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Genetic associations in
ankylosing spondylitis:
circulating proteins as drug
targets and biomarkers
Ye Zhang1†, Wei Liu2†, Junda Lai3 and Huiqiong Zeng1*

1Traditional Chinese Medicine Department of Immunology, Women & Children Health Institute Futian
Shenzhen, Shenzhen, China, 2First Teaching Hospital of Tianjin University of Traditional Chinese
Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion,
Tianjin, China, 3Department of Human Life Sciences, Beijing Sport University, Beijing, China
Background: Ankylosing spondylitis (AS) is a complex condition with a significant

genetic component. This study explored circulating proteins as potential genetic

drug targets or biomarkers to prevent AS, addressing the need for innovative and

safe treatments.

Methods:We analyzed extensive data from protein quantitative trait loci (pQTLs)

with up to 1,949 instrumental variables (IVs) and selected the top single-

nucleotide polymorphism (SNP) associated with AS risk. Utilizing a two-sample

Mendelian randomization (MR) approach, we assessed the causal relationships

between identified proteins and AS risk. Colocalization analysis, functional

enrichment, and construction of protein-protein interaction networks further

supported these findings. We utilized phenome-wide MR (phenMR) analysis for

broader validation and repurposing of drugs targeting these proteins. The Drug-

Gene Interaction database (DGIdb) was employed to corroborate drug

associations with potential therapeutic targets. Additionally, molecular docking

(MD) techniques were applied to evaluate the interaction between target protein

and four potential AS drugs identified from the DGIdb.

Results: Our analysis identified 1,654 plasma proteins linked to AS, with 868 up-

regulated and 786 down-regulated. 18 proteins (AGER, AIF1, ATF6B, C4A, CFB,

CLIC1, COL11A2, ERAP1, HLA-DQA2, HSPA1L, IL23R, LILRB3, MAPK14, MICA,

MICB, MPIG6B, TNXB, and VARS1) that show promise as therapeutic targets for

AS or biomarkers, especially MAPK14, supported by evidence of colocalization.

PhenMR analysis linked these proteins to AS and other diseases, while DGIdb

analysis identified potential drugs related to MAPK14. MD analysis indicated

strong binding affinities between MAPK14 and four potential AS drugs,

suggesting effective target-drug interactions.
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Conclusion: This study underscores the utility of MR analysis in AS research for

identifying biomarkers and therapeutic drug targets. The involvement of Th17 cell

differentiation-related proteins in AS pathogenesis is particularly notable. Clinical

validation and further investigation are essential for future applications.
KEYWORDS

Ankylosing spondylitis, mendelian randomization, drug target, biomarker,
colocalization, Phenomewide Association Study, (PheWAS), proteomics
Introduction

Ankylosing spondylitis (AS) is a chronic inflammatory joint

disease that exhibits significant regional and population-based

variations in prevalence, influenced primarily by genetic

predisposition, shaping both disease susceptibility and severity

(1). It commonly appears during adolescence or early adulthood

and is more prevalent in men. The disease is notably associated with

genetic factors, including the presence of the HLA-B27 antigen, and

its prevalence varies significantly across different regions and

populations (2).

In recent years, pharmaceutical research has made substantial

progress, introducing new therapeutic options alongside

conventional treatments such as non-steroidal anti-inflammatory

drugs (NSAIDs) and biologic disease-modifying antirheumatic

drugs (bDMARDs) (3). Notably, FDA-approved medications like

tumor necrosis factor inhibitors (TNFi) and interleukin-17

inhibitors (IL-17i) have significantly enhanced the quality of life

for those with AS (4). Despite these advancements, the quest for

more effective treatments continues, especially for patients who do

not respond adequately to existing therapies.

Pharmaceuticals often target specific proteins, and genetic

variations affecting protein expression provide opportunities for

drug repurposing and the development of new treatments (5). This

study focuses on the potential of proteomic technologies to identify

new therapeutic targets. Proteins, due to their diverse functions,

serve as excellent candidates for uncovering disease biomarkers and

therapeutic targets (6). Advances in genetic and proteomic analysis,

such as Mendelian Randomization (MR) and Genome-wide

Association Studies (GWAS), have facilitated the use of large-

scale data to establish causality between genetic variations and

disease, simulating the effects of randomized clinical trials. This

approach helps minimize the influence of confounding factors and

enhances the prediction of individual responses to treatment, thus

supporting personalized medicine (7, 8). Despite the potential, the

genomic basis for new drug targets in AS has remained largely

unexplored. MR analysis of the drug target gene is a statistical

approach used to evaluate whether a particular gene is associated

with the therapeutic effects of a drug (9). It offers advantages over

traditional research methods, using genetic variations to simulate
02
randomized clinical trials, thus providing stronger causal evidence,

reducing the impact of confounding variables, supporting high-

throughput screening, saving time and resources, and advancing

personalized medicine (10). This aids to gain a deeper

understanding of the mechanism of action of the drug and

enhances the prediction of individual responses to the drug. To

our knowledge, the genomic evidence for potential drug targets in

AS remains unexplored.

We used a genetic instrument comprising 1,949 circulating

plasma proteins from extensive proteomics research. We

obtained AS data from publicly available datasets. Using MR and

colocalization analysis within the proteomic realm, we investigated

the causal links between circulatory proteins and AS, identifying

potential therapeutic targets. We also evaluated protein-protein

interactions (PPI) and suitability for drug development,

prioritizing treatment targets and biomarkers. This research sheds

light on the causal associations between proteins and AS, offering

new insights and therapeutic possibilities. Our findings contribute

to a deeper understanding of AS and provide a foundation

for the development of targeted therapies, representing a

significant advancement in the treatment and prevention of this

debilitating disease.
Materials and methods

Screening instrumental variables and
data sources

In this study, genetic variants associated with protein

abundance are differentiated into cis-acting and trans-acting

types. The quantitative trait loci that act on CS (pQTLs) were

typically located near the genes that encode the corresponding

proteins (within 1Mb in this work) and have direct and

independent biological effects (11). Proteins are more likely than

other molecular traits to be used as drug targets, and MR analysis

combined with pQTL as instrumental variables (IVs) is valuable for

drug development in human genetics. We integrated the cis-pQTL

data derived from prior studies conducted by Sun BB et al. (12–17)

as our genetic IVs source. Significance thresholds were set at P< 5e-
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8 (with a minor allele frequency > 0.01) and a linkage

disequilibrium (LD) threshold of R2< 0.8, kb = 10,000, utilizing

the two-sample MR package (version 0.5.7) R (18). The explanatory

power of IVs concerning exposure was quantified using the

F-statistic as shown below:

