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Mechanistic learning refers to the synergistic combination of mechanistic

mathematical modeling and data-driven machine or deep learning. This

emerging field finds increasing applications in (mathematical) oncology. This

review aims to capture the current state of the field and provides a perspective on

how mechanistic learning may progress in the oncology domain. We highlight

the synergistic potential of mechanistic learning and point out similarities and

differences between purely data-driven andmechanistic approaches concerning

model complexity, data requirements, outputs generated, and interpretability of

the algorithms and their results. Four categories of mechanistic learning

(sequential, parallel, extrinsic, intrinsic) of mechanistic learning are presented

with specific examples. We discuss a range of techniques including physics-

informed neural networks, surrogate model learning, and digital twins. Example

applications address complex problems predominantly from the domain of

oncology research such as longitudinal tumor response predictions or time-

to-event modeling. As the field of mechanistic learning advances, we aim for this

review and proposed categorization framework to foster additional collaboration

between the data- and knowledge-driven modeling fields. Further collaboration

will help address difficult issues in oncology such as limited data availability,

requirements of model transparency, and complex input data which are

embraced in a mechanistic learning framework
KEYWORDS

mathematical modeling, machine learning, deep learning, ODE (ordinary differential
equation), mechanistic learning
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GRAPHICAL ABSTRACT

Data and knowledge both drive the progress of research and are the cornerstones of modeling. Depending on the emphasis, both data-driven (ex-
emplified by machine and deep learning) and knowledge-driven (exemplified by mechanistic mathematical modeling) models generate novel results
and insights. Mechanistic learning describes approaches that employ both data and knowledge in a complimentary and balanced way.
1 Introduction

An increasing understanding of cancer evolution and

progression along with growing multi-scale biomedical datasets,

ranging from molecular to population level, is driving the research

field of mathematical oncology (1). Mathematical oncology aims to

bridge the gaps between medicine, biology, mathematics, and

computer science to advance cancer research and clinical care.

Both data and understanding of cancer biology contribute to this

aim. Furthermore, modeling in the context of clinical application

poses a range of challenges that need to be met in order to ensure

practical translation: data sparsity, heterogeneity, and source bias

need to be accounted for, while the complexity of the model has to

remain balanced regarding flexibility, interpretability, and

explainability. Finally, one must consider the risk of model

overfitting, together with robustness and generalization strength.

Data science may be defined as “a set of fundamental principles

that support and guide the principled extraction of information and

knowledge from data” (2). Here, problem-solving is approached

from the perspective of a learning process accomplished through

observing diverse examples (3). Relationships between various types

of input data (e.g., omics and imaging) and outcomes (e.g., overall

survival) are abstracted where a mechanistic understanding of a

relationship is missing or otherwise not accounted for. In this

context, we refer to it as “data-driven” modeling. For oncology,

data-driven approaches address a variety of applications to further
Frontiers in Immunology 02
scientific progress and task automation. Prime examples include

predictions of drug response, tumor subtyping, and outcome as well

as auto-segmentation of tumors on imaging.

An alternative is to formulate a specific guess on how relevant

variables interact between input and output through the formulation of

a mathematical model. Bender defines a mathematical model as an

“abstract, simplified, mathematical construct related to part of reality

and created for a particular purpose” (4). Here the formulation of

deliberate approximations of reality through equations or rules is key

(5). In turn, the quality and limits of this approximation, which we refer

to as “knowledge-driven” modeling, are validated with data.

Independent of the use of a data science or a mathematical modeling

formulation, “data” and “knowledge” are indispensable. The emphasis

on data and knowledge may vary leading to the terminology of “data-

driven” and “knowledge-driven” modeling (6). The fluid boundaries

between these concepts motivate their combination.

The evolving field of mechanistic learning (7, 8) aims to describe

synergistic combinations of classical mathematical modeling and data

science (9, 10). In this review, we provide an overview of the key aspects

of these approaches, explain possible ways of combining them, present

a selection of examples, and discuss how mechanistic learning can

thrive in mathematical oncology. In doing so, we aim to draw

awareness to similarities and synergies between knowledge- and

data-driven modeling, noting that this combination could help push

mathematical oncology into the clinic as reliable, data-supported, and

explainable models in the context of oncology (11).
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2 Contrasting “knowledge-driven” and
“data-driven” modeling”

As per definition, data- and knowledge-driven modelling are

complementary perspectives for approaching research questions.

Here, we address similarities and differences to understand

synergies at the interface of these fluid concepts.
2.1 Knowledge-driven modeling
approximates biomedical understanding

According to Rockne et al. (1), the goal of knowledge-driven

modeling is to describe the behavior of complex systems based on an

understanding of the underlying mechanisms rooted in fundamental

principles of biology, chemistry, and physics. While the formulation of

the “model”, i.e. the approximation of reality, is flexible, the

overarching aim is to gain a deeper understanding of processes

driving the system’s behavior often through simulation and analysis

of unobserved scenarios. Here, mathematical formulas or systematic

processes are purposefully crafted to reflect key aspects of reality with

inevitable simplifying assumptions. For example, dimensionality is

reduced, dynamic processes are approximated as time-invariant, or

biological pathways are reduced to key components (12).

Conceptualizing these assumptions requires a deep understanding of

the biomedical processes and modeling goals. These demands are met

through interdisciplinary collaboration and validation. In the absence

of experimental data, it is still possible to analyze and simulate to

expose dynamics emerging frommodel building blocks (13–15). These

extrapolations beyond the range of validation data are rooted in the

confidence in the quality of the approximation of the biomedical

reality, i.e. the quality of the knowledge and its implementation.

