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Background: Clinical co-occurrence of UC (Ulcerative Colitis) and T2DM (Type 2

Diabetes Mellitus) is observed. The aim of this study is to investigate the potential

causal relationship between Ulcerative Colitis (UC) and Type 2 Diabetes Mellitus

(T2DM) using LDSC and LAVA analysis, followed by genetic verification through

TSMR, providing insights for clinical prevention and treatment.

Methods: Genetic loci closely related to T2DM were extracted as instrumental

variables from the GWAS database, with UC as the outcome variable, involving

European populations. The UC data included 27,432 samples and 8,050,003

SNPs, while the T2DM data comprised 406,831 samples and 11,914,699 SNPs.

LDSC and LAVA were used for quantifying genetic correlation at both global

(genome-wide) and local (genomic regions) levels. MR analysis was conducted

using IVW, MR-Egger regression, Weighted median, and Weighted mode,

assessing the causal relationship between UC and diabetes with OR values and

95% CI. Heterogeneity and pleiotropy were tested using Egger-intercept, MR-

PRESSO, and sensitivity analysis through the “leave-one-out” method and

Cochran Q test. Subsequently, a reverse MR operation was conducted using

UC as the exposure data and T2DM as the outcome data for validation.

Results: Univariable and bivariable LDSC calculated the genetic correlation and

potential sample overlap between T2DM and UC, resulting in rg = -0.0518, se =

0.0562, P = 0.3569 with no significant genetic association found for paired traits.

LAVA analysis identified 9 regions with local genetic correlation, with 6negative

and 3 positive associations, indicating a negative correlation between T2DM and

UC. MR analysis, with T2DM as the exposure and UC as the outcome, involved 34

SNPs as instrumental variables. The OR values and 95% CI from IVW, MR-Egger,

Weighted median, and Weighted mode were 0.917 (0.848~0.992), 0.949

(0.800~1.125), 0.881 (0.779~0.996), 0.834(0.723~0.962) respectively, with IVW

P-value < 0.05, suggesting a negative causal relationship between T2DM and UC.

MR-Egger regression showed an intercept of -0.004 with a standard error of
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0.009, P = 0.666, and MR-PRESSO Global Test P-value > 0.05, indicating no

pleiotropy and no outliers detected. Heterogeneity tests showed no

heterogeneity, and the “leave-one-out” sensitivity analysis results were stable.

With UC as the exposure and T2DM as the outcome, 32 SNPs were detected, but

no clear causal association was found.

Conclusion: There is a causal relationship between T2DM and UC, where T2DM

reduces the risk of UC, while no significant causal relationship was observed from

UC to T2DM.
KEYWORDS
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1 Introduction

At present, the prevalence of chronic diseases such as diabetes,

obesity, cardiovascular diseases, and inflammatory bowel disease

poses a significant threat to global health. Diabetes Mellitus (DM) is

a complex chronic illness characterized by glucose metabolic

dysfunction caused by either absolute or relative insulin

deficiency. The global incidence of diabetes is on the rise, with a

total prevalence of 10.5% among adults aged 20-79 years, reaching

537 million diabetic patients worldwide by 2021, and it’s estimated

to increase to 783.2 million by 2045 (1). Type 2 Diabetes Mellitus

(T2DM) is the most common form, accounting for approximately

90-95% of all cases. T2DM typically presents with various

comorbidities and long-term complications, including

cardiovascular diseases, retinopathy, nephropathy, and

neurological disorders, which have garnered significant attention.

Moreover, the emergence of new complications such as COVID-19,

pulmonary fibrosis, and gastrointestinal diseases is increasingly

common (2). The onset of T2DM is closely associated with

genetic factors, aging, and unhealthy lifestyle habits. It’s generally

believed that the pathophysiology of T2DM is rooted in impaired

insulin responsiveness, known as insulin resistance (IR) (3),

coupled with inadequate insulin secretion. Research indicates that

the development of insulin resistance is linked to endotoxemia,

chronic inflammatory responses, short-chain fatty acid, and bile

acid metabolism, with a notable imbalance in the gut microbiota of

diabetic patients (4). This dysbiosis of gut microbiota, resulting

from changes in microbial composition, bacterial metabolic activity,

or local distribution, can trigger a decline in immune function,

chronic inflammatory responses, and an imbalance in energy

metabolism, leading to metabolic disorder and insulin resistance,

ultimately contributing to the development of T2DM (5).

