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Introduction: Recently, the use of botanicals as an alternative to coccidiostats

has been an appealing approach for controlling coccidiosis. Therefore, this study

was conducted to evaluate the potential role of aqueous methanolic extract (200

mg/kg) of Krameria lappacea (roots) (KLRE) against infection induced by

Eimeria papillata.

Methods: A total of 25 male C57BL/6 mice were divided into five groups (I, II, III,

IV, and V). On 1st day of the experiment, all groups except groups I (control) and II

(non-infected-treated group with KLRE), were inoculated orally with 103

sporulated E. papillata oocysts. On the day of infection, group IV was treated

with KLRE. Group V served as an infected-treated group and was treated with

amprolium (coccidiostat).

Results: Treatment with extract and coccidiostat was continued for five

consecutive days. While not reaching the efficacy level of the reference drug

(amprolium), KLRE exhibited notable anticoccidial activity as assessed by key

criteria, including oocyst suppression rate, total parasitic stages, and

maintenance of nutrient homeostasis. The presence of phenolic and flavonoid

compounds in KLRE is thought to be responsible for its positive effects. The

Eimeria infection increased the oxidative damage in the jejunum. KLRE treatment

significantly increased the activity of catalase and superoxide dismutase. On the

contrary, KLRE decreased the level of malondialdehyde and nitric oxide.

Moreover, KLRE treatment decreased macrophage infiltration in the mice

jejunal tissue, as well as the extent of CD4 T cells and NFkB. E. papillata caused

a state of systemic inflammatory response as revealed by the upregulation of

inducible nitric oxide synthase (iNOs)-mRNA. Upon treatment with KLRE, the

activity of iNOs was reduced from 3.63 to 1.46 fold. Moreover, KLRE was able to

downregulate the expression of pro-inflammatory cytokines interferon-g,
nuclear factor kappa B, and interleukin-10 -mRNA by 1.63, 1.64, and 1.38 fold,

respectively. Moreover, KLRE showed a significant reduction in the expression of

IL-10 protein level from 104.27 ± 8.41 pg/ml to 62.18 ± 3.63 pg/ml.
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Conclusion: Collectively, K. lappacea is a promising herbal medicine that could

ameliorate the oxidative stress and inflammation of jejunum, induced by E.

papillata infection in mice.
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Introduction

The host immune response to the parasitic species is complex.

Cell-mediated immunity driven by T lymphocytes, macrophages,

and other effector cells plays a major role in host protection against

coccidiosis (1). Upon activation by invading the coccidian Eimeria

parasite, CD4 T cells can differentiate into various types of helper T

cells that are responsible for regulating host immune responses by

secreting cytokines and proinflammatory molecules (2). Eimeria

species are highly species and site-specific within the host. Eimeria

papillata is a significant cause of murine intestinal disease

“coccidiosis” in mice jejunum. E. papillata is an intracellular

obligate protozoan parasite having a complex life cycle of 5 days,

comprising two developmental stages of exogenous (involving

sporogony) and endogenous (involving schizogony and

gametogony) within the host. Massive colonization of coccidia

causes significant epithelial damage (3). The host may

consequently suffer from diarrhea, malabsorption, inadequate

weight gain, and overall poor performance (4). Also, coccidiosis

leads to immune dysfunction and increases susceptibility to

secondary bacterial infections, as it disrupts the balance of

intestinal microflora (5).

Effective management of coccidiosis relies on vaccination and

the use of chemoprophylaxis. However, the widespread and

excessive use of synthetic coccidiostats has led to the

development of drug resistance among various parasites (5–10).

Consequently, alternative strategies for coccidiosis control have

rapidly emerged and developed in response to these challenges.

These strategies include the use of live anticoccidial vaccines,

immunomodulators, prebiotics, and natural herbs (11). The

utilization of various plants and their constituent parts for the

control and treatment of E. papillata infection in mice has been

documented. These plants have demonstrated therapeutic effects

against coccidiosis, reducing mortality rate, oocyst numbers, and

diarrhea, while also improving lesion scoring and production

performance (12).

Krameria lappacea, commonly known as rhatany, belongs to

the Krameriaceae family. It is renowned for its health-promoting

characteristics attributed to its abundance in tannins, lignan

derivatives, oligomeric proanthocyanidins, and benzofuran

derivatives. Earlier investigators have confirmed their role as

antioxidant (13), photoprotective (13), anti-inflammatory (14),
02
antidiabetic (15), vasoprotective (16), anticancer (17, 18), and

antimicrobial (19–22) activities. Moreover, its constituents are

employed to alleviate diverse illnesses, among these, infections of

the respiratory airways and gastrointestinal disorders (23).