F =
R2 � (N − 1 − k)
(1 − R2)� k

R2 = 2�MAF� (1 −MAF)� (
b
sd

)2

In this formula, MAF represents the minimum allele frequency; b
represents the effect size in GWAS for proteins and sd is its standard

deviation (sd = se ×
ffiffiffiffi

N
p

); N is the total number of samples in the

proteins GWAS; k is the number of IVs used (19). An F-statistic below

10 suggests a potentially weak IV strength, indicative of inadequate

suitability for robust causal inference. Blood pQTLs associated with AS

were identified from the latest public GWAS database as outcomes

(https://storage.googleapis .com/finngen-public-data-r9/

summary_stats/finngen_R9_M13_ANKYLOSPON.gz). We employed

blood proteomic profiling data as SNPs to perform a two-sample MR

analysis across two independent cohorts consisting of 2,860 AS cases

and 270,964 controls. This methodological approach facilitates the

identification of SNPs linked to specific protein expressions, advancing

research into genetic variations associated with diseases. The workflow

of the study is depicted in Figure 1.
MR and statistical analysis

MR analysis mandates the fulfillment of three crucial assumptions:

genetic instruments are strongly correlated with exposure, genetic

instruments are independent of confounding factors, and genetic

instruments solely influence the outcome through their impact on

exposure. TheWald ratio (WR) method was employed for preliminary

explorations of the top SNPs. (most significant SNPs) (20, 21). Where
Frontiers in Immunology 03
only a single IV was available with a P-value of<1e-05, the WR was

computed. A Bonferroni correction was applied to the P-value (0.05/

1,654 = 0.00003023) to mitigate the false discovery rate (FDR), and

findings were articulated using statistical metrics (Odds Ratio and 95%

Confidence Interval) (22). Throughout these analyses, only results with

a statistically significant level (P< 0.05) were retained to ensure the

reliability of the results.
Colocalization analysis

Colocalization analysis serves as a methodological approach for

investigating protein-protein interactions and functions (23). When

comparing the subcellular localization patterns of proteins, we reveal

their interrelationships. This analysis facilitates the assessment of

whether disease-associated and genetic regulation of protein levels

are driven by identical genetic variants. In our study, we used Bayesian

colocalization analysis with default parameters from the “coloc”

software package to assess the likelihood of two features sharing the

same causal variation (24). We evaluated five hypotheses’ posterior

probabilities (PPH) to ascertain whether two features are influenced by

a common variant. The coloc.abf algorithm was applied, classifying

proteins as first-tier (PPH4 > 0.8) with strong evidence of

colocalization, second-tier (0.5< PPH4< 0.8) with moderate support,

and others as third-tier targets based on prior research (25).
Protein–protein interaction network and
GO/KEGG analysis

The exploration of protein-protein interactions (PPI) was

facilitated using the String database (https://string-db.org/) (26).

It contains known protein interaction data from various sources,

including experimental evidence and computational predictions.

This step involved data preparation, access to the String database,

extraction of the PPI network, and subsequent visualization and
FIGURE 1

Flowchart of the Mendelian Randomization (MR) analysis framework.
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analytical interpretation of these interactions. The parameters for

this study were configured as follows: the network edges were

specifically interpreted as indicators of interaction evidence, while

the active interaction sources included a range of methodologies

such as textmining, experimental assays, Database entries, co-

expression patterns, proximity in genomic context, Gene Fusion

events, and co-occurrence statistics. The threshold for inclusion in

the network was set at a medium confidence score of 0.400 to ensure

relevance and reliability of the interactions.

Regarding the identification of candidate genes implicated in AS

pathogenesis, genes derived from the Bonferroni correction statistical

approach were pinpointed as key targets. Further insights into the

biological pathways and functional attributions of these genes were

gleaned through Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analyses. These analyses

were performed using Metascape (http://metascape.org) and the

Oebiotech platform (https://cloud.oebiotech.cn/, last accessed on 12

January 2024) (27). These tools facilitated the visualization and

interpretation of potential pathways involved in the disease’s

progression and pathogenesis, enhancing our understanding of the

molecular mechanisms at play (27, 28).
Phenome-wide MR analysis

Phenome-wide mendelian randomization (PhenMR),

integrating principles from both Mendelian Randomization (MR)

and Phenome-Wide Association Studies (PheWAS), is employed to

elucidate the causal relationships between genes and a spectrum of

phenotypic traits (29). This method enables a broad assessment of

genetic impacts across health and disease phenotypes, revealing

gene-phenotype associations and facilitating the exploration of

genetic functions and biological underpinnings.

To exclude potential pleiotropy of AS, we performed a PheWAS

analysis using variants identified from the GWAS ATLAS and

Pheno-Scanner databases (30–32). This analysis allows for the

investigation of how the six primary proteins linked to AS are

associated with various traits, shedding light on their roles in AS

pathogenesis and their potential as therapeutic targets.
Drugs investigation: DGIdb analysis

The drug gene interaction database (DGIdb) (https://

dgidb.genome.wustl.edu) is a database that integrates drug-gene

interaction data from 30 existing databases, helping researchers to

explore existing data to generate hypotheses about how genes can be

used in therapy or drug development (33). It allows users to search for

drugs that target specific genes of interest, including FDA-approved,

experimental, and investigational drugs, along with information on

their indications, target genes, and interaction types. Our search within

the DGIdb was guided by prior research, focusing on genes associated

with potential treatment modalities for AS (34). Ethical approval had

been obtained from their institutional review board in each study, and

all participants had provided informed consent, obviating the need for

additional ethical approval.
Frontiers in Immunology 04
Molecular docking analysis of MAPK14 with
selected pharmacological agents

The three-dimensional configuration of the MAPK14 protein

was sourced from the Protein Data Bank (https://www1.rcsb.org,

PDB ID: 6zwp) and refined by removing non-essential entities using

PyMOL software, version 2.5.4 (35, 36). The molecular structures of

four therapeutic agents, as identified in the Drug Gene Interaction

Database (DGIdb), along with a co-crystallized ligand,

were retrieved from the PubChem repository, (https://

pubchem.ncbi.nlm.nih.gov) and subjected to structural

optimization employing OpenBabel (version 3.1.1) and ORCA

(version 5.03) (37–39). The root mean square deviation (RMSD)

values for co-crystallized ligand structures were calculated before

and after docking using PyMOL software. An RMSD value of less

than 2 Å indicates successful methodological validation.

Computational assessments were conducted using the B3LYP

hybrid functional combined with the def2-TZVP basis set. To

prepare for molecular docking, modifications to enhance

hydrogen bonding and molecular flexibility were executed using

Auto Dock Tools version 1.5.6. The docking procedure itself was

facilitated by Autodock Vina software (version 1.2.0), employing

the Lamarckian genetic algorithm to optimize interaction

predictions (40). Specific parameters for the docking grid were set

with a central point at coordinates (X, Y, Z) = (6, 0, 19)

and dimensions spanning (X×Y×Z) = (26×26×24), with an

exhaustiveness setting of 25 to ensure thorough sampling.
FIGURE 2

Forest plot of odds ratios (OR) for genetic variants associated with
AS: The forest plot visualizes OR and 95% confidence intervals for
genes associated with AS. Listed genes show significant ORs (P<
0.001). Red indicates increased AS risk; green indicates reduced risk.
The vertical dashed line denotes OR=1, the threshold for
risk significance.
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Results

Identifying plasma proteins related to AS

This study explored how certain proteins, for which genetic

markers are known, are related to the risk of AS. We focused on

1,949 proteins that have identifiable genetic signals known as

pQTLs and examined their influence on the development and

severity of AS. Figure 2 provides a summary of these findings.

