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Introduction: The global healthcare burden of COVID-19 pandemic has been

unprecedented with a high mortality. Metabolomics, a powerful technique, has

been increasingly utilized to study the host response to infections and to

understand the progression of multi-system disorders such as COVID-19.

Analysis of the host metabolites in response to SARS-CoV-2 infection can

provide a snapshot of the endogenous metabolic landscape of the host and its

role in shaping the interaction with SARS-CoV-2. Disease severity and

consequently the clinical outcomes may be associated with a metabolic

imbalance related to amino acids, lipids, and energy-generating pathways.

Hence, the host metabolome can help predict potential clinical risks

and outcomes.

Methods: In this prospective study, using a targeted metabolomics approach, we

studied the metabolic signature in 154 COVID-19 patients (males=138, age range

48-69 yrs) and related it to disease severity and mortality. Blood plasma

concentrations of metabolites were quantified through LC-MS using MxP

Quant 500 kit, which has a coverage of 630 metabolites from 26 biochemical

classes including distinct classes of lipids and small organic molecules. We then

employed Kaplan-Meier survival analysis to investigate the correlation between

various metabolic markers, disease severity and patient outcomes.

Results: A comparison of survival outcomes between individuals with high levels

of various metabolites (amino acids, tryptophan, kynurenine, serotonin, creatine,

SDMA, ADMA, 1-MH and carnitine palmitoyltransferase 1 and 2 enzymes) and

those with low levels revealed statistically significant differences in survival

outcomes. We further used four key metabolic markers (tryptophan,

kynurenine, asymmetric dimethylarginine, and 1-Methylhistidine) to develop a

COVID-19 mortality risk model through the application of multiple machine-

learning methods.
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Conclusions: Metabolomics analysis revealed distinct metabolic signatures

among different severity groups, reflecting discernible alterations in amino acid

levels and perturbations in tryptophan metabolism. Notably, critical patients

exhibited higher levels of short chain acylcarnitines, concomitant with higher

concentrations of SDMA, ADMA, and 1-MH in severe cases and non-survivors.

Conversely, levels of 3-methylhistidine were lower in this context.
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1 Introduction

The coronavirus disease 2019 (COVID-19) pandemic is an

infectious disease caused by the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2). The global toll of COVID-19 has been

unprecedented, which was first reported to the World Health

Organization (WHO) on 31 December 2019, and has since caused a

major global burden on healthcare, societies, and economies (1, 2). So

far, more than 770 million confirmed COVID-19 cases and around 7

million deaths have been reported globally (3). COVID-19 mainly

presents as a respiratory illness and the clinical spectrum ranges from

asymptomatic or mild influenza-like illness to severe pneumonia with

severe respiratory distress, which can lead to multi-organ dysfunction

and failure, and death (4–6). An advanced age and pre-existing

medical conditions such as hypertension, diabetes, obesity, and

smoking amongst others, have been linked to adverse clinical

outcomes in COVID-19 (7–9). Indeed, patients with such

characteristics will be at a higher risk of developing a serious illness

with severe or life-threatening consequences (6). There has been a

massive and unified global effort to enhance our understanding of the

disease and the interaction between the pathogen and the human host,

which has resulted in successful production and implementation of a

vaccination strategy to control the spread of this disease (10, 11).

However, perturbation of multiple physiological pathways in humans

by SARS-CoV-2 and the resultant complexities in clinical

presentations, make it challenging to arrive at an accurate patient

risk stratification. Higher incidences of adverse clinical outcomes in

COVID-19 patients with comorbidities, such as older age, diabetes,

dyslipidemia and obesity suggest that metabolic disturbances might

play key roles in COVID-19 severity and outcomes (12, 13). Therefore,

to improve clinical management, there is a need to better understand

the impact of COVID-19 on host metabolic profile, which might

underlie the differences in clinical presentation.