Ulcerative colitis (UC), a chronic, non-specific inflammatory

bowel disease (6), has increasingly become a common and

intractable condition in the digestive system. Its primary clinical

manifestations include recurrent diarrhea with mucosal bloody
02
stool, with or without abdominal pain. Inflammation and ulcers

can appear in various sections of the large intestine, predominantly

affecting the rectum and sigmoid colon, and occasionally the ileum,

leading to backwash ileitis. This condition can cause anemia, liver

disease, arthropathy, mucocutaneous diseases, and eye disorders.

Severe cases may develop toxic megacolon, intestinal perforation,

and cancer. UC, along with Crohn’s disease (CD), is categorized as

inflammatory bowel disease (IBD), frequently observed in

individuals with a high-fat diet preference (7). Ulcerative colitis

(UC) has now emerged as a pervasive global health challenge, with

its epidemiological trends evolving continuously. Research

highlights a rapid escalation in the incidence of UC within low to

middle-income nations. The disease manifests with comparable

frequency in both males and females, predominantly affecting

individuals aged between 2 and 40 years. However, there’s an

increasing prevalence of UC in the population over 60 years of

age, who account for 20% of newly diagnosed cases. These shifting

patterns underscore the imperative need for refining and globalizing

preventive and therapeutic strategies for UC, to effectively address

its dynamic disease burden (8). Past studies have attributed the

etiology of UC to genetic (9), environmental (10), dietary (11, 12),

and psychological factors (13). The pathogenesis primarily involves

genetic predisposition, gut microbiome imbalance, immune

response irregularities, imbalance of pro-inflammatory and anti-

inflammatory factors, aberrant signaling pathways, hypercoagulable

blood state, intestinal epithelial cell apoptosis, necroptosis, long

non-coding RNA, and proteomics. Theories such as “autophagy-

cytokine-bacteria-UC” and “intestinal loop poisoning” have been

proposed (14–23). Clinically, patients with coexisting UC and T2DM

exhibit disease-related characteristics, higher hospitalization rates,

increased risk of concurrent infections, and poorer prognosis (1).

When T2DM coexists with UC, fluctuations in blood sugar levels,

combined with intestinal lesions in patients, hinder the intake and

absorption of nutrients and accelerate their loss. Particularly during

active phases of UC, symptoms such as fever and diarrhea can

increase the body’s metabolism, leading to an insufficient supply of
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nutrients. Consequently, patients may exhibit varying degrees of

malnutrition, significantly impacting their physical health and

quality of life.

Linkage Disequilibrium Score Regression (LDSC) is a statistical

method used in genetic research (24), widely applied in Genome-

Wide Association Studies (GWAS). Its primary purpose is to

estimate the degree of genetic influence on specific traits or

diseases, known as genetic correlation. LDSC’s key feature is the

use of linkage disequilibrium (LD) scores to correct associations

between multiple genetic markers. LD describes the co-inheritance

patterns of genetic markers (like Single Nucleotide Polymorphisms,

SNPs) within a population. In GWAS, the abundance of genetic

markers and their LD can cause statistical confusion, affecting

accurate estimations of genetic correlation. LDSC analysis enables

researchers to more precisely estimate the contribution of genetic

variations to specific traits or disease risks. This method is

significant in understanding the genetic background of complex

traits, revealing genetic risk factors, and providing a theoretical

foundation for personalized medicine and gene therapy.

LAVA (Local Analysis of Variant Association) refers to a

statistical method or tool used in genetics and bioinformatics

(25). It is designed to analyze genetic variations, such as Single

Nucleotide Polymorphisms (SNPs), whether in localized regions or

across the entire genome. The primary aim of this analysis is to

identify associations between genetic variations and specific traits or

diseases. Employed in Genome-Wide Association Studies (GWAS),

researchers use LAVA to pinpoint genetic variations linked to

particular traits or diseases. Focusing on localized areas, LAVA

provides in-depth insights, aiding researchers in accurately locating

specific variants or groups of variants contributing to disease risks

or manifestations. LAVA typically involves the use of statistical

algorithms and computational tools to process large genomic

datasets and can be integrated with other bioinformatics methods

to enhance the analysis and interpretation of genetic data.