We match a single cis-SNP for each protein by integrating genetic

data from pQTL, and we identify 1,654 unique circulating plasma

proteins that met the criteria for having a causal relationship with

AS (Supplementary Table S1). Among these, 868 proteins showed a

positive causal relationship with AS, while 786 proteins showed a

negative causal relationship with AS. This suggested that specific

genetic variations may be associated with the risk of AS by

influencing the expression or function of these plasma proteins,

thus affecting the occurrence of AS.
Exploring causal plasma proteins on AS

To ensure the reliability of our findings, we used the Bonferroni

correction method to adjust for multiple comparisons, setting a

strict significance threshold (P value = 0.05/1,654, P< 3.03E-05).
Frontiers in Immunology 05
Among the 1,654 plasma proteins mentioned above, we identified

18 that were significantly associated with the risk of developing AS.

These proteins included AGER, AIF1, ATF6B, C4A, CFB, CLIC1,

COL11A2, ERAP1, HLA-DQA2, HSPA1L, IL23R, LILRB3,

MAPK14, MICA, MICB, MPIG6B, TNXB and VARS1.

Specifically, seven of these proteins were associated with an

increased risk of AS, including ATF6B, C4A, COL11A2, etc.

Additionally, 11 proteins were found to lower the risk of AS, such

as AIF1, MAPK14, MICA, MICB, etc. Interestingly, the most

significant factors influencing AS were the proteins IL23R (OR:

2.49), ATF6B (OR: 2.21), and C4A (OR: 1.38). These findings

provide compelling information for further research on the role

of these proteins in AS, warranting further investigation (Table 1).
Enrichment and construction of gene
networks of drug targets

We conducted a Gene Ontology (GO) analysis on 18 shared

protein targets, covering biological processes (BP), Molecular

Function (MF) and Cellular Component (CC), as seen in

Figure 3A. Notable GO terms included positive regulation of

interleukin-12 production (GO:0032735), regulation of T cell-

mediated cytotoxicity (GO:0001914). The KEGG enrichment

analysis showed that Th17 cell differentiation signaling pathway
TABLE 1 Causal plasma proteins in ankylosing spondylitis (AS).

id.exposure b se P-val or or_lci95 or_uci95

IL23R 0.910738095 0.17152 1.10E-07 2.486156877 1.776346799 3.479599828

ATF6B 0.790523956 0.100935112 4.80E-15 2.204551213 1.808849735 2.686815801

C4A 0.318389759 0.039770145 1.19E-15 1.374912042 1.271808972 1.486373476

COL11A2 0.302283909 0.070992156 2.06E-05 1.352945285 1.177200641 1.554926901

TNXB 0.288305453 0.066304125 1.37E-05 1.334164767 1.171575435 1.519317981

LILRB3 0.142045886 0.035405812 6.02E-05 1.152629536 1.075354628 1.235457414

ERAP1 0.132335882 0.025460529 2.02E-07 1.141491661 1.085926181 1.199900357

MICB -0.361808092 0.049643729 3.14E-13 0.696416003 0.631845864 0.76758475

CFB -0.36645838 0.072386049 4.14E-07 0.693184987 0.601496215 0.79885029

HLA-DQA2 -0.450084251 0.046000788 1.32E-22 0.637574433 0.582605033 0.697730254

AGER -0.549864917 0.063904962 7.67E-18 0.577027752 0.509096017 0.654024026

MICA -0.596719252 0.024205555 3.49E-134 0.550615106 0.525102321 0.577367463

MAPK14 -0.906780645 0.183013878 7.24E-07 0.40382218 0.28210164 0.578062408

AIF1 -1.081463415 0.097452654 1.29E-28 0.33909892 0.280138651 0.410468449

CLIC1 -1.893118036 0.274137029 4.99E-12 0.150601495 0.087999283 0.257738581

VARS1 -2.370585134 0.297909331 1.76E-15 0.093426043 0.052105362 0.167514922

HSPA1L -2.424102426 0.304649057 1.76E-15 0.08855757 0.048741982 0.160897096

MPIG6B -3.59552822 0.92036903 9.36E-05 0.027446182 0.004519059 0.166692427
Ankylosing spondylitis (AS), each identifier for the exposure factor being investigated, which in our study refers to specific plasma proteins (id.exposure), beta coefficient (b), standard error (se),
P-value (P-val), lower confidence interval (lo_ci), upper confidence interval (up_ci), Odds Ratio (or), 95% confidence interval lower limit for odds ratio (or_lci95), 95% confidence interval
upper limit for odds ratio (or_uci95).
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was significantly enriched in target proteins (see Figure 3B). We also

constructed a map showing interactions between these proteins,

featuring 38 connection points and 82 connecting lines, which

suggests a highly significant network based on a statistical measure

(P-value:1.45e-12), as seen in Figure 3C using the String platform.
Colocalization analysis

In our research, we performed a detailed analysis to study how

causal genetic variations and proteins were connected to AS. This

technique, known as co-localization analysis, helps us understand

which genetic changes are likely to influence the disease and its

treatment. Specifically, we found that four proteins—MAPK14,

AIF1, ATF6B, and MICA— can serve as first-tier drug targets.

HSPA1L and COL11A2 were second tiers, according to the results,

while others were categorized as third-tier targets. Our findings

suggested possible shared causal genetic variations between

MAPK14 and AS (PPH4 = 0.977), while ATF6B could pose a risk

factor for AS (PPH4 = 0.887). These results underscore our

identification of several credible drug-related genes via MR and

colocalization analysis, revealing a common genetic effect between

target proteins and AS risk (Table 2).
Phenomewide MR analysis

We sourced data on gene-trait associations from the GWAS

Catalog accessible at: https://gwas.mrcieu.ac.uk/. Our analysis

focused on examining the link between gene variants and traits.

We utilized cis-pQTLs to understand these relationships and
Frontiers in Immunology 06
conducted thorough searches to pinpoint studies that reported

statistically significant genetic associations (P< 0.001) with

specific traits. Our study incorporated a detailed PheWAS

analysis to investigate how the top six proteins that colocalize—

HSPA1L, MICA, COL11A2, MAPK14, AIF1, and ATF6B were

connected to We discovered that these proteins not only

contribute to targeting AS but also significantly impact the

development of other diseases. For example, AIF1, MICA,

ATF6B, and HSPA1L were found to be associated with an

increased risk of rheumatoid arthritis (RA), while AIF1 was also

associated with an increased risk of atopic dermatitis. On the other

hand, MAPK14, ATF6B, and COL11A2 were associated with a

lower risk of both rheumatoid arthritis and primary sclerosing

cholangitis (refer to Supplementary Table S2). exploration enables

us to deepen our understanding of how specific genetic variations

can influence disease mechanisms, providing critical insights

for genetic research and biomedical applications beyond just

treating AS.
Drug validation

Our research identified MAPK14 as a potential genetic drug

target and biomarker in AS. By analyzing the DGIdb database, we

discovered a link between MAPK14 and the drug pirfenidone,

which is currently under clinical investigation. Interestingly,

MAPK14 is also associated with three FDA-approved drugs:

dasatinib, doxorubicin, and sorafenib. Although our study did not

directly involve pharmaceutical action on AS, these findings

provided new prospects for the treatment of AS and related

diseases (Supplementary Table S3).
B C

A

FIGURE 3

Enrichment and interaction analysis of AS-related genes: (A) The bar graph represents the -log10 transformed P-values of the enriched Gene
ontology (GO) terms related to the biological processes in AS. It highlights significant processes such as immune response regulation and cytokine
activity. (B) This circular plot represents the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, showing the pathways significantly
enriched with genes related to AS. Each segment’s color gradient indicates the level of enrichment significance, with a richer color denoting a lower
p-value and higher significance. The plot also quantifies the number of genes involved in each pathway. (C) Protein-protein interaction (PPI) network
analysis conducted using the STRING database to reveal the interactions between proteins encoded by AS-related genes.
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Molecular docking