Due to all the previously mentioned properties, this study was

designed to investigate the anticoccidial and the antioxidant activity

of Krameria lappacea roots extract (KLRE), as well as its role in the

modulation of the expression of the inflammatory cytokines’

mRNA in the male C57BL/6 mice jejunum infected with the

protozoan, Eimeria papillata.
Materials and methods

Methanolic extract preparation

The roots of Krameria lappacea, also known as rhatany, were

obtained from a local market in Riyadh, Saudi Arabia A taxonomist

from the Herbarium, College of Science (King Saud University),

certified the plant identity with voucher number KSU-22958. The

method outlined by Manikandan et al. (24) was employed to create

a 70% methanolic extract from the roots of K. lappacea, referred to

as KLRE. The crude extract was lyophilized and kept at -20°C.
Total phenolics and flavonoids in KLRE

The total phenolic content of KLRE was measured using the

Folin-Ciocalteu procedure, as reported by Abdel Moneim (25).

Also, the total flavonoid content of KLRE was estimated using the

aluminum chloride colorimetric method published by Abdel

Moneim (25). Absorbance was measured with the Spectra MAX

190 (SoftMax® Pro v.6.3.1). The values for phenolics and flavonoids

are expressed as mg gallic acid/gram and mg quercetin/

gram, respectively.
The radical scavenging activity of 2,2-
diphenyl-1-picrylhydrazyl

KLRE was found to be active in scavenging DPPH radicals.

Initially, a fresh 0.08 mM DPPH radical solution was prepared in
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methanol. Then, 950 ml of the solution was combined with 50 ml of

KLRE and incubated at 25°C for 5 minutes in the dark. The

absorbance was measured at 515 nm using the Spectra MAX 190

(SoftMax® Pro v.6.3.1). Akillioglu and Karakaya (26) measure

antioxidant activity as the percentage reduction of DPPH radicals.
Parasite passage

E. papillata was used as a model coccidian murine parasite. To

propagate oocysts, five laboratory mice (Mus musculus) were

infected with 103 sporulated oocysts through oral gavage. Feces

were collected at 5 days post-infection (p.i.), and oocysts were

isolated using the floatation technique (27). Part of these oocysts

could sporulate in 2.5% (w/v) potassium dichromate (K2Cr2O7) for

three days before being washed in a phosphate buffer solution

(Sigma Aldrich, Taufkirchen, Germany) and used in the in

vivo study.
In vivo infection and experimental design

The animal facility of King Saud University (Riyadh, Saudi

Arabia) provided twenty-five male C57BL/6 mice (10-12 weeks old,

weighing 20-25 g). All mice were bred under pathogen-free

conditions and allowed food and water ad libitum. Animals were

housed in plastic cages under temperature-controlled conditions

with a 12-hour light/dark cycle. Animals had been acclimated for

one week before the start of the experiment. Mice were divided into

five groups of five mice per group, as follows: G-I, Non-infected,

non-treated (negative control), G-II, Non-infected, treated group

with 200 mg/kg KLRE (28), G-III, Infected, non-treated (positive

control), G-IV, Infected and treated group with 200 mg/kg KLRE

(28), and G-V: Infected and treated group with 120 mg/kg

Amprolium (29) for 5 days. All groups (except 1 and 2) were

orally infected with 103 sporulated E. papillata oocysts in 100 µl

physiological saline (30).
Oocyst suppression

On day 5 p.i., fresh fecal pellets were collected from infected

untreated and treated groups. The suppression of oocyst shedding

was estimated using the formula of 100 - (oocysts output in the

treated group/oocysts output in the infected group) × 100.
Collection of jejunal samples

Mice were killed by CO2 asphyxiation on the 5th day p.i., and

mice’s jejuna were isolated and cut into small pieces for the

following: (a) Neutral buffered formalin was utilized for

histological analysis. (b) In small tubes maintained at -80°C to

investigate the oxidative status and protein expression (c) RNA

later® (Invitrogen, Carlsbad, CA) was utilized for molecular

analysis and kept at -80°C.
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Histological examination and
parasitic score

The jejuna were fixed in 10% neutral buffered formalin (NBF)

for 24 hr, dehydrated, and embedded in paraffin wax, and then cut

into 5 µm thick sections as per Adam and Caihak (31) method.

Sections of jejuna were stained with hematoxylin-eosin (H&E) to

detect parasite stages in both infected and infected-treated groups.

The slides were examined and photographed using an Olympus

B×61 microscope (Tokyo, Japan), and parasitic stages were counted

on ten well-oriented villous-crypt units (VCU).
Histochemical examination

Other jejunal sections were stained using Hotchkiss (32)

periodic acid-Schiff’s procedure for total carbohydrates and Mazia

et al. (33) mercuric bromophenol blue method for total proteins.