Randomized Controlled Trials (RCTs), due to various constraints,

are challenging to implement effectively in clinical settings.

Observational experimental methods, influenced by confounding

factors and reverse causality, tend to yield biased results with

relatively low credibility. In 1986, Martijn B. Katan proposed that

different alleles determine varying Apolipoprotein E subtypes,

influencing cancer incidence rates through cholesterol level

regulation, laying the groundwork for the concept of Mendelian

Randomization (MR) (26). In 2004, Thomas and Conti introduced

the use of genetic information as instrumental variables for causal

inference in epidemiology (27). MR employs Single Nucleotide

Polymorphisms (SNPs), or genetic variants, as instrumental variables.

Based onMendel’s laws of inheritance, genetic variations are randomly

distributed to offspring during meiosis and remain unchanged

thereafter. This directional and invariant nature of MR reduces the

influence of reverse causation and confounding factors, as compared to

observational studies (28, 29). Two-sample Mendelian Randomization

(TSMR), involving data from two independent databases, enhances

sample size and the availability of exposure and outcome sources.

Recently, with the release of numerous large-scale Genome-Wide

Association Studies (GWAS), MR has become a viable method for

assessing disease risk factors. To circumvent the limitations of
Frontiers in Immunology 03
observational studies, we use LDSC and LAVA analysis to explore

the genetic correlation between T2DM and UC, followed by MR

analysis for bidirectional causal verification, investigating potential

mechanisms influencing this correlation. All original studies have

received ethical approval, so additional ethical approval or informed

consent for this research is not required. The process flowchart of the

analysis is shown in Figure 1.
2 Materials and methods

2.1 Study design

This study employs LDSC (LD Score Regression) and LAVA (Local

Analysis of Variant Association) to estimate the genetic correlation

between Type 2 Diabetes Mellitus (T2DM) and Ulcerative Colitis (UC).

Utilizing T2DM as the exposure factor, Single Nucleotide

Polymorphisms (SNPs) significantly related to T2DM are used as

instrumental variables (IVs), with UC as the outcome variable. The

process involves reverse operation verification using the TwoSampleMR

package in R for causal association analysis, including Cochran Q

heterogeneity test, pleiotropy test, and sensitivity analysis to validate the

results. The selection of IVs is based on three criteria: significant

association with T2DM, irrelevance to UC, and exclusive influence on

UC through T2DM. These criteria are independent and indispensable,

determining the suitability of IVs for analysis.
2.2 Source of data

All data in this study are sourced from publicly available

Genome-Wide Association Studies (GWAS) and the IEU GWAS

database. We retrieved GWAS summary statistics, selecting SNPs

significantly associated with T2DM as genetic instrumental

variables from the IEU GWAS database. For Ulcerative Colitis

(UC), GWAS summary statistics related to UC were selected from

large-scale published GWAS meta-analyses, extracting gene

outcome associations (30). The UC data includes a sample size of

27,432 individuals with 8,050,003 SNPs, while the T2DM data

comprises 406,831 individuals with 11,914,699 SNPs.
2.3 LDSC analysis

To assess the shared genetic components between Type 2 Diabetes

Mellitus (T2DM) and Ulcerative Colitis (UC), we conducted a global

genetic correlation analysis using bivariate linkage disequilibrium

(LD) score regression (LDSC), with values ranging from -1 to 1.

LDSC estimates the heritability of individual traits or genetic

correlation between traits by constructing a regression relationship

between LD scores and GWAS test statistics. LD scores are calculated

using European ancestry reference data from the 1000 Genomes

Project, limited to 1.2 million well-qualified HapMap3 SNPs,

excluding SNPs in the MHC region due to their complex LD

patterns affecting genetic correlation estimates. To address unknown

sample overlaps in LDSC analysis, we did not restrict the intercept
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term, using it to assess potential population stratification in individual

trait GWAS or sample overlap between pairs of GWAS data. A

significant threshold is determined as a P-value less than 0.05 after

false discovery rate (FDR) correction (Benjamini-Hochberg method),

equating to a q value < 0.05.
2.4 LAVA analysis

The global genetic correlation estimated by LDSC originates

from the aggregate information of all variations in the genome.