In the realm of molecular docking (MD) investigations, the

concept of binding energy serves as a fundamental metric for

assessing ligand-receptor interactions. A binding energy less than

0 kcal/mol is indicative of a spontaneous binding process,

confirming the thermodynamic feasibility of the ligand

associating with the receptor. Specifically, a binding energy

threshold of -7.2 kcal/mol is often utilized as a benchmark for
Frontiers in Immunology 07
strong molecular interactions, characterized by elevated affinity and

specificity towards the receptor. In our analysis, we evaluated the

docking profiles of pirfenidone, dasatinib, doxorubicin, and

sorafenib with the kinase domain of MAPK14. The results

demonstrated binding energies of -9.7 kcal/mol, -9.0 kcal/mol,

-8.5 kcal/mol, and -12 kcal/mol, respectively. All values

significantly surpass the -7.2 kcal/mol threshold, suggesting

robust binding affinities (see Figure 4, Supplementary Table S4

for details). Concurrently, we employed the methodology of
B

C D

A

FIGURE 4

Molecular docking analysis of four compounds with a target protein (MAPK14): (A-D) display the binding interactions between MAPK14 and four
different ligands: dasatinib (A), doxorubicin (B), pirfenidone (C), and sorafenib (D). Each panel illustrates the protein in a ribbon diagram with the
ligand in a stick model, zooming in on the binding site. The dashed lines represent potential hydrogen bonds or hydrophobic contacts with key
amino acids, with distances measured in angstroms.
TABLE 2 Results of the colocalization analysis.

Protein N_SNPs PPH0 PPH1 PPH2 PPH3 PPH4

AGER 3712 5.72E-127 0.0539114 7.44E-112 0.942793077 0.00329552

AIF1 3856 5.32E-96 0.00167447 6.92E-74 0.102649734 0.8956758

ATF6B 5359 0 2.76E-06 0 0.112731838 0.8872654

C4A 6478 1.23E-87 0.12798836 1.60E-35 0.867830945 0.004180694

CFB 4550 0 5.65E-32 0 1 9.20E-63

CLIC1 5123 4.51E-85 0.00515944 5.86E-58 0.994758254 8.23E-05

COL11A2 4456 0 6.27E-06 0 0.264638428 0.7353553

ERAP1 5769 1.66E-294 0.00557209 2.16E-175 0.994095938 0.000331968

HLA-DQA2 5345 9.30E-103 0.01197295 1.21E-85 0.9835284 0.004498653

HSPA1L 5837 2.44E-57 0.00249477 3.17E-73 0.254142326 0.7433629

IL23R 4234 0 7.37E-79 0 1 3.22E-45

LILRB3 5967 6.23E-134 0.06756285 8.10E-141 0.918001065 0.01443609

MAPK14 4345 0 2.00E-07 0 0.022823 0.9771768

MICA 3487 6.32E-36 2.75E-05 8.22E-64 0.144419507 0.855553

MICB 6498 4.68E-63 0.13818637 6.08E-74 0.849662271 0.01215136

MPIG6B 4543 0 0.00280414 0 0.996948415 0.000247442

TNXB 5349 0 4.98E-09 0 0.735989895 0.2640101

VARS1 4591 9.52E-48 0.86206095 1.24E-52 0.038984424 0.09895463
Number of single nucleotide polymorphisms (nsnp),posterior probability of pypotheses (PPH),each identifier for the exposure factor being investigated, which in our study refers to specific
plasma proteins (Protein).
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molecular docking to validate the co-crystallized ligand with

MAPK14 (Supplementary Figure S1). The RMSD (Root Mean

Square Deviation) value between the co-crystal ligand and

MAPK14 before and after docking is 0.321Å, which is less than

2Å, indicating that the molecular docking methodology has been

validated. These findings imply a high potential for these

compounds to inhibit MAPK14 activity effectively, which may be

therapeutically beneficial in modulating pathways regulated by this

kinase in AS (Figure 5).
Discussion

To date, the treatment of ankylosing spondylitis (AS) continues

to pose a considerable clinical challenge within the realm of

medicine (41). The discovery and development of innovative

pharmaceuticals for AS are hindered by high costs and a limited

number of approved therapeutic agents, which are often associated

with severe adverse reactions or patient intolerance (42). Recent

advances in human genetics have led to the identification of

pharmacological targets that are pertinent for AS treatment (43).

Some Food and Drug Administration (FDA) approved medications

for AS-target immune system inflammation, such as tumor necrosis

factor inhibitors and interleukin-17 inhibitors, to alleviate

symptoms (44). In this study, plasma proteomic data served as

valuable resources for identifying potential drug targets. Using

mendelian randomization (MR) analysis with matched AS-GWAS

(Genome-wide association study) samples, we established causal
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relationships between genetic plasma proteomic variations

associated with AS risk and the expression of specific proteins

following the methods described in previous literature (45).

Simultaneously, the Phenome-wide Association Study (PheWAS)

explores the connections between these proteins and a broad

spectrum of phenotypic traits, enhancing our understanding of

their roles across various medical conditions (46). This approach

increases the likelihood of successful drug development while

reducing development costs. Ultimately, we identified 18

promising proteins for drug research, including AGER, AIF1,

ATF6B, C4A, CFB, CLIC1, COL11A2, ERAP1, HLA-DQA2,

HSPA1L, IL23R, LILRB3, MAPK14, MICA, MICB, MPIG6B,

TNXB and VARS1. Among them, AIF1 and IL23R are associated

with decreased risk of ankylosing spondylitis; MICA, MAPK14, and

ATF6B are linked to increased risk of ankylosing spondylitis.

C4 and C4A, pivotal proteins within the human immune

system, are encoded by distinct genes and categorized as C4

isotypes (47). They activate the complement pathway, crucial for

pathogen clearance, and C4A is implicated in autoimmune disease

risk due to its regulatory role in autoimmune responses (48). An in

vitro studies suggest that AS pathogenesis is closely linked to

complement activation, aligning with our findings (49).

