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Sterile inflammation of
peritoneal membrane caused
by peritoneal dialysis: focus on
the communication between
immune cells and
peritoneal stroma
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Haijuan Yang, Ning An, Chen Yang, Jixin Tang,
Huafeng Liu* and Cuiwei Yao*

Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases,
Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute
of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
Peritoneal dialysis is a widely used method for treating kidney failure. However,

over time, the peritoneal structure and function can deteriorate, leading to the

failure of this therapy. This deterioration is primarily caused by infectious and

sterile inflammation. Sterile inflammation, which is inflammation without

infection, is particularly concerning as it can be subtle and often goes

unnoticed. The onset of sterile inflammation involves various pathological

processes. Peritoneal cells detect signals that promote inflammation and

release substances that attract immune cells from the bloodstream. These

immune cells contribute to the initiation and escalation of the inflammatory

response. The existing literature extensively covers the involvement of different

cell types in the sterile inflammation, including mesothelial cells, fibroblasts,

endothelial cells, and adipocytes, as well as immune cells such as macrophages,

lymphocytes, and mast cells. These cells work together to promote the

occurrence and progression of sterile inflammation, although the exact

mechanisms are not fully understood. This review aims to provide a

comprehensive overview of the signals from both stromal cells and

components of immune system, as well as the reciprocal interactions between

cellular components, during the initiation of sterile inflammation. By

understanding the cellular and molecular mechanisms underlying sterile

inflammation, we may potentially develop therapeutic interventions to

counteract peritoneal membrane damage and restore normal function.
KEYWORDS
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1 Introduction

Peritoneal dialysis (PD) is a widely used method for renal

replacement therapy, similar to hemodialysis and renal

transplantation. It involves using the peritoneal membrane as a

dialysis membrane to treat end-stage renal disease (ERSD) (1–3). In

this procedure, the peritoneal membrane cavity serves as a medium

for the transfer of waste products and solutes between the body and

the peritoneal dialysis fluids (PDFs). A permanent catheter is

inserted to introduce PDFs into the peritoneal cavity. These PDFs

contain glucose as an osmotic agent, which facilitates the movement

of fluid from the circulation to the peritoneal membrane cavity,

eliminating the metabolic waste products and excess water (4).

Globally, PD is utilized by over 272,000 patients, accounting for

approximately 11% of dialysis patients (5). PD therapy offers a

higher quality of life and lower cost for individuals with ESRD

compared to hemodialysis, owing to its simplicity of operation, low

risk of cross-infectious, and preservation of residual renal function

(6–8). Traditionally, the most commonly used PDFs have an acidic

pH and rely on high osmotic glucose solutions to facilitate water

and solute exchange. However, in recent years, various types of

biocompatible PDFs, such as bicarbonate-based, icodextrin-based,

amino acid-based solutions, have also become available in the

market (9).

Although PD therapy greatly improves the quality of life for

individuals with ESRD, it is not without its drawbacks. One notable

concern is the occurrence of PD-related peritonitis, which can lead

to chronic inflammation and damage to peritoneal cells (10–13).

The development of peritonitis in PD can be attributed to both

infectious and non-infectious factors (14). In particular, infection-

related peritonitis remains the most common cause of technique

failure and subsequent transition to hemodialysis in academic

settings. The peritoneal membrane often undergoes significant

changes in both structure and function during prolonged dialysis,

leading to chronic inflammation. These alterations include

mesothelial-to-mesenchymal transition, the growth of new blood

vessels (neoangiogenesis), the development of fibrosis beneath the

mesothelium (sub‐mesothelial fibrosis), and the occurrence of

hyalinizing vasculopathy. These factors can cause irreversible

damage to the peritoneal tissue, resulting in the failure of

ultrafiltration and a decline in the effectiveness of dialysis (15–

17). Unfortunately, the chronic sterile inflammation caused by these

various factors frequently goes unnoticed or receives

limited attention.

The induction of sterile inflammation is a complex pathological

process in which resident cells sense pro-inflammatory signals and

release extracellular mediators, leading to the recruitment of

circulating immune cells that contribute to the initiation and

escalation of the inflammatory response. Consequently, the

development of sterile inflammation is the result of intricate

signaling interactions between stromal resident cells and

circulating immune cells, understanding of which has the

potential to improve the medical management of this harmful

condition. In recent years, there have been some successful

attempts to address this issue. This paper focuses on the
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interactions between immune cells and peritoneal stroma cells in

sterile inflammation. Furthermore, potential interventions for

sterile inflammation caused by PD are discussed, which could be

significantly important in preventing aseptic changes in PD.
2 Interactions between stromal
resident cells and immune cells

2.1 Stromal Components of the Peritoneal
Membrane: the Source of Inflammation

2.1.1 Peritoneal mesothelial cells and fibroblasts:
center of inflammation onset

The peritoneum is structured into three distinct layers: the

mesothelium, the basal lamina, and the submesothelial stroma. The

submesothelial stroma provides support to the mesothelial cells and

the basal lamina, and is mainly composed of collagen fibers, (myo)

fibroblasts, adipocytes, as well as lymphatic and blood vessels (18).