However, due to the complexity of genetic variations and their

associations with diseases, different regions contribute variably in

magnitude and direction to the genetic correlation. Moreover,

significant disparities exist in the genetic correlation of two traits

in different regions, particularly where opposing regional genetic

correlations may neutralize each other. This can reduce the global

genetic correlation between traits, obscuring potential pleiotropic

effects. Therefore, we employ Local Analysis of Variant Association

(LAVA) to estimate the genetic correlation between T2DM and UC

in independent local regions of the genome (25). LAVA is

conducted within 2,495 independent LD blocks previously

delineated, with LD estimations based on the 1000G EUR

reference. The significant threshold is set as a P-value less than

0.05 following false discovery rate (FDR) correction (Benjamini-

Hochberg method), corresponding to a q value < 0.05.

Based on the chromosomal segments identified by LAVA

analysis (details are provided in Supplementary Material), we

conducted Bayesian colocalization analysis on diseases showing
Frontiers in Immunology 04
significant local genetic correlation after FDR multiple correction,

in order to further clarify whether the two phenotypes share the

same causal variant within a given region. Unfortunately, within the

CHR segments provided by the LAVA analysis, no significant

shared causal variant loci were observed between T2DM and UC

(see Appendix for details), suggesting that although there may be

some common genetic factors between T2DM and UC, they may be

caused by different genetic variations on the studied chromosomal

segments. That is, the two traits may be controlled by different

regulatory regions of the same gene, appearing to be genetically

related, but showing no significant shared genetic variation at the

expression level, hence no colocalization signal was detected in this

segment. Combined with the positive results of the MR analysis, it

can be explained that the relationship between the studied traits is

entirely due to the impact of exposure on the outcome. Of course,

considering the robustness of the LAVA analysis results, future

studies will focus on further explaining these results by increasing

sample size, integrating other biological data, using more precise

statistical methods, and possible experimental validation.
2.5 Selection and validation of IVs

For Type 2 Diabetes Mellitus (T2DM) exposure, the selection of

Instrumental Variables (IVs) starts with T2DM’s database. The

steps to determine the included IVs are as follows: 1. Initially select

SNPs that meet the significance threshold (P < 5×10^-8); 2. Exclude

SNPs in linkage disequilibrium (LD), mainly based on the distance

and r^2 value between each SNP (r^2 < 0.01, distance > 10000kb);
FIGURE 1

The process flowchart of the analysis.
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3. Further remove palindromic SNPs from the determined SNP list,

especially those with lower effect allele frequency (< 0.58) in the

outcome, as it’s challenging to discern the strand orientation of such

SNPs. 4. Eliminate the influence of other confounding factors.

Considering UC’s complexity, it’s crucial to account for common

confounders like Irritable Bowel Syndrome, hyperlipidemia, body

weight, and fatty liver, which might affect its occurrence as

intermediate phenotypes. To avoid IVs affecting the outcome

through common confounders, verify the SNP through the Pheno

Scanner database (version 2: http://www.phenoscanner.

medschl.cam.ac.uk/), delete SNP: rs11651052 (Prostate cancer),

rs2844623 (Crohn’s disease), and similarly, for the reverse scenario.
2.6 MR analytics

This study’s statistical analysis is based on R software (version

4.3.0, R Foundation for Statistical Computing, Vienna, Austria). The

focal analysis relies on the Two Sample MR (TSMR) R package

developed by Gibran Hemani and colleagues (31, 32). We employed

four methods to estimate effects: Inverse Variance Weighted method

(IVW) (33), MR-Egger regression (34), Weighted median (35), and

Weighted mode (36). The primary outcome measure is the Odds

Ratio (OR), including a 95% Confidence Interval (CI). Statistical

results encompass the overall effect size, standard error (yielding the

final OR and 95% CI), and significance values, with a default two-

sided test P<0.05 considered statistically significant. Scatter plots

derived from statistical tables illustrate these results. MR-PRESSO

and MR-Egger regression methods calculate the magnitude of

pleiotropy, presented graphically via weighted linear regression,

where the intercept’s absolute value indicates the extent of

pleiotropy; a pleiotropy P>0.05 is not statistically significant (37).