Endoplasmic reticulum aminopeptidase 1 (ERAP1) plays a vital

role in clarifying important biological pathways in AS pathogenesis,

mainly linked to human leukocyte antigen B27 (HLA-B27) positive

cases, by influencing peptides binding to class I molecules of the

major histocompatibility complex (MHC) (50). ERAP1’s

interaction with HLA-B27 influences the peptide processing
FIGURE 5

Summary figure of molecular and cellular mechanisms in ankylosing spondylitis pathogenesis: This figure illustrates the roles of four key targets in
the pathogenesis of AS: MICA, MAPK14, ATF6B, and AIF1. MICA binds to the NKG2D receptor on NK cells and T cells, initiating cytotoxicity and
inflammatory cytokine release. MAPK14, also known as p38, is activated by Act1, triggering transcriptional changes that promote inflammation.
ATF6B is involved in HLA-B27 misfolding, contributing to inflammation, but also suppresses ER stress from HLA-B27 variants. AIF1, expressed in
macrophages, regulates immune responses and is associated with the differentiation of DCs, further might drive Tregs to regulate immune response,
and boost IL-10.
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crucial for disease susceptibility in AS. ERAP1 polymorphism

correlates with AS severity and progression (51–53). Research by

Chen et al. demonstrated that reducing ERAP1 levels decreases the

surface presence of free HLA-B27 heavy chains (FHC) on antigen-

presenting cells. This reduction lowers the activation of KIR3DL2, a

critical immune receptor, consequently diminishing interleukin-2

(IL-2) production (54). These changes resulted in an expansion of

Th17 cells and decreased IL-17A secretion in CD4+ T cells among

patients with AS. The study suggested that the activity of ERAP1

determines the surface expression of HLA-B27 FHCs and may

potentially facilitate the Th17 response through the interaction

between HLA-B27 FHCs and KIR3DL2. Therefore, the activity of

ERAP1 appears to be crucial in regulating the Th17 cell response

and IL-2 production in AS. Our research work aligned with these

results, suggesting that proteins C4A and ERAP1 may exert an

influence on AS development by modulating the immune response,

especially within the inflammatory pathways.

MAPK14 (mitogen-activated protein kinase 14), also known as

p38 MAPK, plays a significant role in inflammation and immune

response, linked to AS through gene polymorphisms near the

MAPK14 locus (55, 56). Elevated gene expression levels of Myd88

(myeloid differentiation primary response 88), NF-kB (nuclear

factor-kappa B) and MAPK14 in AS patients, compared to

controls, were reported by Roozbehkia et al. (57). Although this

work did not identify any FDA-approved therapeutics for AS that

target MAPK14, molecular docking (MD) analysis was

implemented to substantiate these findings. Our analysis utilized

the Drug-Gene Interaction database (DGIdb) to ascertain

pharmaceuticals associated with MAPK14, identifying

pirfenidone, dasatinib, doxorubicin, and sorafenib. These agents

demonstrated potent binding affinity to MAPK14, suggesting their

potential efficacy in mitigating the enzymatic activity of MAPK14,

thereby offering prospective therapeutic benefits in the management

of AS. Pirfenidone, approved by the FDA for the treatment of

idiopathic pulmonary fibrosis (IPF), shows promising action on AS.

Pirfenidone possesses anti-inflammatory and antifibrotic

properties; its mechanisms include inhibition of TGF-b-induced
fibroblast proliferation and suppression of inflammatory mediator

production (58). Given the chronic inflammation and potential

fibrosis in the pathological process of AS, including new bone

formation (59), pirfenidone may have potential therapeutic utility

in the treatment of AS. Due to the critical role of MAPK14 in

regulating inflammation, inhibitors targeting this protein may lead

to adverse effects, such as immunosuppression (60). Similarly, the

immunomodulatory functions of activating transcription factor 6B

(ATF6B), and AIF1 suggest that targeting these proteins could

disrupt crucial immune processes, such as autophagy and apoptosis

(61, 62). Future research will continue to assess these side effects and

rigorously test them in preclinical studies to ensure patient safety.

In a summary, MAPK can be activated by various inflammatory

cytokines, chemokines, and pattern recognition receptors, including IL-

17, may affect cell proliferation, differentiation, and apoptosis in AS

through cascades of signal transduction (63). The major

histocompatibility complex class I (MHC) chain-related protein A

(MICA) protein, which is activated in response to stress in natural killer
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(NK) cells, gd T cells, and other immune cells, binds to the NK receptor

group 2 member D (NKG2D) receptor, triggering cytotoxicity and the

release of inflammatory cytokines by NK cells and T cells. An

imbalance in this pathway may increase the risk of AS (64).

Unconventional HLA-B27 variants may trigger endoplasmic

reticulum stress (ERS) through homodimerization, and ATF6B, a

transmembrane protein with low transcriptional activity in the ER,

may suppress ER stress activation and inflammation (65, 66). Allograft

inflammatory factor 1 (AIF1), a calcium-binding protein, is involved in

phagocytosis, membrane ruffling, and F-actin remodeling, and is

associated with macrophage activation and various diseases (67).

Research shows that knocking down Allograft Inflammatory Factor 1

(AIF1) suppresses antigen-specific CD4+ T cell proliferation, increases

IL-10 production, and expands CD25+Foxp3+ regulatory T cell

subsets, which inhibits inflammation (68). This observation is

consistent with the results of our work. AIF1 might play a significant

role in AS by regulating the differentiation and function of dendritic

cells (Figure 5). Biological networks are complex, and it is postulated

that in AS, MAPK14 and ATF6B may be interconnected through

cellular and endoplasmic reticulum stress responses, while MICA and

AIF1 may be associated with immune responses and inflammation.

Interleukin-12 (IL-12) may play a role in the pathogenesis of

AS. Excessive IL-12 activity can trigger abnormal immune

responses, potentially contributing to the development and

worsening of AS (69). IL-12/23 monoclonal antibody

(Ustekinumab) is currently approved to treat AS to alleviate

symptoms (70). More research is needed to clarify the exact role

of IL-12 in the pathogenic mechanisms of AS.

Recent studies highlight Th17 cells’ adaptive gene expression,

influencing their pathogenic potential in AS (71, 72). These cells,

which can co-express RORgt and TBX21, are implicated in

autoimmune pathologies, while others produce cytokines

targeting specific pathogens (73, 74). Elevated Th17 activity

correlates with increased inflammatory cytokine production,

contributing to bone damage in AS (75). IL23R polymorphisms

also relate to disease susceptibility, influencing IL-17 production

(76–78). Our findings support the development of multitarget drugs

to inhibit Th17 differentiation and reduce pro-inflammatory

cytokine production as a therapeutic strategy for AS.

This study identified genetic associations between circulating

proteins and AS using large-scale MR analysis, revealing novel

pathways in AS pathogenesis. The results were robust, adhering to

stringent instrumental variable criteria. Additionally, a PheWAS

analysis assessed the safety of these proteins as drug targets, aiming

to mitigate severe side effects.

However, limitations exist. The proteins studied were derived from

whole blood and may not reflect tissue-specific processes in AS.

Moreover, the magnetic resonance approach presumes uniform drug

efficacy across individuals, which contrasts with variable clinical

responses. The findings predominantly involve European

populations, highlighting the need for more diverse studies to

enhance generalizability and understand protein-specific mechanisms

in AS. Due to limitations, in vitro and in vivo experiments may be

constrained. We plan to include them in future research or engage in

multicenter laboratory collaboration.
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In conclusion, this research highlights the utility of MR in

identifying potential drug targets or biomarkers for AS, implicating

proteins involved in Th17 differentiation in AS pathogenesis. These

proteins could serve as early screening tools or therapeutic targets.