The slides were photographed using an Olympus B×61 microscope

(Tokyo, Japan).
Immunohistochemistry detection of CD4

Sections (5µm thick) were picked onto Superfrost® glass slides

(Thermo Scientific) and air-dried. Sections were deparaffinized

using xylene and rehydrated through a serial grade of ethanol.

Antigen retrieval was accomplished by steaming the slides in

phosphate-buffered saline (PBS/pH=7.4) at various temperatures.

To reduce non-specific background staining caused by endogenous

peroxidase, H2O2 (3%) methanol solution was used. For

immunostaining, the horseradish peroxidase amplified system,

CD4 and NF-kB (nuclear factor kappa B) antibodies were used

(Thermo Fisher Science, Waltham, MA, USA). Three components

were used in this system: the primary antibody specific for the

antigen to be localized, the secondary antibody capable of binding

both primary antibodies and the horseradish peroxidase enzyme.

Finally, the substrate/chromogen reagent diaminobenzidine (DAB)

was used for reaction visualization. The number of immuno-

histochemical-positive cells was presented as the mean number of

brown cells per ten well-oriented villous-crypt units (VCU) and

identified using an Olympus B×61 microscope (Tokyo, Japan).
Biochemical analysis

To get 10% (w/v) jejunal homogenate, parts of jejunum were

weighed, homogenized in an ice-cold medium with 50 mM Tris-HCl

and 300 mM sucrose, and centrifuged for 10 min at 500×g at 4°C. The

homogenate was then stored at -20°C until use (34). Oxidative stress

markers were detected in the supernatant of jejunal homogenate. The

appropriate chemical kits (Bio-Diagnostic kits, Bio-Diagnostic Co.,

Egypt) were used to determine Catalase (CAT), Nitric Oxide (NO),

Malondialdehyde (MDA), and Superoxide Dismutase (SOD).

Absorbance was measured with Spectra MAX 190 supported by

software SoftMax® Pro v.6.3.1.
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RNA extraction and qRT-PCR

Total RNA was extracted from jejunal tissues using Trizol

(Invitrogen, USA). RNA samples were processed with DNase

(Applied Biosystems, Darmstadt, Germany) for at least 1 hour

before being transformed into cDNA according to the

manufacturer’s instructions using a reverse transcription kit

(Qiagen, Hilden, Germany). qRT-PCR was carried out using an

ABI Prism 7500HT sequence detection system (Applied

Biosystems, Darmstadt, Germany) with Qiagen’s SYBR green

PCR master mix (Hilden, Germany). The mRNA genes for

interferon- g (IFN- g), inducible nitric oxide synthase (iNOs),

interleukin-10 (IL-10), NF-kB, as well as beta-actin (b-actin) as a
housekeeping control were studied using SYBR green (Hilden,

Germany). All primer assays for qRT-PCR were obtained from

Qiagen (Hildan, Germany). Real-time qPCR amplification and

analysis were carried out using the Bio-Rad IMark Microplate

Reader SW 1.04.02.E. The Ct method (2−DDCT) described by Livak

and Schmittgen (35) was used to analyze differences in

gene expression.
Sandwich enzyme-linked immunosorbent
assay for IL-10

Using a mouse IL-10 ELISA kit (IOK-05-P361, Creative Biolabs,

USA) and following the protocol instructions, optical densities

(OD) of outcomes from the jejunal samples were measured using

the Bio-Rad IMark Microplate Reader SW 1.04.02.E. Based on a

standard curve, OD values were converted to concentrations and

presented as pg/ml.
Statistical analysis

Values were presented as mean ± standard deviation (SD). A

one-way analysis of variance (ANOVA) with Duncan’s test was

performed to compare the group means, with p-value ≤ 0.05

indicating statistical significance. SPSS version 18 for Windows

(SPSS Inc., Chicago, Illinois, USA) was used for the analysis.
Results

Using the Folin–Ciocalteu technique, KLRE had a total phenolic

content of 214.30 ± 5.19 mg gallic acid/gram dry weight (Figure 1).

Furthermore, the total flavonoid in KLRE measured using the

aluminum chloride colorimetric method was 47.40 ± 3.20 mg

quercetin/gram dry weight (Figure 1). KLRE’s antioxidant activity

was measured using the 2,2-diphenyl-1-picrylhydrazyl (DPPH)

method to measure free radical scavenging activity. Table 1

showed that KLRE had maximum DPPH (90.69%) at 250 µg/ml,

while the lowest scavenging percentage (13.20%) occurred at 15.625

mg/ml.