Sensitivity analysis employs the “leave-one-out” approach from the R

package, reanalyzing results after sequentially excluding individual

SNPs and visualizing the impact of each SNP on outcomes via forest

plots to assess result stability. Heterogeneity is tested using Cochran’s

Q test, with a P>0.05 indicating no significant heterogeneity, and

results are presented in statistical tables.
3 Result

3.1 Genetic correlation analysis

We employed both LDSC and LAVA to quantify the pairwise

genetic correlation at global (i.e., across the entire genome) and
Frontiers in Immunology 05
local (i.e., within specific genomic regions) levels. The LAVA

analysis estimated local genetic correlations across 2,495

genomic regions.

Initially, we utilized bivariate LDSC to calculate the genetic

correlation and potential sample overlap between T2DM and UC.

After adjusting all P-values (FDR P<0.05), no significant genetic

associations were found for the paired traits, with rg = -0.0518, se =

0.0562, P = 0.35699, as shown in Table 1. Subsequently, our LAVA

analysis of local genetic correlations indicated, after FDR multiple

adjustments, that 9 regions exhibited local genetic correlations for at

least one pair of traits (Figure 2), with 33.33% positive and 66.67%

negative correlations. Specifically, 6 regions were negatively and 3

positively significantly associated, leading us to conclude that

LAVA results show a negative correlation between T2DM and

UC incidence. The inheritance of disease is a multifaceted

and intricate process, interwoven with a multitude of genetic and

environmental interactions. Global analysis through LDSC,

constrained by sample sizes, statistical methodologies, or the

inherent genetic complexity of the diseases themselves, sometimes

fails to significantly reveal correlations. In contrast, LAVA’s local

analysis, with its focus on specific genes or regions, possesses the

capability to unearth more profound genetic mechanisms. Certain

genetic effects may only be significant in specific gene areas or

populations, nuances that global analysis might overlook, while

local analysis can investigate these effects with greater precision.

Moreover, global analysis might be influenced by sample bias, such

as insufficient diversity or selective recruitment, potentially

obscuring the true genetic associations. On the other hand, local

analysis often employs more representative samples and more

precise genetic markers. These factors could account for the

negative findings in LDSC analysis versus the negative correlation

in LAVA results.
3.2 Bidirectional MR analysis of UC
by T2DM

3.2.1 Status of instrumental variables
Initially, with Type 2 Diabetes Mellitus (T2DM) as the exposure

and Ulcerative Colitis (UC) as the outcome, we utilized R software

to select genome-wide significant SNP loci according to our

screening criteria. To mitigate the impact of common

confounders via Instrumental Variables (IVs), we further

validated these SNPs through the Pheno Scanner database,

resulting in 34 SNPs as IVs. Similarly, with UC as the exposure

and T2DM as the outcome, we identified 32 SNPs as IVs.
TABLE 1 LDSC results.

Genetic correlation

Trait pair Genetic correlation (SE) P value for LDSC Intercept (SE) P value for Intercept

T2DM-UC -0.0518 (0.0562) 0.3569 0.0112 (0.0067) 0.095
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3.2.2 MR analysis results
The Mendelian Randomization (MR) analysis for the

relationship between Type 2 Diabetes Mellitus (T2DM) and

Ulcerative Colitis (UC) was conducted using the TwoSampleMR

package, employing methods such as Inverse Variance Weighted

(IVW), MR-Egger regression, Weighted median, and Weighted

mode. The results, detailed in Table 2, reveal Odds Ratios (OR)

and 95% Confidence Intervals (CI) as follows: 0.917 (0.848~0.992),

0.949 (0.800~1.125), 0.881 (0.779~0.996), and 0.834(0.723~0.962).

These findings indicate that having T2DM reduces the risk of

developing UC, with P-values from the four tests being 0.031,

0.550, 0.042, and 0.018, respectively. The IVW result, significant

at P<0.05, and the consistent direction of b values across all

methods, validate the conclusion that T2DM lowers the risk of

UC, suggesting a causal relationship. The MR-PRESSO result, with

a P-value < 0.05, reinforces the robustness of this positive outcome,

further substantiating the negative correlation found in the

LAVA analysis.

The Mendelian Randomization (MR) analysis of Ulcerative

Colitis (UC) on Type 2 Diabetes Mellitus (T2DM) was performed
Frontiers in Immunology 06
using the same methodology, with results presented in Table 3. The

Odds Ratios (OR) and 95% Confidence Intervals (CI) are reported

as 1.018 (0.991~1.046), 0.993 (0.911~1.083), 1.030 (0.995~1.065),

and 1.039 (0.985~1.096). The P-values for the four tests are 0.187,

0.879, 0.096, and 0.171, respectively. With the IVW result being

greater than 0.05, the difference is not statistically significant.