Future research is necessary to confirm these potential applications.
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SUPPLEMENTARY FIGURE 1

Molecular docking Analysis of MAPK14 protein with a co-crystal ligand. The

left panel shows the overall structure of the MAPK14 protein. The right panel
illustrates the specific interactions between the co-crystal ligand and key

amino acid residues in the MAPK14 protein. The panel represents the protein
in a ribbon diagram, with the ligand depicted in a stick model, focusing on the

binding site. The yellow dashed lines represent potential hydrogen bond

contacts with key amino acids, with distances given in angstroms. quantitative
trait loci (pQTLs), Instrumental variables (IVs), single nucleotide polymorphism

(SNP), linkage disequilibrium (LD), mendelian randomization (MR), Wald ratio
(WR), ankylosing spondylitis (AS), gene ontology (GO), Kyoto encyclopedia of

genes and genomes (KEGG), Drug gene interaction database (DGIdb),
Phenome-wide association study (PheWAS),Molecular docking (MD), major

histocompatibility complex class I (MHC) chain-related protein A (MICA),

mitogen-activated protein kinase 14 (MAPK14), activating transcription
factor 6B (ATF6B), Allograft inflammatory factor 1 (AIF1), NK receptor group

2 member D (NKG2D), natural killer (NK), Apoptosis-associated speck-like
protein containing a CARD (Act1), endoplasmic reticulum (ER), human

leukocyte antigen B27 (HLA-B27), dendritic cells (DCs), regulatory T cells
(Tregs), Macrophages (MØ), Interleukin 17 (IL-17), Interleukin 23 (IL-23),

Interleukin 10 (IL-10), T-helper (Th) cells, Forkhead box protein P (FoxP),

Antigen presenting cell (APC).
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drug target perturbation and intracranial aneurysm risk: Mendelian randomization and
colocalization study. Stroke. (2023) 54:208–16. doi: 10.1161/STROKEAHA.122.040598

11. Yang C, Farias FHG, Ibanez L, Suhy A, Sadler B, Fernandez MV, et al. Genomic
atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in
neurological disorders. Nat Neurosci. (2021) 24:1302–12. doi: 10.1038/s41593–021-
00886–6

12. Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, et al. Genomic
atlas of the human plasma proteome. Nature. (2018) 558:73–9. doi: 10.1038/s41586–
018-0175–2

13. Suhre K, Arnold M, Bhagwat AM, Cotton RJ, Engelke R, Raffler J, et al.
Connecting genetic risk to disease end points through the human blood plasma
proteome. Nat Commun. (2017) 8:14357. doi: 10.1038/ncomms14357

14. Folkersen L, Fauman E, Sabater-Lleal M, Strawbridge RJ, Frånberg M, Sennblad
B, et al. Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease.
PloS Genet. (2017) 13:e1006706. doi: 10.1371/journal.pgen.1006706

15. Yao C, Chen G, Song C, Keefe J, Mendelson M, Huan T, et al. Genome-wide
mapping of plasma protein QTLs identifies putatively causal genes and pathways for
cardiovascular disease. Nat Commun. (2018) 9:3268. doi: 10.1038/s41467–018-05512-x

16. Emilsson V, Ilkov M, Lamb JR, Finkel N, Gudmundsson EF, Pitts R, et al. Co-
regulatory networks of human serum proteins link genetics to disease. Science. (2018)
361:769–73. doi: 10.1126/science.aaq1327

17. Zheng J, Haberland V, Baird D, Walker V, Haycock PC, Hurle MR, et al.
Phenome-wide Mendelian randomization mapping the influence of the plasma
proteome on complex diseases. Nat Genet. (2020) 52:1122–31. doi: 10.1038/s41588–
020-0682–6

18. Yang M, Su Y, Xu K, Wan X, Xie J, Liu L, et al. Iron, copper, zinc and magnesium
on rheumatoid arthritis: a two-sample Mendelian randomization study. Int J Environ
Health Res. (2023) 30:1–14. doi: 10.1080/09603123.2023.2274377

19. Bottigliengo D, Foco L, Seibler P, Klein C, König IR, Del Greco MF. AMendelian
randomization study investigating the causal role of inflammation on Parkinson’s
disease. Brain. (2022) 145:3444–53. doi: 10.1093/brain/awac193

20. Gudicha DW, Schmittmann VD, Vermunt JK. Statistical power of likelihood
ratio and Wald tests in latent class models with covariates. Behav Res Methods. (2017)
49:1824–37. doi: 10.3758/s13428–016-0825-y

21. Fridley BL, Iversen E, Tsai YY, Jenkins GD, Goode EL, Sellers TA. A latent model
for prioritization of SNPs for functional studies. PloS One. (2011) 6:e20764.
doi: 10.1371/journal.pone.0020764

22. Armstrong RA. When to use the Bonferroni correction. Ophthalmic Physiol Opt.
(2014) 34:502–8. doi: 10.1111/opo.12131

23. Tang D, Chen M, Huang X, Zhang G, Zeng L, Zhang G, et al. SRplot: A free
online platform for data visualization and graphing. PloS One. (2023) 18:e0294236.
doi: 10.1371/journal.pone.0294236

24. Burgess S, Small DS, Thompson SG. A review of instrumental variable estimators
for Mendelian randomization. Stat Methods Med Res. (2017) 26:2333–55. doi: 10.1177/
0962280215597579
Frontiers in Immunology 11
25. Hukku A, Pividori M, Luca F, Pique-Regi R, Im HK, Wen X. Probabilistic
colocalization of genetic variants from complex and molecular traits: promise and
limitations. Am J Hum Genet. (2021) 108:25–35. doi: 10.1016/j.ajhg.2020.11.012

26. Su J, Zhou W, Yuan H, Wang H, Zhang H. Identification and functional analysis
of novel biomarkers in adenoid cystic carcinoma. Cell Mol Biol (Noisy-le-grand). (2023)
69:203–7. doi: 10.14715/cmb/2023.69.6.31

27. Lin J, Zhou J, Xu Y. Potential drug targets for multiple sclerosis identified
through Mendelian randomization analysis. Brain. (2023) 146:3364–72. doi: 10.1093/
brain/awad070

28. Chen Y, Li C, Cheng S, Pan C, Zhang H, Zhang J, et al. The causal relationships
between sleep-related phenotypes and body composition: A Mendelian randomized
study. J Clin Endocrinol Metab. (2022) 107:e3463–73. doi: 10.1210/clinem/dgac234

29. Yang R, Chen H, Xing L, Wang B, Hu M, Ou X, et al. Hypoxia-induced
circWSB1 promotes breast cancer progression through destabilizing p53 by interacting
with USP10. Mol Cancer. (2022) 21:88. doi: 10.1186/s12943–022-01567-z

30. Yuan S, Sun J, Lu Y, Xu F, Li D, Jiang F, et al. Health effects of milk consumption:
phenome-wide Mendelian randomization study. BMC Med. (2022) 20:455.
doi: 10.1186/s12916–022-02658-w

31. Liu X, Tian D, Li C, Tang B, Wang Z, Zhang R, et al. GWAS Atlas: an updated
knowledgebase integrating more curated associations in plants and animals. Nucleic
Acids Res. (2023) 51:D969–76. doi: 10.1093/nar/gkac924

32. Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, et al.
PhenoScanner V2: an expanded tool for searching human genotype-phenotype
associations. Bioinformatics. (2019) 35:4851–3. doi: 10.1093/bioinformatics/btz469

33. Freshour SL, Kiwala S, Cotto KC, Coffman AC, McMichael JF, Song JJ, et al.
Integration of the Drug-Gene Interaction Database (DGIdb 4.0) with open
crowdsource efforts. Nucleic Acids Res. (2021) 49:D1144–51. doi: 10.1093/nar/gkaa1084