It is tempting to suggest that knowledge-driven models are

inherently interpretable. Yet, the implementation of chains

of relationships can formulate complex inverse problems.

Subsequently, post hoc processing through parameter identifiability

and sensitivity analyses is key (16, 17). This can identify previously

unknown interactions between system components to generate

hypotheses for experimental and clinical validation.

Knowledge-driven modeling has successfully been applied to

investigate different aspects of cancer including somatic cancer

evolution and treatment. We refer the interested reader to recent

review articles (18, 19) covering for instance different fractionation

schemes for radiotherapy (20, 21), the onset and influence of

treatment-induced tumor resistance (22), or cancer evolution (23). A

popular application of knowledge-driven models is the simulation of in

silico trials for hypothesis generation in simulated cohorts (24–26).
2.2 Data-driven models extract information
from data

A common understanding of data-driven modeling (e.g. - machine

learning, deep learning and classical statistics) is the creation of insight

from empirical examples (27). A performance metric (28, 29) is
Frontiers in Immunology 03
optimized to uncover patterns and relationships between input data

and output task. The validity of data-driven models should be studied

carefully, in particular the dependency of the results on the chosen

performance metric (29). It is also key to consider the optimization

convergence. If this process fails, the model will be uninformative.

Purely data-drivenmodels do not readily leverage the community’s

understanding of the system under study but instead often employ

highly parameterized models. The many degrees of freedom allow

flexibility to approximate complex and mechanistically unknown

relationships, e.g. deep neural networks act as “universal function

approximators’’ (30). New information can be extracted from the

data through this structuring but the extensive parameterization may

obscure how the decision process is formed. Post hoc processing is

required to uncover the nature of the approximated relationship

through interpretability and explainability analysis (31). The models’

flexibility also makes them vulnerable to overfitting. Appropriately

large amounts of training data and stringent data splits for fitting

(training) and validation (32) are necessary to mitigate this risk. Data

quantity and quality, i.e. its task specificity and ability to cover a variety

of relevant scenarios, are equally important.

Generally, the application focus differs from that of knowledge-

driven models. Generalization beyond the observed data space is

often challenging (33). It is essential to rely on robust training

regimes (34) and consider model limitations as performance is

compromised in scenarios not (sufficiently) covered by data (33).

In summary, data-driven approaches are powerful tools for

knowledge generation. In oncology, data-driven approaches have

previously contributed substantially to scientific progress and

process automation (35). To name just a few examples, (un-)

supervised machine learning has greatly supported areas of drug

response prediction (36, 37) and molecular tumor subtype

identification (38, 39), whereas generative models and deep

learning have revolutionized computer vision tasks such as

volumetric tumor segmentation (40, 41), image-based outcome

predictions (42, 43) and automated intervention planning.
2.3 Identifying similarities and boundaries
between knowledge-driven and data-
driven modeling

Table 1 summarizes and contrasts key characteristics of the extremes

of purely data- and knowledge-drivenmodeling, yet boundaries between

these models remain fluid for many applications. The fundamental steps

of data- and knowledge-driven modeling have parallels despite varying

terminology: a subset of data is used to construct and calibrate themodel,

then further data is necessary for validation and refinement. In data-

driven modeling, we first formulate the learning task (i.e. identifying

features, labels, and loss function), and architecture selection. In

knowledge-driven modeling, we start by deriving equations/

mathematical rules. Both algorithms are subsequently compared to

real-world data to optimize hyperparameters (i.e., structural model

implementations) and to learn model parameters for fitting. The same

optimization principles apply but the extent to which mechanistic priors

are accounted for in the design of the objective function varies. Finally,
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validation, ideally on independently sourced data, is performed to assess

the model’s performance.

Given these similarities and differences, it is important to

account for possible challenges upon combining approaches.

Model bias or conflicting information generated by addressing the

same task with differently motivated approaches needs to be
Frontiers in Immunology 04
carefully considered. At the same time, there exists ample room

to harness synergies between knowledge and data-driven modeling

under the umbrella of mechanistic learning. Specifically, differences

regarding data requirements, model complexity, extrapolation, and

application regimes imply that a combination of both approaches

may mitigate individual limitations. For example, parameters of a

mechanistic mathematical model can be estimated by a deep

learning algorithm from complex multi-omics data or knowledge-

driven descriptions can be used to constrain the large range of

possible solutions of a complex data-driven approach to a

meaningful subset. In the following sections, we provide a

detailed overview of how these combinations can be achieved and

provide real-world application examples to motivate these.
3 Facets of mechanistic learning

“Mechanistic learning” (7, 8) can take on many facets by shifting

the emphasis of the “data” and “knowledge” paradigms upon model

design and fitting. While a partition of mechanistic learning into

simulation-assisted machine learning, machine-learning-assisted

simulation, and a hybrid class for approaches falling between these

definitions is intuitive at first (44), it fails to describe the variety of

hybrid approaches.We suggest amore abstract classification (Figure 1):
• Sequential - Knowledge-based and data-driven modeling

are applied sequentially building on the preceding results

• Parallel - Modeling and learning are considered parallel

alternatives to complement each other for the

same objective

• Extrinsic - High-level post hoc combinations

• Intrinsic - Biomedical knowledge is built into the learning

approach, either in the architecture or the training phase
Whereas sequential and parallel combinations make a

deliberate choice of aspects of data- and knowledge-driven

models to coalesce, extrinsic and intrinsic combinations actively

interlace these. Thus, the complexity with respect to

implementation and interpretation grows from sequential to

intrinsic combinations. While most implementations readily fit

into one of these four classes, we emphasize that we do not

consider the combinations as discrete encapsulated instances.