Hence, the MR analysis suggests no evident causal relationship

between the occurrence of UC and the development of T2DM.

3.2.3 Sensitivity analysis result
This study meticulously adhered to the selection criteria for

instrumental variables, thus reducing the likelihood of false-

negative results. For the MR analysis of T2DM’s impact on UC,

heterogeneity tests were conducted. The Q-values and QP-values

for IVW and MR-Egger were 19.933 (0.952) and 20.122 (0.962),

respectively, both exceeding 0.05, indicating no significant

heterogeneity. The results have been visualized in Figure 3.

The study employed MR-Egger regression’s intercept to assess

potential pleiotropy. The Egger-intercept value was -0.004, close to

zero, with SE = 0.009 and P = 0.666, suggesting minimal pleiotropy.
TABLE 2 Results of MR Analysis of T2DM versus UC.

Method BETA SE OR (95% CI) P value

IVW -0.086 0.040 0.917 (0.848~0.992) 0.031

MR-Egger -0.053 0.087 0.949 (0.800~1.125) 0.550

Weighted median -0.127 0.063 0.881 (0.779~0.996) 0.042

Weighted mode -0.181 0.073 0.834(0.723~0.962) 0.018
TABLE 3 Results of MR Analysis of UC for T2DM.

Method BETA SE OR (95% CI) P value

IVW 0.018 0.014 1.018 (0.991~1.046) 0.187

MR-Egger -0.065 0.044 0.993 (0.911~1.083) 0.879

Weighted median -0.005 0.017 1.030 (0.995~1.065) 0.096

Weighted mode -0.002 0.027 1.039 (0.985~1.096) 0.171
fro
FIGURE 2

Frequency distribution of local heritability of T2DM and UC. (Note: The abscissa represents the heritability, the ordinate represents the frequency,
and the rg ranges from -1 to 1).
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MR-PRESSO, supplementing the primary IVW results, showed a

consistent direction of the Causal (beta effect value), with a P-value

less than 0.05. The Global Test Pvalue of 0.954 indicates no

horizontal pleiotropy, affirming the MR results are free from

multi-effect interference. Sensitivity analysis using the “Leave-one-

out” method visualized the IVW results in Figure 4. After

sequentially excluding individual SNPs, the remaining SNPs’ IVW

effect values showed no significant fluctuations, aligning closely

with the red dot in the figure, and all P-values were above 0.05. This

indicates the absence of SNPs with strong influence in the

instrumental variables, confirming the stability and reliability of

the IVW results. No outliers were detected in the MR-PRESSO

process. The final MR results are visualized in Figure 5.

Based on the chromosomal segments identified by LAVA

analysis (details are provided in Appendix), we conducted

Bayesian colocalization analysis on diseases showing significant

local genetic correlation after FDR multiple correction, in order

to further clarify whether the two phenotypes share the same causal

variant within a given region. Unfortunately, within the CHR

segments provided by the LAVA analysis, no significant shared

causal variant loci were observed between T2DM and UC (details

see Supplementary Figures 1–9), suggesting that although there may

be some common genetic factors between T2DM and UC, they may

be caused by different genetic variations on the studied

chromosomal segments. That is, the two traits may be controlled

by different regulatory regions of the same gene, appearing to be

genetically related, but showing no significant shared genetic

variation at the expression level, hence no colocalization signal
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was detected in this segment. Combined with the positive results of

the MR analysis, it can be explained that the relationship between

the studied traits is entirely due to the impact of exposure on the

outcome. Of course, considering the robustness of the LAVA

analysis results, future studies will focus on further explaining

these results by increasing sample size, integrating other

biological data, using more precise statistical methods, and

possible experimental validation.
4 Discussion

Significant progress in T2DM and UC comorbidity research has

emerged, leveraging genomics and metabolomics. This work

elucidates genetic and epigenetic links, and enhances our

understanding of their epidemiology, pathogenesis, and

therapeutic strategies.