34. Wang J, Kang Z, Liu Y, Li Z, Liu Y, Liu J. Identification of immune cell
infiltration and diagnostic biomarkers in unstable atherosclerotic plaques by integrated
bioinformatics analysis and machine learning. Front Immunol. (2022) 13:956078.
doi: 10.3389/fimmu.2022.956078

35. Prestegard JH. A perspective on the PDB’s impact on the field of glycobiology.
J Biol Chem. (2021) 296:100556. doi: 10.1016/j.jbc.2021.100556

36. Seeliger D, de Groot BL. Ligand docking and binding site analysis with PyMOL
and Autodock/Vina. J Comput Aided Mol Des. (2010) 24:417–22. doi: 10.1007/s10822–
010-9352–6

37. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Zhou Z, et al. PubChem’s bioAssay
database. Nucleic Acids Res. (2012) 40:D400–12. doi: 10.1093/nar/gkr1132

38. O’Boyle NM, Morley C, Hutchison GR. Pybel: a Python wrapper for the
OpenBabel cheminformatics toolkit. Chem Cent J. (2008) 2:5. doi: 10.1186/1752–
153X-2–5

39. Harini M, Kavitha K, Prabakaran V, Krithika A, Dinesh S, Rajalakshmi A, et al.
Identification of apigenin-4’-glucoside as bacterial DNA gyrase inhibitor by QSAR
modeling, molecular docking, DFT, molecular dynamics, and in vitro confirmation
studies. J Mol Model. (2024) 30:22. doi: 10.1007/s00894–023-05813-z

40. Govender N, Zulkifli NS, Badrul Hisham NF, Ab Ghani NS, Mohamed-Hussein
ZA. Pea eggplant (Solanum torvum Swartz) is a source of plant food polyphenols with
SARS-CoV inhibiting potential. PeerJ. (2022) 10:e14168. doi: 10.7717/peerj.14168

41. Fattorini F, Gentileschi S, Cigolini C, Terenzi R, Pata AP, Esti L, et al. Axial
spondyloarthritis: one year in review 2023. Clin Exp Rheumatol. (2023) 41:2142–50.
doi: 10.55563/clinexprheumatol/9fhz98

42. Drosos AA, Venetsanopoulou AI, Voulgari PV. Axial Spondyloarthritis:
Evolving concepts regarding the disease’s diagnosis and treatment. Eur J Intern Med.
(2023) 117:21–7. doi: 10.1016/j.ejim.2023.06.026

43. Kenyon M, Maguire S, Rueda Pujol A, O’Shea F, McManus R. The genetic
backbone of ankylosing spondylitis: how knowledge of genetic susceptibility informs
our understanding and management of disease. Rheumatol Int. (2022) 42:2085–95.
doi: 10.1007/s00296–022-05174–5

44. Chen Y, Liu S, Gong W, Guo P, Xue F, Zhou X, et al. Protein-centric omics
integration analysis identifies candidate plasma proteins for multiple autoimmune
diseases. Hum Genet. (2023). doi: 10.1007/s00439–023-02627–0

45. Gui J, Meng L, Huang D, Wang L, Yang X, Ding R, et al. Identification of novel
proteins for sleep apnea by integrating genome-wide association data and human brain
proteomes. Sleep Med. (2023) 114:92–9. doi: 10.1016/j.sleep.2023.12.026

46. Schifferli JA, Paccaud JP. Two isotypes of human C4, C4A and C4B have
different structure and function. Complement Inflamm. (1989) 6:19–26. doi: 10.1159/
000463068

47. Coss SL, Zhou D, Chua GT, Aziz RA, Hoffman RP, Wu YL, et al. The
complement system and human autoimmune diseases. J Autoimmun. (2023)
137:102979. doi: 10.1016/j.jaut.2022.102979

48. Yang C, Ding P, Wang Q, Zhang L, Zhang X, Zhao J, et al. Inhibition of
complement retards ankylosing spondylitis progression. Sci Rep. (2016) 6:34643.
doi: 10.1038/srep34643
frontiersin.org

https://doi.org/10.1111/1756&ndash;185X.14080
https://doi.org/10.1111/1756&ndash;185X.14080
https://doi.org/10.4078/jrd.22.0023
https://doi.org/10.4078/jrd.22.0023
https://doi.org/10.4110/in.2022.22.e9
https://doi.org/10.1002/acr.24025
https://doi.org/10.4155/fmc-2019&ndash;0307
https://doi.org/10.2174/0109298665275655231103105924
https://doi.org/10.2174/0109298665275655231103105924
https://doi.org/10.7150/thno.43298
https://doi.org/10.1038/s41573&ndash;022-00561-w
https://doi.org/10.1001/jamapsychiatry.2021.0005
https://doi.org/10.1001/jamapsychiatry.2021.0005
https://doi.org/10.1161/STROKEAHA.122.040598
https://doi.org/10.1038/s41593&ndash;021-00886&ndash;6
https://doi.org/10.1038/s41593&ndash;021-00886&ndash;6
https://doi.org/10.1038/s41586&ndash;018-0175&ndash;2
https://doi.org/10.1038/s41586&ndash;018-0175&ndash;2
https://doi.org/10.1038/ncomms14357
https://doi.org/10.1371/journal.pgen.1006706
https://doi.org/10.1038/s41467&ndash;018-05512-x
https://doi.org/10.1126/science.aaq1327
https://doi.org/10.1038/s41588&ndash;020-0682&ndash;6
https://doi.org/10.1038/s41588&ndash;020-0682&ndash;6
https://doi.org/10.1080/09603123.2023.2274377
https://doi.org/10.1093/brain/awac193
https://doi.org/10.3758/s13428&ndash;016-0825-y
https://doi.org/10.1371/journal.pone.0020764
https://doi.org/10.1111/opo.12131
https://doi.org/10.1371/journal.pone.0294236
https://doi.org/10.1177/0962280215597579
https://doi.org/10.1177/0962280215597579
https://doi.org/10.1016/j.ajhg.2020.11.012
https://doi.org/10.14715/cmb/2023.69.6.31
https://doi.org/10.1093/brain/awad070
https://doi.org/10.1093/brain/awad070
https://doi.org/10.1210/clinem/dgac234
https://doi.org/10.1186/s12943&ndash;022-01567-z
https://doi.org/10.1186/s12916&ndash;022-02658-w
https://doi.org/10.1093/nar/gkac924
https://doi.org/10.1093/bioinformatics/btz469
https://doi.org/10.1093/nar/gkaa1084
https://doi.org/10.3389/fimmu.2022.956078
https://doi.org/10.1016/j.jbc.2021.100556
https://doi.org/10.1007/s10822&ndash;010-9352&ndash;6
https://doi.org/10.1007/s10822&ndash;010-9352&ndash;6
https://doi.org/10.1093/nar/gkr1132
https://doi.org/10.1186/1752&ndash;153X-2&ndash;5
https://doi.org/10.1186/1752&ndash;153X-2&ndash;5
https://doi.org/10.1007/s00894&ndash;023-05813-z
https://doi.org/10.7717/peerj.14168
https://doi.org/10.55563/clinexprheumatol/9fhz98
https://doi.org/10.1016/j.ejim.2023.06.026
https://doi.org/10.1007/s00296&ndash;022-05174&ndash;5
https://doi.org/10.1007/s00439&ndash;023-02627&ndash;0
https://doi.org/10.1016/j.sleep.2023.12.026
https://doi.org/10.1159/000463068
https://doi.org/10.1159/000463068
https://doi.org/10.1016/j.jaut.2022.102979
https://doi.org/10.1038/srep34643
https://doi.org/10.3389/fimmu.2024.1394438
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1394438
49. Fatica M, D’Antonio A, Novelli L, Triggianese P, Conigliaro P, Greco E, et al.
How has molecular biology enhanced our undertaking of axSpA and its management.
Curr Rheumatol Rep. (2023) 25:12–33. doi: 10.1007/s11926–022-01092–4

