, not significant.
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