In the context of PD, the prolonged exposure of the mesothelium to

bioincompatible PDFs and their breakdown products triggers an

inflammatory response in mesothelial cell. Consequently, this

response stimulates the production of cytokines, chemokines, and

extracellular matrix (ECM) proteins (19–23). These factors have the

potential to initiate damage to the peritoneum (24). The occurrence

of cellular stress and tissue damage triggers the production of ECM

degradation products and the release of endogenous cellular

constituents, which are referred to as damage-associated

molecular patterns (DAMPs) (25). These DAMPs activate pro-

inflammatory and pro-fibrotic signaling pathways. Toll-like

receptors (TLRs), specifically TLR2 and TLR4, as well as the

receptor of advanced glycation end products (RAGEs), plays a

crucial role in recognizing and responding to DAMPs (25–28).

They recognize a wide range of DAMPs that are released during

tissue injury, including hyaluronan and fibronectin resulting from

matrix degradation, as well as heat shock proteins and high mobility

group box-1 (HMGB1) released due to cellular stress (25, 29–33).

Activation of TLRs triggers the production of inflammatory and

fibrotic cytokines, such as tumor necrosis factor-a (TNF-a),
interleukin 6 (IL-6), IL-8 and transforming growth factor b1
(TGF-b1) (34, 35). However, the use of soluble TLR2 (a TLR

inhibitor) has been found to reduce the development of sterile

peritoneal inflammation and fibrosis (28, 36). Additionally, when

mesothelial cells are exposed to PDFs, they release HMGB1 from

the nucleus. This HMGB1 acts on the mesothelial cells in an

autocrine manner, stimulating the expression of IL-8 and

monocyte chemoattractant protein-1 (MCP-1) through the

mitogen-activated protein kinase (MAPK) signaling pathways

(36–38). Importantly, elevated levels of HMGB1 in the serum

have been associated with microinflammatory conditions in

continuous ambulatory peritoneal dialysis (CAPD) patients.

Inhibition of HMGB1 has shown a protective effect on peritoneal

function in peritonitis models (39, 40).

Mitochondrial dysfunction plays a role in the inflammatory

response of human peritoneal mesothelial cells (HPMCs) derived
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from PDFs (41). A key function of mitochondria is the production

of reactive oxygen species (ROS), which are involved in oxidative

stress (42). Recent research has shown that mitochondria also

release DAMPs, which play a significant role in inflammatory and

immune responses (43). In addition, impaired mitochondria release

DAMPs, such as mitochondrial ROS and mitochondrial DNA,

which are recognized by the immune system and trigger an

immune response (44). This response can further damage

mitochondrial, leading to a cycle of mitochondrial dysfunction

and activation of inflammation. Specifically, mitochondrial DNA

has been shown to activate of TLRs, leading to an inflammatory

response (45). Additionally, mitochondrial DNA can activate the

NACHT, LRR and PYD domains-containing protein 3 (NLRP3)

inflammasome, resulting in the secretion of pro-inflammatory

cytokines IL-1b and IL-18 (46–49). High glucose levels in PDFs

also contribute to mitochondrial damage and apoptosis in HPMCs

(50, 51). Moreover, mitochondrial dysfunction in HPMCs is

implicated in T cells differentiation, further exacerbating the

inflammatory response (52). The inhibition of ROS could have a

significant impact on the activation of NLRP3, production of ROS,

and expression of IL-1b (53). Furthermore, the application of

resveratrol has been shown to induce mitophagy/autophagy

through adenosine monophosphate-activated protein kinase,

resulting in a decrease in the inflammatory response by

suppressing the NLRP3 inflammasome (49). Additionally, recent

research has shown that paricalcitol can alleviate the epithelial-to-

mesenchymal transition (EMT) of HPMCs triggered by TGF-b1
through the inhibition of the NLRP3 inflammasome and oxidative

stress (54).

Numerous studies have provided evidence that nuclear factor-

kB (NF-kB) pathway plays a crucial role in the PD-related sterile

inflammation. In patients undergoing CAPD, the presence of

various compounds and glycated proteins strongly activates the

NF-kB pathway in HPMCs, leading to the release of inflammatory

mediators such as IL-1b, IL-6 and TNF-a, as well as the activation
of cyclooxygenase-2 (55). In rat models, NF-kB signaling pathways

are also activated by high glucose and hypertonic PDFs through a

protein kinase C (PKC)-dependent mechanism. This activation

results in an increased synthesis of MCP-1 (22, 56). Additionally,

the EMT process observed in PD patients, which is a common

disorder is also influenced by the activation of NF-kB (20, 23). A

study has shown that p38 plays a role in maintaining the expression

of E-cadherin by suppressing TGF-b-activated kinase 1 (TAK1)

NF-kB pathway, thereby inhibiting EMT in primary HPMCs (57).