The link between Ulcerative Colitis (UC) and Type 2 Diabetes

Mellitus (T2DM) risk is inconsistent across studies. Jess et al.’s Danish

cohort study and Kang’s South Korean database analysis found an

increased T2DM risk in UC patients (38–40), while a Taiwanese study

did not (41). Surgical procedures, especially left-sided colon resections,

may also heighten T2DM risk (42). These variations may stem from

different study designs and populations. Our data hints at an inverse

causal relationship from T2DM to UC, but not vice versa, as

supported by LAVA and MR analyses. Both conditions share

pathophysiological traits like gut microbiota disruption, epithelial

barrier dysfunction, and inflammation (43, 44).
FIGURE 3

Funnel plot of the results of heterogeneity test for MR Method analysis.
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FIGURE 4

“Leave-one-out” method to visualize the results of IVW method. (Leave-one-out analysis refers to the MR Analysis after eliminating SNPS one by
one, generally to see whether they are all significant, or whether the mean value is greater than/less than 0/1).
FIGURE 5

Scatter plot of MR Analysis. (Note: The X-axis represents the SNP effect on exposure, and the Y-axis represents the SNP effect on outcome. Slope
less than 0, indicating that the exposure is a favorable factor for the outcome).
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Our study, employing LDSC, LAVA, and MR methods,

indicates a decreasing incidence of Ulcerative Colitis (UC) in

patients with Type 2 Diabetes Mellitus (T2DM). Tseng CH’s

research highlights a dose-response relationship between

metformin use and a diminished risk of UC, which could account

for this observed trend (45). Metformin’s potential to lower UC risk

is thought to be mediated through its effects on improving insulin

resistance, modulating gut microbiota, and reducing inflammation.

It may alleviate intestinal inflammation in UC by suppressing pro-

inflammatory cytokines and chemokines (46–49). Furthermore,

metformin’s ability to increase the presence of Akkermansia

muciniphila, a bacterium associated with UC remission (50–53),

suggests its contributory role in the lower incidence of UC among

T2DM patients.

The use of Glucagon-Like Peptide-1 (GLP-1) may also play a

role in the observed decrease in UC incidence among T2DM

patients. GLP-1, a mild insulinotropic hormone, has diverse

pharmacological effects, including stimulating insulin release in

response to glucose, slowing stomach emptying, and reducing

appetite (54). Modified GLP-1 receptor agonists, with improved

potency and longer action, are effective in treating T2DM (55).

Wenrui Wang’s research indicates that GLP-1 can significantly

reduce UC by inhibiting pro-inflammatory mediators, protecting

against intestinal damage, and mitigating gut microbiota imbalance

caused by DSS (56). Thus, GLP-1 treatment in T2DM patients

might contribute to lower UC rates.

However, the impact of metformin and GLP-1 receptor agonists

may involve gene-environment interactions. Genetic variants could

affect UC risk in the context of drug exposure. Polygenic risk scores

(PRS) might identify a shared genetic risk for T2DM and UC, with

certain variants influencing medication responses. Since UC is

immune-mediated and T2DM involves chronic inflammation,

genetic factors could regulate immune responses, affecting both

conditions. Metformin and GLP-1 receptor agonists may modify

UC risk by altering immunoregulatory gene expression or function.

Irisin, a 112-amino acid peptide produced by skeletal muscle

and derived from FNDC5, plays a pivotal role in a range of

physiological responses and may mediate the connection between

neurological health and physical activity (57). Huangfu Lixin’s (58)

research on UC patients found significantly reduced FNDC5 and

Irisin levels in colonic tissue and serum, respectively, with Irisin

inversely correlating with IL-12 and IL-23, echoing earlier findings

of its link to inflammation (59, 60).

The study also identified significant gut microbiota imbalances

in active UC, characterized by decreased lactobacillus and increased

enterococcus, which correlated with inflammation severity. Irisin

levels negatively associated with enterococcus and positively with

lactobacillus, suggesting its role in UC pathogenesis.

In T2DM patients, higher FNDC5 levels were linked to older

age and poor glycemic control (61). This proposes that elevated

FNDC5 and Irisin’s anti-inflammatory effects in T2DMmay reduce

cytokines, enhance gut microbiota health, and protect against UC

by preventing dysbiosis and pathogen invasion.