Metabolomics is a powerful technique, which is gaining much

traction as potential diagnostic, monitoring and prognostic tool. It

allows quantitative analyses of large datasets of biomolecules (also

known as metabolites) from host biological specimen, which can

provide a broad picture of the metabolome and insights into

complex metabolic pathways. This metabolic profile can act as a
02
snapshot of the patient’s metabolome, providing a detailed

description of the metabolic state as a result of both genetic

contributions and environmental factors (14). Metabolomics can

also allow examination of disease-induced changes to the host

metabolic landscape and thereby help identify biomarkers of

disease severity, predict patient outcomes and facilitate

therapeutic intervention (12, 15).

Metabolomics has been leveraged in biomarker discovery to

identify metabolites correlating with diseases. Multiple studies have

reported metabolic dysregulation during COVID-19 progression

(16–24) and their effect on multiple organ systems (19), which

suggest that these metabolites may be used as prognostic markers.

For example, increases in the ratios of kynurenine to tryptophan

(25, 26), and arginine to ornithine (26, 27) and a decrease in the

ratio glutamine to glutamate (25, 28, 29) have been reported in

COVID-19 patients suggestive of COVID-induced metabolic

changes. In addition, triglycerides, were also found to be

upregulated in COVID-19 patients and it positively correlates

with pro-inflammatory markers such as interleukin-6 (IL-6) and

C-reactive protein (CRP) (16, 23, 26, 30). Altogether, these studies

have identified alterations in amino acids, lipids, and other crucial

metabolic pathways due to COVID-19, however, more research is

necessary to characterize and validate biomarkers that can predict

the course of the disease, with the ultimate goal of reducing critical

complications. In this study, we report the metabolomic changes

associated with COVID-19 infection during the early phase of the

pandemic from July 2020 to October 2020 and link them to survival

probability of COVID-19 patients in Qatar. We aim to stratify

patient risk and disease progress based on the metabolic profile and

identify biomarkers that are robust in diagnosis and prognosis of

COVID-19.
2 Materials and methods

2.1 Study participants

This prospective cohort study included 154 adult patients

diagnosed with COVID-19 at Hamad Medical Corporation from
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July to December 2020. The participants were mostly males

(n=138), with a mean age of 55 (range: 48–69) and diverse

nationalities. Based on the WHO classification of clinical

presentation, patients were divided into five age matched groups:

asymptomatic (n=36), mild symptomatic (n=23), mild pneumonia

(n=32), severe (n=23), and critical (n=40) (31). Around 10 ml

venous blood samples was collected either at the time of diagnosis

or hospital admission from all consenting adults above 18 years of

age. The plasma was aliquoted after centrifuging the blood samples

at 3000 rpm for 5 min at 4°C, and stored in -80°C. The available

clinical and laboratory data, such as body mass index (BMI), viral

load, and blood test results, were obtained from the hospital’s

electronic healthcare system with patients’ consent. The study was

approved by the institutional review boards of Hamad Medical

Corporation (MRC-01-20-145) and Qatar University (QU-IRB

1289-EA/20).
2.2 Metabolomics

The targeted metabolomics of serum samples collected from all

participants within 24 to 48 hours after diagnosis was performed

using Biocrates MxP® Quant 500 Kit (Biocrates, Innsbruck,

Austria). Tandem mass spectrometry was performed at the

Fraunhofer Institute for Toxicology and Experimental Medicine.

We analyzed 630 metabolites as part of the MetIDQ™

MetaboINDICATOR™ module designed for MxP® Quant 500

kit. Lipid quantification was performed using Flow Injection

Analysis Tandem Mass Spectrometry (FIA-MS/MS), and small

molecule quantification was done using liquid chromatography-

tandem mass spectrometry (LC-MS/MS) with the 5500 QTRAP®

instrument triple quadrupole mass spectrometer (AB Sciex,

Darmstadt, Germany) as previously described (32, 33).
2.3 Statistical analysis

All analyses were performed using R version 3.6.3 and python.

Data reprocessing was carried out, including normalization by

median, log transformation, and Pareto scaling, before clustering

to construct the heat-maps. Principal Component Analysis (PCA)

was performed to examine the metabolic profiles of COVID-19

patients, with the goal of identifying factors associated with severity

and survival. Wilcoxon rank sum tests were implemented to

determine the significance of differences between different severity

and survival groups. Statistical differences between groups were

considered statistically significant if the p-value was less than 0.05.