Instead, we view all synergistic combinations on a continuous

landscape between the two extremes of purely knowledge- and

data-driven models (Figure 2).
3.1 Sequential combinations

Sequential approaches harness knowledge and data-driven aspects

as sequential and computationally independent tasks by disentangling

the parameter/feature estimation and forecasting steps. They strive to

attain mechanistic learning objectives by interlinking inputs from one

approach with another. This could involve utilizing data-driven

methods for estimating mechanistic model parameters or
TABLE 1 General conceptual differences between knowledge-driven vs.
data-driven modeling.

Knowledge-
driven modeling

Data-driven modeling

The current “knowledge” drives
the implementation of an
educated guess regarding the
studied relationship.
Example: Modeling of tumor
growth based on the assumption
of an exponential
time dependency.

The empirical reality is approximated
through a (complex) relationship.
Example: A time series of tumor growth data
is approximated by a long-short-term-memory
network comprising thousands of parameters.

Data serves the purpose of
validation of the implemented
estimate of reality.
Example: The assumption of
exponential tumor growth does
not allow fitting of an observed
tumor volume trajectory.

Empirical observations dictate the extraction
of information.
Example: Tumor recurrence can be predicted
from imaging. Interpretability analysis
revealed that tumor shape was driving
this prediction.

Generate novel hypotheses for
causal mechanisms.
Example: The addition of a
reasonable but previously
unknown mechanism to the
model enables reproduction of
experimental results.

Isolate relevant inputs from empirical
datasets for a given output.
Example: Principal component analysis is
used to show main factors to explain the
variance in the data

Deductive capability:
extrapolation to predictions
about behaviors not present in
original data
Example: A model described
tumor response to a single
radiotherapy fraction well.
Predictions of tumor response to
multiple fractions are possible.

Inductive capability: interpolation of data
with limited extrapolation horizon
Example: Prediction if a tumor responds to
radiotherapy (represented in the training
data) - this model cannot predict if the tumor
will still respond if we change the delivery (i.e.
fractionation) of the treatment.

Predict or describe dynamics of
the overall system.
Example: By modeling
thousands of individual cells the
overall dynamic growth
response of a tumor is observed.

Infer dynamics from the overall system while
governing equations and parameters are not
exactly known
Example: The prediction of cell states based
on environmental and transcriptomic data

Small but specific data set is
needed for validation
Example: 2-3 diffusion-weighted
MRI scans suffice to fit a
mechanistic tumor growth
model to data of an
individual patient.

Large number of parameters (thousands,
millions or more), requiring data-intensive
training/fitting
Example: For the prediction of tumor response
to radiotherapy, 100s of patient images were
used to train a deep convolutional
neural network.

Limiting factor(s): Quality of
assumptions; parameter
sensitivity
Example: If the underlying
assumptions do not hold up
upon model fitting, the model
needs to be reworked.

Limiting factor(s): Quality and quantity of
data; model structure such as choice of
features (inputs)
Example: A large number of diverse training
examples are needed to fit a
complex architecture.
Some aspects here are taken from Baker et al. (9).
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implementing feature selection in a data-driven model guided by

mechanistic priors. Although sequential frameworks are

straightforward to implement and interpret, often their

computational demands increase significantly, taking into account

both computational requirements and the limitations inherent in the

individual approaches (e.g., data requirements, accuracy of

prior knowledge).
Frontiers in Immunology 05
3.1.1 Domain knowledge to steer data-driven
model inputs and architecture choices

In medical science, data availability remains a key challenge (45).

However, there often exists a strong hypothesis regarding the driving

features of a specific prediction task. A simple but effective means of

improving the performance of data-driven algorithms is a deliberate

choice of model architecture, data preprocessing, and model inputs.
FIGURE 1

Examples of mechanistic learning structured in four combinations: Parallel combinations (top left) with examples of surrogate models and neural
ordinary differential equations (ODEs). Data- and knowledge-driven models act as alternatives to complement each other for the same objective.
Sequential combinations (bottom left) apply data- and knowledge-driven models in sequence to ease the calibration and validation steps. Extrinsic
combinations (top right) combine knowledge-driven and data-driven modeling at a higher level. For example, mathematical analysis of data-driven
models and their results or as complementary tasks for digital twins. Intrinsic combinations (bottom right), like physics- and biology-informed neural
networks include the knowledge-driven models into the data-driven approaches. Knowledge is included in the architecture of a data-driven model
or as a regularizer to influence the learned weights.
FIGURE 2

The mechanistic learning landscape shows room for the combination of data-driven and knowledge-driven modeling. We suggest that purely data-
driven or purely knowledge-driven models represent the extremes of a data-knowledge surface with ample room for combinations in different
degrees of synergism. Further, in the left-bottom corner with almost no data nor knowledge, any modeling or learning technique is limited.
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For example, focusing the input of a deep neural network to disease-

relevant subregions of an image boosted classification performance in

a data-limited setting (46), and expert-selected features were used to

reduce data requirements of image processing tasks dimensionality

and data requirements of image processing tasks (47). Similarly

important is a deliberate choice of model architecture (48–50). For

instance, while convolutional blocks are the staple for computer

vision tasks, similar approaches exist for sequential data (e.g.

sequence-to-sequence transformers, recurrent neural networks, or

graph-based models (51, 52)). While no mechanistic modeling is

conducted per se deliberate feature and architecture selection includes

additional information. Ultimately, features can also be identified by

knowledge-driven modeling (53, 54).