Experimental E. papillata infection in infected and infected-

treated mice groups was established as showed oocyst discharge in
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fecal pellets with a maximal level on the 5th day of infection. After

treatment with KLRE, the output of Eimeria oocysts was inhibited

by 75.71%, which was higher than the reference drug (65.65%)

(Figure 2). Light microscopic examinations of hematoxylin/eosin

stained sections indicated the presence of developmental Eimeria

stages in the epithelial cells of the jejunal mouse tissue (Figure 3).

KLRE treatment significantly reduced the total number of

intracellular murine Eimeria stages, from 83.75 ± 19.36 stages/10

VCU in the infected group to 15.43 ± 4.07 stages/10 VCU in mice

infected with E. papillata and treated with KLRE, and 19.73 ± 6.51

stages/10 VCU in mice treated with amprolium (Figure 4).

Infection with E. papillata significantly altered the nutritional

contents of the jejunal tissues. This was evidenced by the decrease in

total carbohydrate content in the jejunal tissue for the infected

group compared to the control one (Figure 5). KLRE treatment

resulted in a significant change in carbohydrates compared to the

infected group. Furthermore, E. papillata infection reduced jejunal

protein content in contrast to the control group (Figure 6). KLRE

treatment restored jejunal proteins to levels comparable to the

infected group.
FIGURE 1

Concentration of phenolics (mg) and flavonoids (mg) in KLRE.
TABLE 1 DPPH radical scavenging activity (%) of roots extract for
Krameria lappacea (KLRE).

Concentrations
(µg/mL)

DPPH Radical Scavenging
Activity (%)

15.625 13.20 ± 0.90

31.250 52.93 ± 0.78

63.500 73.30 ± 0.67

125.00 85.39 ± 0.49

250.00 90.69 ± 0.35

500.00 87.25 ± 0.69
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CAT levels declined significantly from 8.40 ± 1.23 U/g in the

non-infected group to 3.45 ± 0.78 U/g in the infected group. Mice

treated with KLRE had higher levels of CAT (6.82 ± 0.66 U/g)

compared to mice treated with the reference drug (6.44 ± 0.50 U/g)

(Figure 7). Concerning NO production, E. papillata infection

significantly increased jejunal NO, a free radical, to 26.99 ± 3.02

µmol/L compared to 17.13 ± 1.84 µmol/L in the control group. This

marker contributes to the termination of lipid peroxidation

reactions. Treatment with KLRE and amprolium resulted in

considerable reductions in NO levels to 19.36 ± 2.29 and 19.59 ±

0.62 µmol/L, respectively (Figure 7). The infected group had a

significantly higher level of malondialdehyde (MDA), a byproduct

of polyunsaturated fatty acids peroxidation, compared to the non-

infected group (269.71 ± 26.66 nmol/g vs. 485.62 ± 44.63 nmol/g).

Mice treated with KLRE and amprolium significant decreases in

MDA levels to 331.36 ± 36.93 and 323.03 ± 33.74 nmol/g,

respectively (Figure 7). Furthermore, the activity of SOD reduced

significantly from 7.05 ± 0.46 U/gm in the non-infected group to

4.03 ± 0.39 U/gm in the infected group. Mice treated with KLRE
B

C

D E

A

FIGURE 3

Sections stained with hematoxylin and eosin (H&E) for the infected jejunum with Eimeria papillata on day 5 p.i. showing different developmental
stages. (A, B) Infected jejunum with different Eimeria stages. (C) Macrogamonts. (D) Microgamonts. (E) Developing oocysts. Note: ME, meronts; MA,
macrogamont; MI, macrogamont; DO, developing oocyst. Scale bar = 10 µm.
FIGURE 2

Suppression of E. papillata oocysts in infected and infected-treated
mice. Significance At p ≤ 0.05 against the infected group (*).
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and amprolium showed significantly higher levels of SOD (5.91 ±

0.24 and 5.60 ± 0.56 U/gm, respectively) (Figure 7).

Jejunal sections from experimental groups were stained for CD4

expression, which is thought to play an important role in the

management of primary E. papillata infections (Figure 8).
Frontiers in Immunology 06
The Eimeria infection increased infiltration of positive

immunohistochemical staining CD4 T cells into the infected mice

jejunum, with the infected group having 233.33 ± 20.81 cells/10

VCUmore positive cells than the control group, which had 113.33 ±

15.27 cells/10 VCU (Figure 9). CD4 T lymphocytes in murine

coccidiosis may produce soluble cytokines such as IFN-g and IL-10.

Treatment resulted in a significantly lower CD4 expression

(156.66 ± 5.77 cells/10 VCU) in the infected-treated KLRE group

and (133.33 ± 15.27 cells/10 VCU) in the infected-treated

amprolium group compared to the infected group (Figures 8, 9).