The activation of p38 may also lead to an increase in IL-8

transcription through NF-kB and post-transcriptional molecular

mechanisms (58–60). Another study has indicated that the process

of EMT is regulated by the ERK/NF-kB/Snail1 pathway in primary

mesothelial cells from PD patients (20). However, the

administration of parthenolide, a NF-kB inhibitor, has been

shown to reduce inflammation and peritoneal fibrosis (PF)

through the NF-kB/TGF-b/Smad pathway, thereby reducing the

level of IL-6, TNF-a, and MCP-1 (61).

Recent researches have demonstrated that peroxisome

proliferator-activated receptor-gamma (PPAR-g), a nuclear

hormone receptor that regulates glucose and lipid homeostasis,
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possesses anti-inflammatory properties (62, 63). Exposure of the

peritoneum to PDFs leads to EMT of HPMCs, fibrosis,

angiogenesis, and an inflammatory response. However,

administration of the PPAR-g agonist rosiglitazone in mice has

been found to alleviate these changes (64). The PPARb/d agonist

GW501516 has also been found to have a mitigating effect on

peritonitis in rat models of PF through the inhibition of the TAK1–

NF-kB pathway (65). Furthermore, microsomal prostaglandin E

synthase-1 and its derived prostaglandin E2 also play a crucial role

in PF (66). Recent researches have shown that the treatment of

ONO-AE3–208, a prostaglandin E2 receptor 4, can suppress both

the activation of the NLRP3 inflammasome and the expression of

inflammatory cytokines induced by high glucose in rat peritoneal

mesothelial cells. This is achieved by regulating NF-kB signaling

(36, 67, 68). Additionally, the janus kinase/signal transducer and

activator of transcription (JAK/STAT) signaling pathway has been

found to contribute to the inflammatory response in the

peritoneum of patients undergoing PD (69). Furthermore, both

the p38 MAPK pathway and the PKC signaling have been shown to

be activated in high glucose-induced inflammation in HPMCs (70,

71). It has also been observed that high glucose treatment stimulates

IL-6 synthesis in Met-5A cell, and IL-6 subsequently stimulates

vascular endothelial growth factor (VEGF) synthesis, partially

dependent on the JAK/STAT3 signaling pathway (Figure 1) (72).

Mesothelial cells possess the remarkable ability to synthesize

and release a variety of complement factors, specifically C4, C3, and

C5-C9 (73, 74). These complement proteins play a crucial role in

the immune response. Additionally, other tissue-resident cells,

including immune cells, may also contribute to the production of

complement proteins within the peritoneal cavity. Studies have

confirmed the presence of complement system molecules, such as

C3-C9 and factor D, in the fluid that is drained during PD (75, 76).

In fact, proteomic analysis has identified up to 18 different

complement proteins, including C3, C4, C9, factors D, B, H, and

I, in the PDFs (77–81). It is noteworthy that the complement system

can be activated within the peritoneal cavity due to the production

and expression of various effectors (such as C3, C4, C5, and C6–C9)

and their regulators (such as membrane cofactor protein, CD55,

and CD59) by mesothelial cells derived from healthy individuals

and patients with kidney disease who are undergoing PD (73, 74, 82,

83). Activation of the complement system in PD patients is believed

to occur due to exposure to PDFs, particularly those containing

high levels of glucose and glucose degradation products. This

exposure to high glucose PDFs can trigger an excessive activation

of the complement system, leading to local inflammation, cellular

damage, and ultimately causing structural alterations in the

peritoneal membrane. These alterations may include vascular

proliferation, vasculopathy and PF (84, 85).

Glucose and its degradation products found in PDFs have been

identified as triggers of EMT in mesothelial cells. This transition

causes the cells to transform into fibroblast-like cells with increased

migratory, invasive, and fibrogenic properties (37, 86). As a result,

mesothelial cells undergoing EMT secrete large amounts of TGF-b
and VEGF. The local production of VEGF by transitioning

mesothelial cells appears to play a pivotal role in the mechanisms

involved in peritoneal angiogenesis and vascular permeability. This
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process may contribute to the inflammation within the peritoneum

(87, 88).

The EMT of mesothelial cells is a critical source of peritoneal

fibroblasts, which have been implicated in the aseptic inflammation

induced by PD. Similar to mesothelium cells, peritoneal fibroblasts,

have the ability to synthesize various chemokines. One example is

the release of chemokines MCP-1/CCL2 and IL-8/CXCL8, which

are chemokines involved in recruiting immune cells, by peritoneal

fibroblasts. This process is mediated by the NF-kB family, a group

of transcription factors that play a role in inflammation (88).

Additionally, peritoneal fibroblasts can produce cytokines of

CXCL1 and CXCL8, which target neutrophils. The production of

these cytokines is primarily induced by IL-1b (89). Furthermore,

peritoneal fibroblasts have the capability to produce CCL5, a potent

chemoattractant for mononuclear leukocytes. The production of

CCL5 is intricately regulated by IFN-g, a cytokine with

immunomodulatory functions. Additionally, the treatment of

peritoneal fibroblasts with IFN-g can induce the production of

CCL5 in response to CD40 ligand, a protein involved in immune

cell activation (90).