3.1.2 Mechanistic feature engineering
Feature engineering is the process of designing input features

from raw data (55). This process can be guided by a deeper

understanding of the underlying mechanisms, including physical

and biochemical laws or causal relationships.

Aspects of a mechanistic model can serve as input features to or

outputs from machine learning models. This strategy of

“mechanistic feature engineering”, was used by Benzekry et al. to

predict overall survival in metastatic neuroblastoma patients (56).

First, a mechanistic model of metastatic dissemination and growth

was fitted to patient-specific data. Then, a multivariate Cox

regression model predicted overall survival from available clinical

data with or without patient-specific mechanistic model

parameters. They found that including the fitted mechanistic

model parameters greatly enhanced the predictive power of the

regression. One problem in this truly sequential setting is that it is

difficult to address uncertainty propagation. Therefore, a

challenging limitation persists, as the propagation of uncertainties

and prediction errors may amplify within the context of the

complete framework.

3.1.3 Data-driven estimation of mechanistic
model parameters

A common problem in knowledge-driven modeling for

longitudinal predictions is parameter identifiability and fitting

given limited data and complex systems of equations. The

bottleneck lies in the lack of a detailed understanding of the

mechanistic relation between input data and desired output,

rather than a purely computational limitation.

Similar to using mechanistic feature engineering for data-driven

model inputs, data-driven approaches can also be employed to

discover correlations within unstructured, high-dimensional data to

provide inputs to knowledge-driven models. Depending on the

specific application a range of methods are possible: imaging data

are preprocessed by convolutional architectures, whereas omics data

could be processed with network analysis, graph-based, or standard

machine learning models. These correlations are then harnessed to

predict the parameters of a mechanistic approach. Importantly, each

model is implemented and trained/fitted independently, implying a

high-level, yet easily interpretable combination. This sequential

combination harnesses the ability of data-driven models to extract

information in the form of summarizing parameters from high
Frontiers in Immunology 06
dimensional and heterogeneous data types. Importantly, the type of

data required for such analysis needs to meet the criteria of

knowledge-driven (e.g., longitudinal information) and data-driven

(e.g., sufficient sample size) approaches alike - this may restrict

applicability in light of limited data quality or excessive

noise. Similarly, limitations such as robustness and prediction

performance for the estimated parameters should be considered.

In practice, Perez-Aliacar et al. (57) predicted parameters of

their mechanistic model of glioblastoma evolution from fluorescent

microscopy images. This combination of models has also

been suggested in the context of data-driven estimation of

pharmacokinetic parameters for drugs (58). Moreover, data-

driven models enable parameter inference by studying parameter

dependencies of simulation results through approximate Bayesian

computation (59, 60) or genetic algorithms (61).

3.1.4 Data-driven estimation of mechanistic
model residuals

Another sequential construct consists in using machine

learning models to predict the residuals of a mechanistic model

prediction. Kielland et al. utilized this technique to forecast breast

cancer treatment outcomes under combination therapy from gene

expression data (62). Initially, a mechanistic model of the molecular

mechanisms was calibrated with cell line data to enable patient-

specific predictions. Subsequently, various machine learning models

were employed to predict the residuals of the mechanistic model

from the available expression of more than 700 genes. While the

performance of the combined strategy was comparable to using

machine learning alone, it offered three advantages. First, the

mechanistic model provided a molecular interpretation of

treatment response. Additionally, this approach facilitated the

discovery of important genes not included in the mechanistic

model. Hence, this approach can potentially incorporate emerging

biological knowledge and new therapeutics without additional data

required for machine learning alone. Note that this sequential

strategy facilitates the inclusion of both mechanistically

understood features and others that may not be as clear, a

common scenario in treatment forecasting.

In summary, sequential combinations are attractive due to their

clear path toward implementation and interpretation with limitations

due to prerequisites on data, mechanistic understanding or

uncertainty propagation. While future directions may dive deeper

into harnessing more complex input data (e.g. multi-omics,

multimodal) for mechanistic model inputs, the technical

advancement for sequential combinations remains dictated by the

progress in the individual fields.
3.2 Parallel combinations

Parallel combinations blend advantages of purely data- or

knowledge-driven models without changing the anticipated

evaluation endpoint. These are alternatives for the same task as a

purely data- or knowledge-driven approach and hence aspects

concerning data requirements, implementation, model robustness,

and performance can be compared. This makes them attractive for
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high-stakes decision scenarios, such as clinical application (e.g.

tumor growth prediction).
3.2.1 Neural networks as surrogate models
Many phenomena in oncology can be readily formulated using

large systems of equations. However, solving large models comes at

a high computational cost. Utilizing methods such as model order

reduction aids in optimizing the computational efficiency of the

solving process. This approach typically demands substantial

mathematical expertise and is not suitable for time- or resource-

constrained scenarios such as real-world clinical deployment.

Neural networks, as universal function approximators, offer an

efficient alternative. In practice, data-driven models are trained on

numerical simulation results and approximate a solution to the

system of equations. The inference step of the successfully trained

model takes a fraction of the computational resources compared to

the full mechanistic model (63, 64).