Moreover, jejunal sections were stained for NF-KB expression

which play an important role in the inflammation and immune

response caused by Eimeria infection (Figures 10, 11). It showed

that the Eimeria infection induced an elevation of the NF-KB

expression level with a number of positive cells reached 193.31 ±

15.02 in the infected group compared to the normal status in the

control group 96.63 ± 15.20 (Figure 11). Upon treatment, the

expression of NF-KB significantly changed in contrast to the

infected group to be 136.54 ± 13.22 in the infected-treated KLRE

group and 143.65 ± 11.17 in the infected-treated AMP group

(Figures 10, 11).

Eimeria infection increases mRNA expression of the IFN-g gene
in the jejunal tissue by around 3.81-fold compared to the control

group (Figure 12). KLRE treatment significantly reduced IFN-g gene
expression by 1.63 fold, surpassing the reference drug’s 1.56 fold

(Figure 12). Moreover, qRT-PCR demonstrated that E. papillata

infection caused an increase in the mRNA expression level of the
B C

D E

A

FIGURE 5

Carbohydrate content in jejunum sections stained with periodic acid Schiff’s (PAS) method. (A) control non-infected jejunum with normal content.
(B) non-infected-treated group with 200 mg/kg KLRE. (C) E. papillata infected jejunum with depletion in their carbohydrate content. (D, E) infected
treated mice (200 mg/kg KLRE and 120 mg/kg AMP, respectively) with improvement in their level. Scale bar = 100µm.
FIGURE 4

Treatment with 200 mg/kg KLRE and 120 mg/kg AMP induced
changes in the total number of parasitic stages of Eimeria papillata
in jejunum tissue per 10 VCU on day 5 p.i. All values are means ±
SD. * significance (P ≤ 0.05) between the infected group and
treated group.
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iNOs gene in the mice jejunum (Figure 13). Spontaneous enhanced

nitric oxide (NO) production is linked to abnormal iNOs expression

during Eimeria infection. After treatment with KLRE, iNOs gene

expression was drastically reduced from 3.63 to 1.46

fold (Figure 13).

The upregulation in the mRNA expression of the NFkB gene

was observed after the E. papillata infection. This elevation in

mRNA expression of this gene was about 3.59 fold when

compared with the control group (1.00 fold) (Figure 14). NFkB

promotes T helper 1 cell differentiation by regulating toll-cell

receptor (TCR) signaling as well as functioning in innate immune

cells to mediate induction of cytokines. Upon treatment with KLRE,

a significant downregulation to about 1.64 fold was observed for the

expression of the NFkB gene which is quite similar to the reference

drug (1.69 fold) (Figure 14).

qRT-PCR was performed to assess changes in mRNA

expression levels for inflammatory cytokines in the mice jejunum

(Figure 15). E. papillata infection causes an increase in the mRNA

expression of the IL-10 gene after the immune activation of

lymphocytes and macrophages. This gene’s mRNA expression

increased by approximately 3.46-fold when compared to the
Frontiers in Immunology 07
control group (Figure 15). IL-10 is a major anti-inflammatory

mediator that protects mice against overactive reactions to E.

papillata. Treatment with KLRE resulted in a significant

downregulation of this gene’s expression by around 1.38 fold,

which is similar to the reference drug (1.36 fold) (Figure 15).

Moreover, analysis of IL-10 protein expression in the mice

jejunum by ELISA revealed an increase in IL-10 production after

infection with E. papillata reaching 104.27 ± 8.41 pg/ml, whereas

KLRE treatment had significantly decreased IL-10 protein level

(62.18 ± 3.63 pg/ml) at the 5th-day p.i. compared to the infected

group (Figure 15).
Discussion

Coccidiosis is typically treated with synthetic anticoccidial

drugs; however, this strategy is under threat from the

development of resistance in Eimeria strains (36). Different

alternatives and techniques were successfully employed worldwide

to treat and control diverse animal species (37). Among these

options, numerous compounds derived from natural medicinal
B C

D E

A

FIGURE 6

Protein content in jejunum sections stained with mercuric bromophenol blue method. (A) control non-infected jejunum with normal content.
(B) non-infected-treated group with 200 mg/kg KLRE. (C) E. papillata infected jejunum with depletion in their protein content. (D, C) infected treated
mice (200 mg/kg KLRE and 120 mg/kg AMP, respectively) with improvement in their level. Scale bar = 100µm.
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FIGURE 7

Effect of KLRE on the level of catalase, nitric oxide, malondialdehyde, and superoxide dismutase in mice infected with Eimeria papillata. * significant
change concerning the control group, # significance change concerning the infected group.
B C