Furthermore, peritoneal fibroblasts have been found to produce

chemokines in response to exposure to high levels of glucose. In
Frontiers in Immunology 04
vitro studies have demonstrated that stimulation of peritoneal

fibroblasts with high glucose PDFs leads to increased expression

of chemokine (C-C motif) ligand mRNA and nuclear factor of

activated T cells 5 (NFAT5) (91). Previous research has indicated

that NFAT5 modulates the activity of NF-kB in response to osmotic

stress (92). The increased expression of NFAT5 in human

peritoneal fibroblasts is associated with NF-kB activation in

patients undergoing PD, potentially leading to the recruitment

of macrophages.

2.1.2 Endothelial cells: the window of
inflammatory cells infiltration

The presence of PD appears to have a notable proinflammatory

effect on the endothelium (93). In healthy individuals, the

expression of IL-17, a pro-inflammatory cytokine, is minimal in

the peritoneum, but it is highly expressed in peritoneal biopsies of

long-term PD patients (94). This increase in IL-17 contributes to

angiogenic stimulation and direct damage to the peritoneum in PD

patients. IL-17 up-regulates the expression of VEGF, leading to

enhanced angiogenesis. It also promotes the production of CXC

chemokines such as CXCL1 and CXCL8, which further contribute

to inflammation.
FIGURE 1

The role of peritoneal mesothelial cells in sterile inflammation. DAMPs accumulate during chronic exposure to bioincompatible PDFs. These DAMPs
subsequently activate pro-inflammatory and profibrotic responses by activating TLRs and RAGE. In the condition of PDFs, the mesothelial cells secrets
HMGB1, a type of DAMPs, which in turn enhances the inflammatory response. Furthermore, mitochondrial dysfunction induced by PDFs leads to the
activation of NLRP3, triggering the secretion of the pro-inflammatory cytokines.
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Additionally, IL-17 stimulates the release of IL-6, another pro-

inflammatory cytokine, from various sources including HPMCs,

endothelial cells, macrophages, and monocytes (95, 96). IL-6 upon,

specific binding to its receptor, further enhances the production of

angiogenic molecules like VEGF and adhesion molecules such as

intercellular adhesion molecule 1 (97–99). With the stimulation of

PDFs, the above inflammation factors were significantly higher in

the endothelial cells via activating both p38 MAPK and NF-kB
pathway. This observation was consistent with the findings in PD

patients, where increased levels of these inflammatory factors were

observed (93). The stimulation of endothelial cells by these

inflammatory factors, such as VEGF, resulted in microvascular

alterations characterized by increased vascular permeability,

microcirculation density, and transendothelial migration of

infiltrating cells. These alterations can contribute to endothelial

cells proliferation, inflammation, and injury, ultimately leading to

peritoneal inflammation, fibrosis, and reduced efficacy of PD

(Figure 2) (100–102).

Previous studies have shown that cultured HPMCs produce

VEGF-A and VEGF-C in response to glucose degradation products

or cytokines (103, 104). However, it has been observed that

targeting of VEGF-A by miR-15a-5p can suppress inflammation

and fibrosis in HPMCs induced by PD (104). In addition, the use of
Frontiers in Immunology 05
biocompatible PDFs has been found to result in fewer adverse

reactions in endothelial dysfunction compared to conventional

PDFs in PD patients (105).

2.1.3 Adipocytes: the neglected and
important one

In recent years, the potential impact of adipocytes in PD has been

overlooked. There is a noticeable increase in body mass among PD

patients, with visceral fat being themain contributor (106, 107). Long-

term PD patients also display elevated levels of adipokines in their

plasma (108). Ultrastructural investigations have shown that dialysate

can penetrate adipose tissue in the presence of an injured mesothelial

monolayer (109). Adipocytes have various functions, including

autocrine, paracrine, and endocrine activities. They release a range of

adipokines and cytokines, such as leptin, adiponectin, resistin, visfatin,

IL-6, TNF-a, TGF-b, VEGF, and others (110). On one hand,

adipokines such as leptin and resistin have pro-inflammatory and

pro-angiogenic effects. Leptin, a hormone secreted in large amounts by

adipocytes, can phosphorylate VEGFR2 and activate the p38 MAPK/

Akt/COX-2 signaling pathway, thereby promoting angiogenesis (111).

In addition, hyperleptinemia induced by PD also stimulates

macrophages and monocytes to secret IL-6 and TNF-a (112).