A related concept is the generation of vast amounts of

“synthetic” training data (65) based on a small set of “original”

data points. While synthetic training data can improve the accuracy

of many learning-based systems, care needs to be taken to prevent

encoding faulty concepts or misleading biases into the training data

that are not present in reality (66, 67). Any uncertainty or bias

introduced during the training of the synthetic data generator is

inherent in the resulting samples. This limitation could easily be

overlooked within downstream tasks, underscoring the importance

of meticulously designing a surrogate model.

For example, Ezhov et al. (68) introduced a deep learning model

performing inverse model inference to obtain the patient-specific

spatial distribution of brain tumors from magnetic resonance

images, addressing the computational limitations of previous

partial differential equation (PDE)-based spatial tumor growth

and response models. A similar brain tumor growth model based

on an encoder-decoder architecture trained on 6,000 synthetic

tumors generated from a PDE model (69).
3.2.2 Neural ordinary differential equations —
neural networks as discretized ordinary
differential equations

The term “neural ordinary differential equation”, or “neural

ODE” originated from the notion of viewing neural networks as

discretized ODEs or considering ODEs to be neural networks with an

infinite amount of layers (70–72). In that sense, the knowledge-driven

approaches using ODEs and the data-driven approach using neural

networks are parallel perspectives of the same concept. While not

every data-driven model can be interpreted as discretized ODEs and

not every question for ODEs can be answered by a discretization to a

neural network, neural ODEs can often be a helpful concept to

translate between knowledge- and data-driven modeling. More

generally, a neural ODE can also be seen as a differential equation

that uses a neural network to parameterize the vector field. As such,

this approach offers advantages over neural networks, including high-

capacity function approximation and easy trainability, together with

the extensive available theory and tools for the numerical treatment of

differential equations. In addition, the continuous-time regime of
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differential equations allows treating irregular time series data in a

natural way (73).

Neural ODEs have already been used for a variety of tasks in

oncology ranging from genome-wide regulatory dynamics (74) and

breast tumor segmentation in medical images (75) to time-to-event

modeling (76). Importantly, neural ODEs can generate realistic

synthetic data, such as longitudinal patient trajectories. As these

synthetic patient data are anonymous, regularly sampled, and

complete (i.e. no missing data) they address key challenges of

medical data analytics: data privacy, limited data, missing data,

variable data quality, and sampling time points. Synthetic patients

can be shared across institutes as high-quality samples to train

large-scale models, ensuring compliance with international data

privacy regulations (77).

3.2.3 Learning a mechanistic model equation
While oncology research generates vast amounts of data,

extracting and consolidating mechanistic understanding from data

is a laborious process reliant on human experts. Symbolic regression

allows for automated and data-driven discovery of governing laws

expressed as algebraic or differential equations. This method finds a

symbolic mathematical expression that accurately matches a dataset

of label-feature pairs. Two prominent symbolic regression techniques

are genetic programming-based optimization (78) and sparse

regression (79). In genetic programming, closed-form expressions

are represented as trees and evolved such that trees with high

goodness-of-fit are selected for further exploration. In sparse

regression strategies, the target expression is assumed to be a linear

combination of certain “basis functions”, and L1 regularization is

used to select and weight a small combination of them.

Despite remarkable success in physics (78), symbolic regression

applications in oncology are still scarce. In one example, by

Brummer et al. (80), sparse regression was employed to estimate

a system of ODEs from in vitro CAR T-cell glioma therapy data.

Compared to knowledge-based models, this data-driven approach

offers new insights into the biological dynamics as the model form is

not constrained.

However, estimating derivatives from high noise and sparse

longitudinal measurements, like many from clinical oncology,

remains challenging. Several groups have used variational

formulations of ODEs and PDEs in the optimization step without

relying on estimating derivatives from noisy and sparse data (81–83).

Bayesian approaches applied to genetic programming have also

proven successful in situations where existing non-Bayesian

approaches failed (84). Other promising directions in oncological

research are Koopman theory (85) and the universal differential

equation framework (86), where neural networks are used to model

all or part of a differential equation, facilitating the discovery of

governing equations, or parts of them, in cases where data are limited.
3.3 Extrinsic combinations

Extrinsic combinations make use of both mechanistic and data-

driven approaches to address different aspects of the same problem

or to post-process the output of a data-driven implementation.
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3.3.1 Digital twins
Originating from analogies in manufacturing and engineering,

the concept of digital twins (87–89) has recently gained interest in

the oncology community. A digital twin is an in silico patient “twin”

that recapitulates important patient characteristics and is used to

simulate alternative treatment strategies and forecast disease

progression (90). In the context of precision medicine, this

implies that alternative treatment scenarios are simulated with the

digital twin to select an optimal strategy. Hence, predictive

modeling of longitudinal information regarding the expected

patient trajectory is provided. The computational framework

behind the digital twin can be based on mechanistic, data-driven,

or a combined set of algorithms. We highlight the potential of

combining mechanistic and data-driven modeling as side-by-side

tasks, covering different aspects of one unifying digital twin.