50. Saad MA, Abdul-Sattar AB, Abdelal IT, Baraka A. Shedding light on the role of
ERAP1 in axial spondyloarthritis. Cureus. (2023) 15:e48806. doi: 10.7759/cureus.48806

51. EvansDM,SpencerCC,PointonJJ,SuZ,HarveyD,KochanG,etal. Interactionbetween
ERAP1andHLA-B27 inankylosing spondylitis implicatespeptidehandling in themechanism
forHLA-B27 in disease susceptibility.Nat Genet. (2011) 43:761–7. doi: 10.1038/ng.873
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Puente L, Rios-Parra A, et al. AIF1: function and connection with inflammatory
diseases. Biol (Basel). (2023) 12:694. doi: 10.3390/biology12050694

68. Elizondo DM, Andargie TE, Yang D, Kacsinta AD, Lipscomb MW. Inhibition of
allograft inflammatory factor-1 in dendritic cells restrains CD4+ T cell effector
responses and induces CD25+Foxp3+ T regulatory subsets. Front Immunol. (2017)
8:1502. doi: 10.3389/fimmu.2017.01502

69. Fiehn C. Biologikatherapie von rheumatoider Arthritis und Spondyloarthritiden
[Treatment of rheumatoid arthritis and spondylarthritis with biologics]. Internist
(Berl). (2022) 63:135–42. doi: 10.1007/s00108–021-01248-x

70. Tahir H. Therapies in ankylosing spondylitis-from clinical trials to clinical
practice. Rheumatol (Oxford). (2018) 57:vi23–8. doi: 10.1093/rheumatology/key152

71. Shi Y, Wei B, Li L, Wang B, Sun M. Th17 cells and inflammation in neurological
disorders: Possible mechanisms of action. Front Immunol. (2022) 13:932152.
doi: 10.3389/fimmu.2022.932152

72. Simone D, Stingo A, Ciccia F. Genetic and environmental determinants of T
helper 17 pathogenicity in spondyloarthropathies. Front Genet. (2021) 12:703242.
doi: 10.3389/fgene.2021.703242

73. Zeng J, Li M, Zhao Q, Chen M, Zhao L, Wei S, et al. Small molecule inhibitors of
RORgt for Th17 regulation in inflammatory and autoimmune diseases. J Pharm Anal.
(2023) 13:545–62. doi: 10.1016/j.jpha.2023.05.009

74. Zielinski CE, Mele F, Aschenbrenner D, Jarrossay D, Ronchi F, Gattorno M,
et al. Pathogen-induced human TH17 cells produce IFN-g or IL-10 and are regulated
by IL-1b. Nature. (2012) 484:514–8. doi: 10.1038/nature10957
75. ZhuW, He X, Cheng K, Zhang L, Chen D,Wang X, et al. Ankylosing spondylitis:

etiology, pathogenesis, and treatments. Bone Res. (2019) 7:22. doi: 10.1038/s41413–
019-0057–8

76. Wellcome Trust Case Control Consortium. Genome-wide association study of
14,000 cases of seven common diseases and 3,000 shared controls. Nature. (2007)
447:661–78. doi: 10.1038/nature05911

77. Vecellio M, Cohen CJ, Roberts AR, Wordsworth PB, Kenna TJ. RUNX3 and T-
bet in immunopathogenesis of ankylosing spondylitis-novel targets for therapy? Front
Immunol. (2019) 9:3132. doi: 10.3389/fimmu.2018.03132

78. Abdollahi E, Tavasolian F, Momtazi-Borojeni AA, Samadi M, Rafatpanah H.
Protective role of R381Q (rs11209026) polymorphism in IL-23R gene in immune-
mediated diseases: A comprehensive review. J Immunotoxicol. (2016) 13:286–300.
doi: 10.3109/1547691X.2015.1115448
frontiersin.org

https://doi.org/10.1007/s11926&ndash;022-01092&ndash;4
https://doi.org/10.7759/cureus.48806
https://doi.org/10.1038/ng.873
https://doi.org/10.5152/tjg.2016.15466
https://doi.org/10.1007/s00296&ndash;010-1712-y
https://doi.org/10.1007/s00296&ndash;010-1712-y
https://doi.org/10.1136/annrheumdis-2014&ndash;206996
https://doi.org/10.1111/aji.12652
https://doi.org/10.1136/annrheumdis-2016&ndash;209449
https://doi.org/10.1136/annrheumdis-2016&ndash;209449
https://doi.org/10.1016/j.intimp.2017.08.018
https://doi.org/10.7759/cureus.54268
https://doi.org/10.2147/JIR.S439604
https://doi.org/10.1038/srep07405
https://doi.org/10.1016/j.cellimm.2013.07.008
https://doi.org/10.1016/j.cellimm.2013.07.008
https://doi.org/10.2174/1566524017666170306122643
https://doi.org/10.2174/1566524017666170306122643
https://doi.org/10.1038/nri3495
https://doi.org/10.1007/s12026&ndash;023-09419&ndash;8
https://doi.org/10.1002/art.38809
https://doi.org/10.1016/j.matbio.2018.03.004
https://doi.org/10.3390/biology12050694
https://doi.org/10.3389/fimmu.2017.01502
https://doi.org/10.1007/s00108&ndash;021-01248-x
https://doi.org/10.1093/rheumatology/key152
https://doi.org/10.3389/fimmu.2022.932152
https://doi.org/10.3389/fgene.2021.703242
https://doi.org/10.1016/j.jpha.2023.05.009
https://doi.org/10.1038/nature10957
https://doi.org/10.1038/s41413&ndash;019-0057&ndash;8
https://doi.org/10.1038/s41413&ndash;019-0057&ndash;8
https://doi.org/10.1038/nature05911
https://doi.org/10.3389/fimmu.2018.03132
https://doi.org/10.3109/1547691X.2015.1115448
https://doi.org/10.3389/fimmu.2024.1394438
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Genetic associations in ankylosing spondylitis: circulating proteins as drug targets and biomarkers
	Introduction
	Materials and methods
	Screening instrumental variables and data sources
	MR and statistical analysis
	Colocalization analysis
	Protein–protein interaction network and GO/KEGG analysis
	Phenome-wide MR analysis
	Drugs investigation: DGIdb analysis
	Molecular docking analysis of MAPK14 with selected pharmacological agents

	Results
	Identifying plasma proteins related to AS
	Exploring causal plasma proteins on AS
	Enrichment and construction of gene networks of drug targets
	Colocalization analysis
	Phenomewide MR analysis
	Drug validation
	Molecular docking

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