Studies indicate that T2DM patients have significantly higher

serum levels of TGF-b1 compared to non-diabetic individuals (62),

Hefini conducted a study on the serum Transforming Growth
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Factor-b (TGF-b) levels in a cohort of 45 patients diagnosed with

Type 2 Diabetes. The research revealed a substantial positive

correlation between the onset of macroalbuminuria and the

duration of diabetes. Furthermore, the analysis indicated that the

serum TGF-b concentrations were substantially elevated in patients

exhibiting macroalbuminuria (63). TGF-b, an anti-inflammatory

cytokine primarily produced by activated T lymphocytes, B

lymphocytes, and monocytes, promotes the synthesis and

secretion of matrix proteins and epithelial repair (64), thereby

potentially reducing the incidence of UC. Additionally, T2DM

patients may adopt a healthier diet, opting for low-sugar and low-

fat options, which could further decrease the potential risk of UC.

Addressing the needs of patients co-managing UC and T2DM

presents a nuanced challenge in medical practice, owing to the

intricacies in treatment and prognosis of these conditions. Stabilizing

UC necessitates anti-inflammatory and immunomodulatory

treatments, coupled with vigilant blood sugar level management.

Moreover, prevention of cardiovascular diseases is critical, potentially

entailing stricter control of blood pressure and lipid levels. Early

identification of the interplay between UC and T2DM enables

physicians to more accurately assess patient risk and tailor

preventative and treatment strategies. Early interventions in high-risk

groups, such as dietary improvements and increased physical activity,

can significantly reduce disease risk. Comprehensive medical strategies,

augmented by guidance on disease management, enhance patient

adherence to treatment, thereby optimizing therapeutic outcomes.
5 Conclusion

In summary, this study utilized LDSC, LAVA, and TSMR analyses

to explore the association between UC and T2DM. The results suggest

a negative correlation, indicating that T2DM may reduce the risk of

UC. This was further supported by genetic validation analysis. Factors

contributing to this result include the use of metformin and GLP-1 in

T2DM patients, increased Irisin secretion due to elevated serum

FNDC5 levels, elevated serum TGF-b1, and dietary changes in

T2DM patients. No significant causal association has been observed

between UC and the risk of developing Type 2 Diabetes Mellitus. Based

on publicly available GWAS data, this research avoids biases common

in RCTs and observational studies, unlike previous observational

studies. The findings are further supported by heterogeneity checks,

with no evidence of heterogeneity or pleiotropy, and the “leave-one-

out” sensitivity analysis confirms the reliability of the results. This

research, unrestricted by ethical and financial constraints, provides

insights into epidemiological etiology and may inform strategies for

reducing the severity of UC in T2DM patients and aid in clinical

treatment and risk prediction for patients with both conditions.
6 Deficiency and prospect

This study also has certain limitations, primarily including the

following aspects: (1) The GWAS included in this study mainly

comes from the European population, so the results may not

necessarily match other ethnicities, which requires further GWAS
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of more diverse ethnicities to validate the results or discover new

applicable loci. (2) The GWAS data extracted for this analysis does

not have stratified analysis results for gender, age, duration, etc., so

specific information cannot be studied. Based on a large sample

research design, obtaining more instrumental variables can enhance

the reliability of the results, and subsequent research can delve into

more studies on Asian populations. In the future, specific causal

mechanisms between T2DM and UC can be further explored

through experimental methods, including cellular biology factors,

physicochemical factors, genetic factors, immune factors, etc.

Addressing the needs of patients co-afflicted with Ulcerative

Colitis (UC) and Type 2 Diabetes Mellitus (T2DM) presents a

significant challenge in medical practice, stemming from the

complexity inherent in the treatment and prognosis of both

conditions. To maintain stability in UC, patients require anti-

inflammatory and immunomodulatory therapies, while

simultaneously managing glycemic levels. Additionally, the

prevention of cardiovascular diseases is indispensable, potentially

including stricter blood pressure and lipid control. Early

identification of the interplay between UC and T2DM aids

physicians in more accurately assessing patient risk and devising

tailored prevention and treatment strategies. For high-risk patient

groups, early interventions, such as dietary improvements and

increased physical activity, can effectively mitigate disease risk.

Comprehensive medical measures, coupled with guidance on

disease management for patients, can enhance treatment

adherence, thereby optimizing therapeutic outcomes.
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