Conversely, certain adipokines, such as adiponectin and omentin,
FIGURE 2

Endothelial cells alterations in PD. Both inflammatory cytokines IL-6 and IL-17 secreted from HPMCs and immune cells contribute to increase
vascular permeability, microcirculation density, and transendothelial migration of infiltrating cells via up-regulating the expression of VEGF.
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have anti-inflammatory and anti-angiogenic properties. However,

their expression is suppressed in the peritoneum (113). Adiponectin

plays a crucial role in inhibiting the production of adhesionmolecules

by endothelial cells, thereby preventing the attachment of monocytes

(114). Moreover, it reduces the activation of NF-kB, which is induced
byTNF-a. However, there is a negative feedback loop betweenTNF-a
and adiponectin, as TNF-a downregulates the production of

adiponectin, creating a vicious cycle that leads to lower adiponectin

release (115). Furthermore, adipose-derived cytokine, promotes the

propagation of inflammation by stimulation macrophage infiltration

into the interstitial spaces within adipose tissue (116). Prolonged

dialysis has been found to result in an accumulation of adipocytes

and infiltrated macrophages within the body, which in turn secrete

various adipokines and cytokines that contribute to inflammation and

tissue damage (117–119). Interestingly, the omentum, a fatty tissue

layer within the abdomen, contains a significant number of progenitor

cells (120). The stromal vascular fraction derived from adipose tissues

also contains pluripotent mesenchymal stem cells that have the ability

to regenerate damaged tissue (121). This discovery offers a promising

approach for preserving the functionality of the peritoneal

membrane (Figure 3).
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2.2 Immune cells: the complex
signaling network

2.2.1 Macrophages: master regulators of
inflammation and fibrosis

The activation of macrophages plays a crucial role in the

advancement of kidney diseases and the ineffectiveness of

treatment for PD (Figure 4). Monocytes and macrophages

constitute a significant proportion (50%-90%) of the infiltrated

leukocytes in peritoneum (122, 123). Generally, macrophages can

be divided into two categories: tissue resident macrophages and

monocyte-derived macrophages (124). While monocyte-derived

macrophages have been shown to contribute to the progression of

inflammation and fibrosis, tissue resident macrophages have a

protective role. Surprisingly, researchers have discovered that

peritoneal resident macrophages are gradually losing their

homeostatic properties and anti-inflammatory properties, instead

exhibiting a heightened inflammatory response (125). Furthermore,

it has been observed that M2 macrophages are elevated in both the

effluents and peritoneal membrane biopsies of PD patients (126,

127). In mice induced with chlorhexidine gluconate and PDFs,
FIGURE 3

Adipocytes in inflammation and angiogenesis during PD. Adipocytes would be stimulated in the condition of injury mesothelial. The activated
adipocytes subsequently release pro-inflammatory and pro-angiogenic cytokines (e.g., leptin and resistin) and suppress anti-inflammatory cytokines
(e.g., adiponectin and omentin). Additionally, MCP-1 derived from adipose promotes macrophages infiltration to fat tissue.
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there is also an increase in the infiltration of T cells and

macrophages (128, 129). Additionally, the presence of high

glucose PDFs leads to a significant increase in inflammation and

almost complete depletion of tissue resident cells (125). The

inflammatory macrophages that infiltrate the affected area

produce inflammatory cytokines and collaborate with adipocytes,

resulting in a substantial escalation of the inflammatory

cascade (116).

Among these receptors, TLR4 has been extensively studied in

macrophage polarization and peritonitis (59, 130). The injury and

necrosis of mesothelial cells induced by high glucose exacerbate the

accumulation of extracellular TLR4 and HMGB1, resulting in the

recruitment of a significant number of macrophages to the abdominal

cavity (131, 132). Additionally, HMGB1 has the ability to activate

TLRs, initiating innate immunity and subsequently increasing the

expression of MCP-1 and the activation of macrophages (133).

Advanced glycation end products (AGEs) and glucose degradation

products can stimulate peritoneal macrophages, leading to the

secretion of cytokines such as IL-1b, IL-6, and IL-8, in HPMCs

(134). The NLRP3 inflammasome and its downstream pathway

enhances the activation of caspase-1 and the maturation of IL-1b
specifically in macrophages, contributing to the progression of
Frontiers in Immunology 07
inflammation (135, 136). Prolonged exposure to high glucose PDFs

and the cytokines can induce macrophage polarizations, which

contributes to an inflammatory response and PF (137–139). M1

macrophages release inflammatory cytokines such as IL-1b, IL-6, and
TNF-a, while M2macrophages secrete anti-inflammatory substances

like IL-10 and arginase-1 (140, 141). Previous research has shown

that high glucose induces peritoneal injury via the PKC-b pathway

and promotesM1macrophage polarization inmouse models (142). It

has been observed that PD induces a shift in adipose tissue

macrophages from M2 to M1, promoting a pro-inflammatory state

(116). Co-culturing HMrSV5 withM1macrophages resulted in a loss

of the typical epithelial cell morphology, indicating that HMrSV5

undergoes EMT through TLR4 receptors (143). Additionally,

previous studies have proposed a role of M2 macrophages in

peritoneal inflammation and PF (126, 144). It is worth mentioning

that exposure to PDFs has been shown to induce polarization of M2

macrophages and the subsequent inflammatory response, which may

be associated with the transmission of exosomes (145).