Typically, for mechanistic digital twins, a mathematical

framework describes the dynamics of tumor size, morphology,

composition, and other biomarkers (91). The data-driven analogy

is represented by machine learning algorithms, e.g., k-nearest

neighbors but also more advanced architectures, to provide a

prediction of the endpoint of interest based on established

databases (92, 93). Both knowledge- and data-driven models

enable the real-time adaptation of treatment protocols by

simulating a range of scenarios. Importantly, harnessing the

strengths of each method should be considered for optimal

results. For instance, a data-driven prediction task could inform

on patient subgrouping and identify likely outcomes, whereas

mechanistic modeling would explore personalized treatment

alternatives. Generally, digital twins can also serve as “virtual

controls” to benchmark the efficacy of the patient’s current

treatment regimen (94, 95). Wu et al. provide an in-depth review

regarding the specific application example of digital twins for

oncology applications including a mention of the roles of data-

driven image analysis and knowledge-driven modeling. The trade-

off between application focus and computational complexity of a

digital twin has to be considered in light of the data available which

may restrict the feasible complexity and performance. Limitations,

such as the requirement for longitudinal data, the complexity of

mid-treatment adjustment in clinical settings, and the overall

complexity regarding a high-stakes decision process need to be

accounted for (89).
3.3.2 Complementary postprocessing:
mathematical analysis of data-driven models and
data-driven analysis of mathematical simulations

Data-driven approaches are trained to optimize a performance

metric, but performance alone is not driving a model’s application

in (clinical) practice. Here, quantification of the uncertainty of

model results, model robustness, as well as interpretability to

explain why a model arrived at a certain conclusion are equally

important (96). These questions are usually studied under the term

explainable AI; for a survey we refer to Roscher et al. (97). Progress

in advanced explainable AI dictates a mechanistic interpretation of

a model’s decision-making process (98).
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Addressing many of the questions related to deep learning is only

possible using mathematical methods, i.e., challenges in the field of

data-driven models are transformed to mathematical conjectures that

are subsequently (dis)proven. This approach ensures that the results

generated by models are mathematically reliable and transparent and

thus better suited for clinical implementations.

Numerous examples underscore this point and provide

motivation for employing intricate architecture designs based on

mathematical formulations. A specific instance involves learning a

specialized representation that elucidates cancer subtyping from

multi-omics inputs, including transcriptomic, proteomic, or

metabolomic data (77).

Data assimilation techniques bridge numerical models and

observational data through optimization of starting conditions.

Typical examples are Kalman or particle filter methods (99, 100),

which can improve the accuracy of numerical predictions. For the

interpretation and validation of simulation results, tools from data-

driven modeling can be used to detect patterns in simulations (101).

This approach is already performed in research fields outside the

oncology domain (102). A prime example is the post-processing of

complex numerical weather forecasting predictions using deep

learning to boost overall performance (103, 104). Within

oncology applications, machine learning and Bayesian statistics

have also been used for uncertainty quantification which is

important for clinical translation (105–107).
3.4 Intrinsic combinations

This combination incorporates a mechanistic formulation

within a machine learning model either upon training as a

contribution to the formulated objective function or a priori as a

way of choosing the architecture of the data-driven model. As such,

these are densely interconnected combinations.

3.4.1 Regularizing the loss function using
prior knowledge

Mechanism-informed neural networks such as physics-

informed neural networks (PINNs) (108, 109) use mechanistic

regularization upon training, i.e., equation-regularization, by

guiding the possible solutions to physically relevant ones. The loss

function combines performance loss with a regularization term

assessing the deviation from a predefined set of equations. This

approach reduces overfitting and ensures physically meaningful

predictions. The final neural network will not satisfy the equations

exactly but approximate them for the areas where training data is

available. PINNs can be valuable for deciding whether an equation

can be used to describe data by considering several related equations

as regularizers.

Equation-regularization has previously been shown to enhance

both the performance and interpretability of data-driven

architectures. In the context of oncology, one example includes

the modeling of tumor growth dynamics (110). Ayensa-Jiménez

et al (111) used physically-guided NNs with internal variables to
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model the evolution of glioblastoma as a “go-or-grow” process

given constrained resources such as metabolites and oxygen. The

model-free nature of their approach allows for the incorporation of

data from various boundary conditions and external stimuli,

resulting in accurate tumor progression predictions even under

different oxygenation conditions.

3.4.2 Incorporating knowledge into the machine
learning model architecture

Rather than optimizing a network architecture through

regularization, biology-informed neural networks constrain the

model architecture to biological priors from the start. Typically in

the context of network analysis, biological priors such as known

interactions between genes and/or transcription factors are translated

to nodes and edges in a graph (112, 113). The network is constrained

to an established connectivity profile which greatly reduces the model

complexity compared to a fully connected network. Similar to

transfer learning where a different data-rich scenario is used to

pretrain a model prior to refining specific weights on the limited

target data, this approach uses expert insight to preset connections

and weights. Lagergren et al. (114) proposed biology-informed neural

networks that learn the nonlinear terms of a governing system,

eliminating the need for explicitly specifying the mechanistic form

of a PDE as is the case for PINNs. They tested their approach on real-

world biological data to uncover previously overlooked mechanisms.

Another example is given by Przedborski et al. (115) who used

biology-informed neural networks to predict patient response to anti-

PD-1 immunotherapy and present biomarkers and possible

mechanisms of drug resistance. Their model offers insights for

optimizing treatment protocols and discovering novel therapeutic

targets. Indeed, this approach has found several applications, e.g., for

the prediction of prostate cancer (112) and drug discovery (116).

Despite similar naming conventions, biology- and physics-informed

neural networks refer to distinct approaches. The latter distinguishes

itself by integrating biological realism and enhancing interpretability

for applications that predominately rely on multi-scale, multi-source

data (such as omics). However, profound insight regarding the

formulated biological process is indispensable. PINN applications

regularize, i.e. do not strictly constrain implying more flexibility yet

less interpretability.

Finally, in the context of generative approaches, differential

equations have previously been incorporated into (deep) neural

networks through variational autoencoders. While current

examples were obtained from medical applications other than

oncology (117, 118), they represent elegant solutions to allow for

dynamic deep learning despite limited data, given careful

hyperparameter tuning.