D E

A

FIGURE 8

Immunohistochemical localization of CD4 in the jejuna of mice. (A) control non-infected jejunum. (B) non-infected-treated group with 200 mg/kg
KLRE. (C) E. papillata infected jejunum with an increased number of CD4-positive cells. (D, E) infected treated mouse (200 mg/kg KLRE and 120 mg/
kg AMP, respectively) with a decreased number of CD4-positive cells. Scale bar = 50µm.
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plants or natural health alternatives have been shown to have

therapeutic effects that not only target the parasite but also

preserve the host’s organs (38). This study sought to assess the

ant i cocc id ia l and ant iox idant proper t i es as wel l a s

immunomodulation of K. lappacea roots against Eimeria

infection. Previous studies reported the effective role of other root

extracts like Cassia sieberiana (39), Beta vulgaris (40), Salvadora

persica (41), and Glycyrrhiza glabra (42).
In addition to having a diminishing effect on the intracellular

stages of the Eimeria parasite in the mice jejunum, the KLRE was an

effective agent in mitigating infection, reducing oocyst shedding rate

by approximately 75.71% on the 5th-day p.i. The majority of

anticoccidial drugs have been shown to suppress Eimeria

infection. K. lappacea derives its anticoccidial activity from many

pharmacological compounds including antioxidants and phenolic

compounds in its roots, which is consistent with Baumgartner et al.

(14) Al-Oqail (18), and Alamari et al. (43). These compounds have a

strong antimicrobial effect by disrupting the cell membrane of

microbial pathogens leading to impaired membrane functions and

leakage of cellular constituents and finally to cell death (19–22, 44).
FIGURE 9

Positive CD4 T cells number in mice infected with Eimeria papillata
and for infected treated groups with 200 mg/kg KLRE and 120 mg/
kg AMP. * significant change concerning the control group, #

significance change concerning the infected group.
B C

D E

A

FIGURE 10

Immunohistochemical localization of NF-KB in the jejuna of mice. (A) control non-infected jejunum. (B) non-infected-treated group with 200 mg/kg
KLRE. (C) E. papillata infected jejunum with an increased number of NF-KB-positive cells. (D, E) infected treated mouse (200 mg/kg KLRE and 120
mg/kg AMP, respectively) with a decreased number of NF-KB positive cells. Scale bar = 50µm.
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Most anticoccidial drugs have been shown to impede and inhibit the

intracellular development of Eimeria stages in the intestinal tract,

which is consistent with our findings.

The primary mechanism affected by Eimeria infection is host

cell metabolism, and the parasite is very capable of manipulating

host cells to its benefit by scavenging available host nutrients (45).

Our data revealed that both carbohydrate and protein levels have

been altered in the mice jejuna. Metwaly et al. (46) suggest that the

lowered carbohydrate levels are due to the Eimeria stages’ excessive

consumption of the stored carbohydrate content in the epithelial

cells of mice jejuna. Regarding the bioactive components of KLRE,
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which disrupts the parasite’s ability to feed by lowering the

enzymatic activity of glucose-6-phosphatase and thus plays an

important role in the homeostatic regulation of tissue glycogen

level, KLRE restored jejunal carbohydrate content. According to Al-

Quraishy et al. (47), protein-losing enteropathy is characterized by

the shedding of high amounts of proteins in the mice jejuna because

of Eimeria infection. According to Bangoura and Daugschies (48),

the amount of proteins in infected jejunal tissues is reduced, which

is related to a higher rate of protein escaping into the intestinal
FIGURE 11

Positive NFkB cells number in mice infected with Eimeria papillata
and for infected treated groups with 200 mg/kg KLRE and 120 mg/
kg AMP. * significant change concerning the control group, #

significance change concerning the infected group.
FIGURE 12

Effect of KLRE on the mRNA expression of IFN- g in the jejunal
samples from E. papillata-infected mice. The expression values
obtained by RT-PCR analysis were normalized to the reference gene
B-actin mRNA level and are shown as fold induction (in log 2 scale)
relative to the mRNA level in the control. * significant change
concerning the control group, # significance change concerning the
infected group.
FIGURE 13

Effect of KLRE on the mRNA expression of iNOs in the jejunal
samples from E. papillata-infected mice. The expression values
obtained by RT-PCR analysis were normalized to the reference gene
B-actin mRNA level and are shown as fold induction (in log 2 scale)
relative to the mRNA level in the control. * significant change
concerning the control group, # significance change concerning the
infected group.
FIGURE 14

Effect of KLRE on the mRNA expression of NF-kB in the jejunal
samples from E. papillata-infected mice. The expression values
obtained by RT-PCR analysis were normalized to the reference gene
b-actin mRNA level and are shown as fold induction (in log 2 scale)
relative to the mRNA level in the control. * significant change
concerning the control group, # significance change concerning the
infected group.
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lumen through the ruptured intestinal wall and being expelled via

fecal pellets. The jejunal protein level improved after KLRE

treatment due to a reduction in tissue protein catalytic processes.