In previous research, it has been demonstrated that the

administration of the probiotic Lactobacillus casei Zhang

effectively corrects gut dysbiosis, leading to an improvement in

PF. This improvement is achieved through the inhibition of
FIGURE 4

The effect of macrophages in peritoneal damage by PDFs. Prolonged dialysis further leads to an increased capacity of recruited macrophages and a
depletion of tissue resident cells. Prolonged exposure to high glucose PDFs and the cytokines leads to the differentiation and activation of
macrophages, which onsets inflammatory response.
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macrophage-related inflammation via the PPAR-g/NF-kB pathway

(122). Moreover, the use of biocompatible PDFs has been found to

increase the recruitment of M1 macrophages in uremic mice (146).

In the context of dialysis-induced PF, mesenchymal stem cells have

been shown to induce the polarization of macrophages into the M2

phenotype through the release of IL-6 (147). Astragalus

membranaceus, a traditional Chinese medicine with anti-

inflammatory properties, has been found to inhibit the

recruitment and activation of monocytes/macrophages via the

MCP-1 pathway in rats undergoing PD (148). Moreover,

treatment with hepatocyte growth factor has been shown to

reduce the infiltration of macrophages in mouse models of PF,

while also mitigating the upregulation of proinflammatory and

profibrotic genes associated with PF (149).

2.2.2 Lymphocytes: the overactivated infiltrating
immune cells

Lymphocytes can be roughly divided into T lymphocytes and B

lymphocytes. B lymphocyte cells have been identified as important

contributors to innate immunity and autoimmunity. However,

there is little evidence suggesting their involvement in PD-related

sterile inflammation (150). On the other hand, an increased number

of T lymphocytes has been observed in the effluent of patients

undergoing PD (151). Thus, targeting the differentiation of T cells

may offer potential therapeutic strategies for treating peritoneal

damage by regulating immune and inflammatory responses.

Notably, there are notable differences in the levels of CD4+ and

CD8+ T cells in patients undergoing PD compared to healthy

individuals (152, 153). Regarding CD4+ cells subsets, Th1 cells are

characterized by increased production of IFN-g, while Th2 cells

primarily secrete IL-4 (154). Interestingly, patients undergoing

CAPD have shown a significant increase in the proportion of Th2

cells (155). This dysregulation of Th1/Th2 balance in PD patients

leads to changes in proinflammatory and anti-inflammatory

cytokines in their serum (156–158). Surprisingly, preliminary

studies have indicated that PF mice induced by PDFs exhibit an

enhanced immune response, characterized by the presence of Th17

and T cells in the peritoneum, rather than Th1 or Th2 cells (159).

Regulatory T cells (Tregs) play a crucial role in limiting

inflammation, while Th17 cells secrete various proinflammatory

cytokines. Tregs are responsible for regulating the expansion of T

cells, including Th17 cells, which have been implicated in peritoneal

damage and the development offibrosis (151, 160). A primary study

has demonstrated that exposure to PDFs leads to an imbalance of

Th17/Treg cells, with an increase in Th17 cells and a decrease in

Treg cells, ultimately resulting in peritoneal damage in mouse

models (151). Additionally, CD69, a leukocyte membrane

glycoprotein, contributes to activation of Th17 cells and the

expression of IL-17 in PD mouse models through the JAK3/

STAT5 signaling pathway (160, 161). Therapeutic inhibition of

TLR2 activity in the peritoneum has been shown to protect against

inflammation and PF induced by PDFs, resulting in an increase in

the ratio of Tregs to Th17 cells (162). Another study suggests that T

lymphocytes stimulates IL-17 expression by releasing calpains to

regulate TLR2 (163).
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Recent evidence also suggests that the IL-17A-induced

inflammatory response may contribute to peritoneal injury in

both experimental models induced by PDFs and in patients

undergoing PD (94, 146, 160, 164). Studies in mice and human

peritoneal biopsies have also demonstrated an overexpression of IL-

17 (151). It is possible that endogenous factors in the peritoneum,

such as AGEs, might regulate IL-17 levels by promoting pro-

inflammatory cytokines IL-6 and TGF-b (165, 166). Binding IL-

17A to its receptor in mesothelial cells has the ability to trigger

proinflammatory responses. Studies using cultured HPMCs have

shown that IL-17A can activate the NF-kB pathway and the release

of downstream cytokines, such as CXCL1 (167, 168). Additionally,

IL-17A has been found to stimulate peritoneal cells, resulting in the

upregulation of proinflammatory cytokines like IL-1b, IL-6 and

MCP-1, which contribute to the persistence of inflammation (48,

169). Resident gd T cells in peritoneum produce IL-17, which in

turn contributes to fibrosis and ultrafiltration failure (94).