3.4.3 Hierarchical modeling
Hierarchical nonlinear models, also referred to as nonlinear mixed

effects models, are a widely used framework to analyze longitudinal

measurements on a number of individuals, when interest focuses on

individual-specific characteristics (119). For instance, early in drug

development, pharmacokinetics studies are carried out to gain insights
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into within-subject pharmacokinetics processes of absorption,

distribution, and elimination (120). Typically, a parametric nonlinear

model describing drug concentration change over time (individual-

level model) is coupled with a linear model describing the relation

between pharmacokinetic parameters and individual features

(population-level model). One of the simplest population-level

models is the random intercept model, which models individual

parameter values as normally distributed around a typical value. This

enables information sharing through each individual’s contribution to

determine the typical value, while simultaneously allowing individual

parameters that match the observed measurements. Moreover, in

contrast to the sequential approach (section 3.1.3), hierarchical

models allow for the propagation of uncertainty between the

individual-level and population-level models. Applications in

oncology range from tumor growth (121) to mutational dynamics in

circulating tumor DNA (122) or metastatic dissemination (123).

Interestingly, hierarchical models have the potential to benefit

from more sophisticated data-driven approaches to integrate high-

throughput data, such as omics or imaging (8). This can be done by

changing the linear covariate model with more complex machine

learning algorithms able to capture complex relations between the

parameters of the individual-level model and the high dimensional

covariates (124, 125), and/or by using Bayesian inference (38).
4 Conclusion and perspective

Recently, machine and deep learning have become ubiquitous

given their indisputable potential to learn from data (126).

However, it is evident that medical applications, especially in

oncology, are currently constrained by the extent and diversity of

available data. Moreover, clinical translation involves high-stakes

decisions that need to be backed up by evidence. The oncology field

must address the critical challenges of limited data availability,

model transparency, and complex input data. To overcome these

bottlenecks, we need data-efficient, comprehensible, and robust

solutions. Despite the growing interest in mechanistic

mathematical modeling for medical applications, the success and

opportunity of data-driven models must be taken into account.

Strategically integrating knowledge- and data-driven modeling in

mechanistic learning represents a logical progression to tackle the

challenges in mathematical oncology. It aims to facilitate accurate,

personalized predictions, leading to a more comprehensive

understanding of cancer evolution, progression, and response.

Here, we identified opportunities for synergistic combinations

and provided a snapshot of the current state-of-the-art for how such

combinations are facilitated for oncology applications. We

highlighted similarities in the mathematical foundation and

implementation structure of optimization processes and pointed

out differences with respect to data requirements and the role of

knowledge and data in these approaches. It is important to structure

the growing landscape of models at the interface of data- and

knowledge-driven implementations. We hence propose systemizing

combinations in four general categories: sequential, parallel,
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intrinsic, and extrinsic combinations. While sequential and parallel

combinations are intuitive and easily implemented, intrinsic and

extrinsic combinations incorporate a stronger degree of interlacing

that requires a deeper understanding of both data science and

mathematical theory. The choice of analysis tool should always keep

in mind the quality, size, and type of data and knowledge in light of

the underlying research question. An intentional combination of

machine learning and mechanistic mathematical modeling can then

leverage the strengths of both approaches to tackle complex

problems, gain deeper insights, and develop more accurate and

robust solutions. Mechanistic learning can take on many facets and

is foreseen to grow in importance in the context of mathematical

oncology with a particular focus on explainable AI, handling of

limited data (e.g. efficient architecture design, data augmentation),

and generation of precision oncology solutions. In this review, we

discussed only the core concepts. Given the fluid boundaries

between data- and knowledge-driven models and in light of the

variety of approaches within each of these domains, an exhaustive

listing of all combinations is infeasible. However, several future

directions stand out. For instance, hybrid modeling with Bayesian

statistics, deep generative approaches, or specific training regimes,

including semi-supervised (contrastive) or reinforcement learning,

are worth mentioning. Finally, despite the positive notion regarding

mechanistic learning, certain limitations persist within both

separate and combined approaches. Specifically ethical

considerations should be addressed. These may arise from data

privacy, algorithmic bias, or the clinical implementation of

hybrid models.

Finally, with this work we strive to motivate a more active

exchange between machine learning and mechanistic mathematical

modeling researchers given the many parallels in terms of

methodologies and evaluation endpoints, and the powerful results

produced by mechanistic learning.
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111. Ayensa-Jiménez J, Doweidar MH, Sanz-Herrera JA, Doblare M. Understanding
glioblastoma invasion using physically-guided neural networks with internal variables.
PloS Comput Biol. (2022) 18:e1010019. doi: 10.1371/journal.pcbi.1010019

112. Elmarakeby HA, Hwang J, Arafeh R, Crowdis J, Gang S, Liu D, et al.
Biologically informed deep neural network for prostate cancer discovery. Nature.
(2021) 598:348–52. doi: 10.1038/s41586-021-03922-4

113. Yazdani A, Lu L, Raissi M, Karniadakis GE. Systems biology informed deep
learning for inferring parameters and hidden dynamics. PloS Comput Biol. (2020) 16:
e1007575. doi: 10.1371/journal.pcbi.1007575

114. Lagergren JH, Nardini JT, Baker RE, Simpson MJ, Flores KB. Biologically-
informed neural networks guide mechanistic modeling from sparse experimental data.
PloS Comput Biol. (2020) 16:e1008462. doi: 10.1371/journal.pcbi.1008462