The coccidian infection causes an imbalance in endogenous

antioxidant defense and free radical production (49). Our findings

showed that Eimeria infection induces oxidative damage to the

mice’s jejunum, depleting antioxidant enzymes and lowering CAT

and SOD levels. These oxidative indicators play an important role in

protecting the animal body from free radical damage due to

increased accumulation of reactive oxygen species (ROS) during

Eimeria infection. Previous research has found that Eimeria
Frontiers in Immunology 11
infection disrupts the antioxidant defense system, resulting in

detrimental cellular effects (10, 50–54). In this study, KLRE

significantly prevented Eimeria infection-induced loss of these

markers (CAT and SOD) and increased their activity, which is

consistent with Carini et al. (55) for free radical scavenging

properties that protect against oxidative damage and get rid of

excess peroxides.

Furthermore, the elevated MDA and NO levels in infected mice

are most likely caused by oxidative stress during Eimeria infection.

Similar to the findings of Al-Otaibi et al. (45) Dominquez et al. (56)

Al-Quraishy et al. (57), and Abdel-Gaber et al. (5) that Eimeria’s
B

A

FIGURE 15

The effect of KLRE on IL-10 levels in E. papillata-infected jejunum. Gene expression results are presented as mean ± SD from triplicate assays,
normalized to GAPDH, while biochemical assay results are displayed as mean ± SD values (n = 5). Panels A, B showcase IL-10 expression and levels.
* denotes significance against the control group at P < 0.05, # denotes significance compared to the sepsis group at P < 0.05.
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infective sporozoite stages, causing free radical overproduction and

increased ROS production, resulting in lipid peroxidation. ROS

causes pro-inflammatory cytokines and chemokines to be released,

either directly or indirectly promoting inflammation due to Eimeria

infection. In this study, E. papillata infection induced oxidative

stress by upregulating the mRNA expression of iNOs, which is

consistent with Metwaly et al. (58)Abdel-Latif et al. (59), and Abdel-

Tawab et al. (30) reported that macrophages produce NO by

oxidizing the guanidino nitrogen of L-arginine by an enzyme,

nitric oxide synthase (NOS). This enzyme is inducible in

macrophages by pathogen endotoxins and is termed inducible

NOS (iNOS). The elevation of NO observed in this study is

consistent with Allen and Fetterer (60) who stated that NO is

involved in immunity and resistance against infectious diseases, as it

exhibits toxicity towards pathogens. Administration of KLRE to the

infected mice could significantly reduce the severity of the infection

in the mice’s jejunum. Our findings showed that KLRE does not

only target Eimeria stages within infected tissue but also exhibits

anti-inflammatory activity protecting host tissues. The

antioxidative, anti-inhibitory, and anti-inflammatory properties of

KLRE may be attributed to the presence of phenolic and flavonoid

components which mitigate the adverse effects of Eimeria infection

on biological parameters of the affected animal. This is consistent

with Awaad et al. (61) hypothesis that antioxidant compounds in

different plants have played an important role in increasing the

protection level against coccidiosis.

To understand the interaction between Eimeria infection and

mice’s immune response, this study includes the determination of

mRNA transcription levels for markers of T helper cell response.

Lillehoj and Lillehoj (62) reported that T cell-mediated immunity

by intestinal intraepithelial lymphocytes, including T helper (CD4)

and T cytotoxic (CD8), confers the main component of protective

immunity to Eimeria infections. This is consistent with the findings

of this study that there is a significantly higher number of CD4 cells

were detected in the jejunal tissue of infected mice compared to the

control group, indicating macrophage involvement which migrates

from circulation to the site of infection for the destruction of

Eimeria stages. Previous studies by Dimier et al. (63) and Dalloul

et al. (64) demonstrated that macrophages massively infiltrate into

the chicken cecal lamina propria after E. tenella infection and

secrete large amounts of cytokines. Generally, cytokines such as

IL-1b, IL-12, IFN-g, and TNF-a promote the development of

cellular-mediated immunity against intracellular infections

including coccidiosis (65). In addition, Mussbacher et al. (66)

reported that NFkB may involve the expression of various pro-

inflammatory genes, encoding cytokines and chemokines, and cell

survival. This group of cytokines is associated with inflammatory

responses, whilst cytokines such as IL-10 favor the development of

humoral-mediated immunity and are implicated in anti-

inflammatory responses (59, 67). This study showed that for mice

inoculated with E. papillata oocysts, IL-10, NFkB, and IFN-g during
the 5th-day p.i., their gene expression levels were fold increased