Conversely, studies have shown that intraperitoneal injections of

a neutralizing IL-17A antibody can prevent peritoneal changes and

reduced PF in mice exposed to PDFs (94).

Various therapeutic approaches aimed at preventing peritoneal

damage by targeting the Th17/Treg axis have been investigated

(Figure 5). In PD patients, treatment with rosiglitazone has been

shown to lower levels of IL-17 and IL-23 and increase levels of

FoxP3+Treg activity (64). Paricalcitol, the vitamin D activator, also

inhibits IL-17 production and slows the progression of PF (170). The

dipeptide alanyl-glutamine has also been found to ameliorate PF and

attenuate IL-17-dependent pathways during PD (171). Additionally, it

has been discovered that the use of conventional PDFs triggers the

activation of the Th17 immune response in the peritoneum, while the

use of biocompatible PDFs does not (146). Moreover, potential

therapeutic options include statins, mammalian target of rapamycin

inhibitors, cyclooxygenase-2 inhibitors, and angiotensin converting

enzyme inhibitors, as they have shown the ability to modulate the

Th17/IL-17A response in the injured peritoneum (172).

Besides, the presence of AGEs has been hypothesized to be

responsible for the proliferation of CD8+ lymphocytes (153, 173). It

is believed that repeated exposure to the dialysate can lead to the

recruitment and transformation of CD8+ naïve T cells into CD8+

effector memory cells (174).

2.2.3 Mast cells: the controversial effects
The role and specific mechanism of mast cells in PD remain a

topic of controversy. Several studies have reported an elevated

presence of mast ocytes in samples obtained from PD patients

(175). Additionally, both chronic renal failure rat models and PD

rat models have shown a significant increase in mast cell numbers in

the peritoneum (4, 176, 177). However, a preliminary investigation

observed a decrease in mast cell quantification in peritoneal biopsies

of patients (178). The influence of mast cells on inflammatory and

fibrotic processes is depends on the timing, intensity, or nature of

the damaging stimulus (179, 180). Mast cells that reside in the

peritoneum have the potential to modulate the functioning of

mesothelial cells through the release of their mediators, primarily

histamine. This modulation occurs partly through calcium-
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dependent pathways and can affect the functionality of the

peritoneum in the context of PD (181). In addition, mast cells

play a role in the remodeling of omental tissue caused by PDFs,

leading to the migration of peritoneal cells and the formation of

adhesion (182).

2.2.4 Other immune cells: an almost blank field
Both hemodialysis and PD patients experience a significant

decrease in the population of natural killer cells, which are essential

components of the innate immune system (183). This highlights a

strong link between ESRD and immune activation, as well as

immune deficiency. Notably, another study indicates that the

count of natural killer cells does not show any correlation with

the duration of CAPD (184).

As previously discussed, TLRs, specifically TLR2 and TLR4,

play a crucial role in the development of sterile peritoneal

inflammation due to prolonged exposure to PDFs. However,

inhibiting TLR2 has been shown to reduce the number of

leukocytes in the peritoneum, particularly the infiltrated

neutrophils (185). Furthermore, research suggests that the

migration of neutrophil during inflammation is influenced by the

compatibility of PDFs (101). Despite the documented
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biocompatibility of currently used catheters, there is extensive

evidence of increased eosinophil counts in both peripheral blood

and peritoneal fluid following catheter replacement. This response

can range from a mild increase in asymptomatic individuals to a

severe elevation that can ultimately lead to eosinophilic peritonitis

(186–191). Eosinophilic peritonitis is characterized by aseptic

inflammation, manifested as cloudy peritoneal dialysis effluent,

mild clinical symptoms, negative dialysate culture, and lack of

response to antibiotic treatment (191). Tissue invasion, resulting

from infection and/or nonspecific stimulation of the PDFs, triggers

the release of danger signals that activate eosinophils. This

activation initiates the pathogenesis of the innate immune system,

aimed at protecting the body but ultimately inducing tissue

fibrosis (192).
3 Conclusion and prospect

The cellular and molecular mechanisms mentioned above

emphasize the complex nature of the pathophysiological response

observed in the peritoneum. The interaction between stromal
FIGURE 5

Th17/Treg axis contributes to peritoneal damage induced by PDFs. Prolong exposure to dialysis fluids results in an imbalance of Th17/Treg cells, with
an up-regulation of Th17 cells and down-regulation of Treg cells, ultimately leading to peritoneal damage. IL-17A released by activated Th17 cells
stimulate peritoneal cells, leading to the upregulation of proinflammatory cytokines. Nevertheless, therapeutic approaches targeting the T17/Treg-
axis may be beneficial to reduce peritoneal injury.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1387292
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Su et al. 10.3389/fimmu.2024.1387292
resident cells and immune cells is mutually influential. Resident

cells play an active role in influencing the recruitment, survival, and

differentiation of immune cells, On the other hand, immune cells

regulate the expression of proinflammatory factors and cytokines,

which can cause damage to peritoneal resident cells.