In addition, Receiver Operating Characteristic (ROC) curve analysis

was utilized to evaluate the predictive capability of certain

metabolites in determining survival status in our cohort.

Correlation between certain metabolites and clinical markers was

analyzed using the Spearman correlation method. Using Kaplan

Meier survival analysis, significant indicators of patient survival

related to different metabolite levels were identified, while the

Youden method was employed to determine the optimal cut-

points for the variables. Survival time was defined as the time
Frontiers in Immunology 03
from hospital admission to discharge or death. Volcano plots and

heat-maps were generated using the Metaboanalyst R package to

compare metabolomic differences between patients across different

severity groups.

The dataset utilized in this study for creation and testing of

models comprises 154 samples, each representing a unique patient

record. The dataset summarized in Table 1, provides information

on demographics, including diabetes and hypertension status as

well as age, gender, and body mass index (BMI) (n=154). In this

study, various machine learning (ML) algorithms were employed to

analyze data with the aim of predicting living status based on

metabolic measurements. From the dataset, we tested specific

metabolites as predictors for our models, including Tryptophan,

Kynurenine, Asymmetric dimethylarginine, and 1-Methylhistidine.

These predictors were chosen based on their potential relevance to

the living status outcome, literature review and univariate analysis.

The dataset of 154 samples was randomly divided into training and

testing sets, with 80% of the data used for training and 20% for

testing. To enhance reproducibility, we incorporated a random seed

using “random.seed()” function in our code to ensure that data

splitting and model initialization, or random processes, yield

consistent results across different runs. The ML models, including

Logistic Regression, Random Forest Classifier, Support Vector

Machine (SVM), Bernoulli Naive Bayes, Gradient Boosting

Classifier (using XGBoost), K-Nearest Neighbors (KNN), Neural

Network (Multilayer Perceptron), and MLPClassifier were trained

using the training set and then used to make predictions on the

testing set. The performance of each model was evaluated based on

its accuracy and confusion matrix, including the true positives, false

positives, true negatives, and false negatives predicted by the model.

The python packages used were pandas and scikit-learn (all the

codes are available as Supplementary Material Datasheet 3).
3 Results

3.1 Characterization of study patients

The study population consisted of 154 SARS-CoV-2 RT-PCR

positive COVID-19 cases that presented with asymptomatic, mild

symptomatic, mild pneumonia, severe and critical clinical

phenotypes. Baseline demographic and clinical characteristics

(clinical data with cutoffs across the five severity groups of

COVID-19 patients) are summarized in Table 1. Cohorts were

matched for age and 121 (121/154, 79%) of enrolled patients

survived the infection (Table 1). Prevalence of diabetes and

hypertension were higher in critical group (Table 1).

Inflammatory biomarkers, such as IL-6 and CRP, are predictive

biomarkers in COVID-19 patients (34) and were significantly

increased in the COVID-19-positive groups. Table 1 summarizes

the clinical and laboratory characteristics of the enrolled cohort.

Thromboembolic complications have been reported commonly in

severe COVID-19 infections. Levels of D-dimer and CRP were

significantly elevated in COVID-19 patients, which correlated with

severity of COVID-19 symptoms. Our study revealed a positive

correlation between serum ferritin levels and disease severity, poor
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TABLE 1 Clinical traits of participants stratified by asymptomatic, mild symptomatic, mild pneumonia, severe and critical COVID-19 cases.

Severity

Characteristic N Total Asymptomatic
N = 361

Mild
Symptomatic

N = 231

Mild
Pneumonia
N = 321

Severe
N = 231

Critical
N = 401

p-value2

Living status 154 <0.001

Non-survivor 33
(100%)

0 (0%) 0 (0%) 1 (3.0%) 5 (15%) 27 (82%)

Survivor 121
(100%)

36 (30%) 23 (19%) 31 (26%) 18 (15%) 13 (11%)

Gender 154 0.011

Female 16
(100%)

1 (6.2%) 1 (6.2%) 9 (56%) 1 (6.2%) 4 (25%)

Male 138
(100%)