which in turn produces reactive oxygen (ROS) leading to the

upregulated NO and iNOs levels, consistent with oocysts

shedding compared with the control group. This is consistent

with Lyons et al. (68) reported that a single infection with E.
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tenella evoked a host immune response which led to significant

expression of cytokines such as IL-10 and IFN-g in the ceca. Similar

to the findings of Hong et al. (69) IL-10 and IFN-g mRNA

expression was robustly increased in CD4 cell populations

following E. maxima-infected chickens. Our findings also

indicated that the ELISA assay also detected massive IL-10

protein expression positively correlated with E. papillata

replication and it is plausible E. papillata is inducing IL-10 as an

immune evasion strategy. This indicated that T cells mediate their

effects on the Eimeria parasite in primary infections through the

secretion of cytokines. Similar to the findings of Bremner et al. (70)

reported the increased IL-10 level in serum after E. maxima

infection. Moreover, Chow et al. (71) and Dkhil et al. (72)

reported that NFkB and IFN-g is a key cytokine orchestrating the

development of cellular-mediated immunity, and its expression is

regulated by the induction of IL-10. It is believed that IFN-g, which
is known to activate intracellular cytotoxicity and produced by

natural killer T cells, stimulates neutrophils and macrophages to

migrate from circulation to the site of infection to destroy Eimeria

sporozoites. This is consistent with previous studies demonstrated

that a strong IFN-g has been described to occur in the intestine

upon infection with E. maxima (73), E. bovis and E. alabamensis

(74). Our findings indicated that KLRE protects host tissues by

acting as an immunomodulatory agent in addition to targeting

intracellular Eimeria stages within the infected jejunal tissues

associated with inhibiting fecal oocyst shedding as well as

impairing the development and maturation of parasites.

Following this view, our findings that KLRE attenuates the

inflammatory response since it significantly downregulates the

mRNA expression of IL-10, NFkB, and IFN-g in the mouse

jejunum infected with E. papillata. This reduction in iNOs, IL-10,

NFkB , and IFN-g in the intestinal tissue confirms the

immunomodulatory and anti-inflammatory properties of

flavonoid compounds in KLRE as well as their capacity to reduce

the production of cytokines, which agreed with previous studies of

Femández et al. (75), and Baumgartner et al. (14).
Conclusion

Our findings collectively demonstrate that the root extract of

Krameria lappacea possesses anticoccidial properties, along with a

notable enhancement in the nutritional status of jejunal tissue.

Moreover, it exhibits antioxidant and anti-inflammatory activities,

safeguarding host tissues from injuries induced by E. papillata.

Further investigations are warranted to explore its potential

protective role in other organs, as well as to conduct biochemical

and molecular analyses to identify the genes regulated

during infection.
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la raıź de Krameria lappacea (ratania) root. Ciencia e Investigación. (2007) 10:65–70.
doi: 10.15381/ci.v10i2.4964
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1134661
https://doi.org/10.1002/eji.200636910
https://doi.org/10.1128/IAI.69.4.2589-2595.2001
https://doi.org/10.1128/IAI.69.4.2589-2595.2001
https://doi.org/10.1016/j.vetimm.2006.08.006
https://doi.org/10.1016/j.vetimm.2006.08.006
https://doi.org/10.3389/fimmu.2021.653085
https://doi.org/10.3389/fimmu.2021.653085
https://doi.org/10.1371/journal.pone.0025233
https://doi.org/10.1371/journal.pone.0025233
https://doi.org/10.1016/j.vetpar.2010.09.009
https://doi.org/10.1016/j.vetpar.2009.02.001
https://doi.org/10.1111/j.1365-3024.2007.01015.x
https://doi.org/10.1111/j.1365-3024.2007.01015.x
https://doi.org/10.15381/ci.v10i2.4964
https://doi.org/10.3389/fimmu.2024.1404297
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Krameria lappacea root extract’s anticoccidial properties and coordinated control of CD4 T cells for IL-10 production and antioxidant monitoring
	Introduction
	Materials and methods
	Methanolic extract preparation
	Total phenolics and flavonoids in KLRE
	The radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl
	Parasite passage
	In vivo infection and experimental design
	Oocyst suppression
	Collection of jejunal samples
	Histological examination and parasitic score
	Histochemical examination
	Immunohistochemistry detection of CD4
	Biochemical analysis
	RNA extraction and qRT-PCR
	Sandwich enzyme-linked immunosorbent assay for IL-10
	Statistical analysis

	Results
	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