115. Przedborski M, Smalley M, Thiyagarajan S, Goldman A, Kohandel M. Systems
biology informed neural networks (SBINN) predict response and novel combinations for
PD-1 checkpoint blockade. Commun Biol. (2021) 4:877. doi: 10.1038/s42003-021-02393-7
frontiersin.org

https://doi.org/10.1101/2020.12.30.424757
https://doi.org/10.1111/coin.12515
https://doi.org/10.48550/ARXIV.2204.00313
https://doi.org/10.1038/s41598-023-31236-0
https://doi.org/10.1007/978-3-030-75178-4
https://doi.org/10.1371/journal.pcbi.1010988
https://doi.org/10.1016/j.cma.2022.115412
https://doi.org/10.1016/j.media.2022.102672
https://doi.org/10.1101/2022.11.06.22282010
https://doi.org/10.48550/arXiv.1806.07366
https://doi.org/10.1007/s40304-017-0103-z
https://doi.org/10.1088/1361-6420/aa9a90
https://doi.org/10.48550/arXiv.2202.02435
https://doi.org/10.21203/rs.3.rs-2675584/v1
https://doi.org/10.1016/j.compbiomed.2023.106884
https://doi.org/10.48550/arXiv.2204.09633
https://doi.org/10.1038/s41746-022-00666-x
https://doi.org/10.1126/science.1165893
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.3389/fimmu.2023.1115536
https://doi.org/10.48550/arXiv.2206.10586
https://doi.org/10.1016/j.jcp.2021.110525
https://openreview.net/forum?id=wENMvIsxNN
https://openreview.net/forum?id=wENMvIsxNN
https://doi.org/10.1126/sciadv.aav6971
https://doi.org/10.1137/21M1401243
https://doi.org/10.48550/arXiv.2001.04385
https://doi.org/10.48550/arXiv.2001.04385
https://doi.org/10.1038/s41591-021-01558-5
https://doi.org/10.1002/widm.1480
https://doi.org/10.1063/5.0086789
https://doi.org/10.1016/j.medj.2021.08.007
https://doi.org/10.1007/s00432-023-04633-1
https://doi.org/10.1016/j.procir.2021.11.284
https://doi.org/10.3389/fnins.2021.705323
https://doi.org/10.3389/fnins.2021.705323
https://doi.org/10.1038/sj.bjc.6604125
https://doi.org/10.1007/s11538-015-0067-7
https://doi.org/10.1109/Access.6287639
https://doi.org/10.1109/Access.6287639
https://doi.org/10.21037/tcr
https://doi.org/10.3390/s21020438
https://doi.org/10.1016/j.cels.2017.08.005
https://doi.org/10.1039/C9ME00036D
https://doi.org/10.1039/C9ME00036D
https://doi.org/10.1098/rsta.2020.0092
https://doi.org/10.1016/j.jhydrol.2021.127301
https://doi.org/10.1109/TMI.2023.3267349
https://doi.org/10.1109/TMI.42
https://doi.org/10.1371/journal.pcbi.1008845
https://doi.org/10.1007/s10915-022-01939-z
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1137/22S1472814
https://doi.org/10.1371/journal.pcbi.1010019
https://doi.org/10.1038/s41586-021-03922-4
https://doi.org/10.1371/journal.pcbi.1007575
https://doi.org/10.1371/journal.pcbi.1008462
https://doi.org/10.1038/s42003-021-02393-7
https://doi.org/10.3389/fimmu.2024.1363144
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Metzcar et al. 10.3389/fimmu.2024.1363144
116. Greene CS, Costello JC. Biologically informed neural networks predict drug
responses. Cancer Cell. (2020) 38:613–5. doi: 10.1016/j.ccell.2020.10.014

117. Hackenberg M, Harms P, Pfaffenlehner M, Pechmann A, Kirschner J, Schmidt
T, et al. Deep dynamic modeling with just two time points: Can we still allow for
individual trajectories? Biom J. (2022) 64:1426–45. doi: 10.1002/bimj.202000366

118. Qian Z, Zame W, Fleuren L, Elbers P, van der Schaar M. Integrating expert
ODEs into neural ODEs: pharmacology and disease progression. In: Advances in
Neural Information Processing Systems, vol. 34. Curran Associates, Inc., Red Hook, New
York, USA (2021). p. 11364–83.

119. Davidian M, Giltinan DM. Nonlinear models for repeated measurement data:
An overview and update. J Agric Biol Environ Stat. (2003) 8:387–419. doi: 10.1198/
1085711032697

120. Bonate PL, Vicini P. Preclinical pharmacokinetic–pharmacodynamic modeling
and simulation in drug. In: Preclinical Drug Development. CRC Press, Boca Raton,
Florida, USA (2010).

121. Ribba B, Holford N, Magni P, Trocóniz I, Gueorguieva I, Girard P, et al. A
review of mixed-effects models of tumor growth and effects of anticancer drug
treatment used in population analysis. CPT Pharmacomet Syst Pharmacol. (2014)
3:113. doi: 10.1038/psp.2014.12
Frontiers in Immunology 13
122. Janssen JM, Verheijen RB, Van Duijl TT, Lin L, Van Den Heuvel MM, Beijnen
JH, et al. Longitudinal nonlinear mixed effects modeling of EGFR mutations in ctDNA
as predictor of disease progression in treatment of EGFR -mutant non-small cell lung
cancer. Clin Transl Sci. (2022) 15:1916–25. doi: 10.1111/cts.13300
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