Despite notable progress in PD in recent years, the issue of sterile

inflammation remains a significant complication that can result in

technique failure and unfavorable clinical outcomes. The repeated

exposure tobioincompatiblePDFs continues tobe theprimarycauseof

sterile inflammation. To overcome this challenge, future research

efforts should focus on enhancing the biocompatibility of PDFs to

improve peritoneal viability and extend the duration of PD therapy.

Currently, no PDFs meet all the ideal solution requirements, which

include efficient ultrafiltration, long-term preservation of the

peritoneal membrane, and correction of nutritional and

metabolic abnormalities.

However, the use of novel PDFs in conjunction has the potential

to achieve these objectives. Initial findings from clinical

investigations suggest that these biocompatible PDFs can provide

comparable effectiveness to conventional regimens while also

offering superior preservation of mesothelial cell mass (193).

Furthermore, there are evidences to suggest that biocompatible

PDFs can induce peritoneal inflammation and angiogenesis in

children undergoing PD treatment (194, 195). The activation of

peritoneal cells, mediators, and pathways can result in long-lasting

functional and structural changes in the peritoneal membrane

during long-term PD therapy. However, certain modifications

may be reversible through the implementation of peritoneal rest

(4, 196). The possibility of remesothelialization or healing depends

on allowing the peritoneum to rest. During this resting period,

pluripotent cells migrate to the surface and differentiate into fully

developed mesothelial cells (197–199). Normal stem cells also play a

crucial in tissue regeneration after injury, either by being mobilized

from the bone marrow or already present in damaged tissues (147,

200). Furthermore, gene therapy can be used to modify the

peritoneal membrane by targeting intervention to control

inflammation, fibrosis and angiogenesis. These novel approaches

show promising potential in preserving the integrity of the

peritoneal membrane (201, 202). However, their clinical efficacy is

still to be determined. Additionally, there is ongoing investigation

into the potential clinical significance of using catheters infused

with antimicrobial agents to prevent infections associated with PD

(203). Consequently, we anticipate the potential use of catheters

impregnated with anti-inflammatory medications as a therapeutic

approach to reduce catheter-induced alterations and offer benefits

to patients undergoing PD. However, it is important to conduct

additional testing to ensure the safety and effectiveness of these

PD tubes.

These events can potentially trigger both acute or chronic

inflammation, resulting in damage to the peritoneal membrane

and a gradual deterioration of its functioning. The role of

mesothelial cells and other recruited cells is essential in initiating

sterile inflammation and the subsequent decline of the peritoneal

membrane. The inflammatory response is intricately intertwined

with a complex network of extracellular signals produced by various

types of cells residing or circulating within the peritoneal
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membrane. Here, we offer a thorough depiction of the key

extracellular factors and cellular components that contribute to

the communication between the immune system and peritoneal

stromal cells. The exploration of the intricate cellular and molecular

mechanisms involved in the sterile inflammation of the peritoneal

membrane carries substantial significant in both fundamental research

andclinicalpractices.This comprehensioncontributes to thedevelopment

of therapeutic approaches focused on alleviating deterioration and

reinstating the homeostasis of the peritoneal membrane.
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42. López-Armada MJ, Riveiro-Naveira RR, Vaamonde-Garcıá C, Valcárcel-Ares
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81. Oliveira E, Araújo JE, Gómez-Meire S, Lodeiro C, Perez-Melon C, Iglesias-
Lamas E, et al. Proteomics analysis of the peritoneal dialysate effluent reveals the
presence of calcium-regulation proteins and acute inflammatory response. Clin
Proteomics. (2014) 11:17. doi: 10.1186/1559–0275-11–17

82. Kitterer D, Biegger D, Segerer S, Braun N, Alscher MD, Latus J. Alteration of
membrane complement regulators is associated with transporter status in patients on
peritoneal dialysis. PloS One. (2017) 12:e0177487. doi: 10.1371/journal.pone.0177487

83. Sei Y, Mizuno M, Suzuki Y, Imai M, Higashide K, Harris CL, et al. Expression of
membrane complement regulators, CD46, CD55 and CD59, in mesothelial cells of
patients on peritoneal dialysis therapy. Mol Immunol. (2015) 65:302–9. doi: 10.1016/
j.molimm.2015.02.005

84. Borceux P, Morelle J, Goffin E. Complement system activation and peritoneal
membrane alterations: Culprit or innocent bystander? Peritoneal Dialysis international:
J Int Soc Peritoneal Dialysis. (2020) 40:115–23. doi: 10.1177/0896860819896242

85. Poppelaars F, Faria B, Gaya da Costa M, Franssen CFM, van Son WJ, Berger SP,
et al. The complement system in dialysis: A forgotten story? Front Immunol. (2018)
9:71. doi: 10.3389/fimmu.2018.00071
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et al. CD69 association with Jak3/Stat5 proteins regulates Th17 cell differentiation.Mol
Cell Biol. (2010) 30:4877–89. doi: 10.1128/mcb.00456–10
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