35 (25%) 22 (16%) 23 (17%) 22 (16%) 36 (26%)

Age 154 55
(48-63)

52 (46-55) 52 (46-56) 51 (47-61) 60 (54-65) 64 (56-73) <0.001

Diabetes mellitus 154 77
(100%)

12 (16%) 12 (16%) 18 (23%) 12 (16%) 23 (30%) 0.2

Hypertension 154 79
(100%)

14 (18%) 7 (8.9%) 18 (23%) 15 (19%) 25 (32%) 0.035

White blood cell
count (WBC)
[x103/uL]

152 7.5
(5.6-
11.5)

6.3 (5.3-7.3) 6.2 (5.0-8.8) 6.1 (4.4-8.3) 9.0 (7.1-12.4) 12.6 (8.7-15.8) <0.001

Red blood cell
count (RBC)
[x106/uL]

152 4.60
(3.60-
5.12)

5.10 (4.85-5.40) 5.25 (4.93-5.77) 4.90 (4.50-5.23) 4.00 (3.50-4.50) 3.10 (2.80-3.82) <0.001

Hemoglobin (Hgb)
[g/dL]

152 12.55
(10.47-
14.60)

14.60 (13.55-15.35) 14.80 (13.65-16.08) 13.40
(12.38-14.17)

11.90
(10.85-12.50)

9.15 (8.10-11.05) <0.001

Hematocrit
(Hct) [%]

152 38
(32-43)

44 (41-45) 44 (41-48) 40 (38-43) 35 (32-37) 28 (25-33) <0.001

Mean corpuscular
volume (MCV) [fL]

152 86
(82-90)

86 (82-89) 83 (80-86) 84 (76-88) 89 (85-93) 89 (87-92) <0.001

Absolute
neutrophil count
(ANC) [x103/uL]

152 5.3
(3.1-
8.9)

3.7 (2.5-4.7) 3.5 (2.1-4.3) 3.7 (2.5-5.8) 7.3 (5.7-10.7) 10.4 (7.5-13.8) <0.001

Lymphocyte count
[x103/uL]

152 1.40
(0.98-
2.00)

1.70 (1.55-2.45) 2.00 (1.60-2.40) 1.35 (1.08-1.83) 1.10 (0.65-1.50) 0.90 (0.50-1.40) <0.001

Mean platelet
volume (MPV) [fl]

147 10.50
(9.90-
11.50)

10.10 (9.55-10.95) 10.45 (9.70-11.30) 10.40
(10.05-10.95)

10.40
(9.60-11.45)

11.30
(10.38-12.33)

<0.001

Red blood cell
distribution width
(RDW-CV) [%]

152 13.70
(12.60-
16.00)

12.30 (11.90-12.95) 12.80 (12.25-14.00) 13.50
(12.67-14.62)

14.30
(13.65-15.55)

16.65
(14.60-19.52)

<0.001

D-Dimer [mg/
L FEU]

103 1.35
(0.54-
3.77)

0.28 (0.24-0.61) 0.53 (0.33-1.08) 0.48 (0.36-0.69) 1.87 (0.84-3.28) 3.35 (1.78-5.29) <0.001

Total Protein [g/L] 132 70
(64-76)

77 (72-82) 73 (72-75) 69 (66-72) 70 (64-78) 64 (57-72) <0.001

Albumin [g/L] 144 31
(25-38)

40 (38-44) 39 (36-42) 32 (30-35) 26 (24-30) 23 (20-27) <0.001

(Continued)
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prognosis and mortality, suggesting that ferritin levels could be an

indicator of disease severity and clinical outcome (Table 1).

Increased levels of ferritin in severe disease might indicate an

underlying dysregulation in iron metabolism in response to

COVID-19 infection. Therefore, monitoring serum ferritin levels

can serve as an important predictive biomarker in COVID-19

management. In addition, the decline in serum albumin levels

correlated with disease severity and mortality in our COVID-19

cohort. Moreover, our study also revealed that COVID-19 patients

with a severe disease and those that did not survive, had higher

serum triglycerides compared to those with less severe disease.
3.2 Stratification of COVID-19 clinical
phenotypes using metabolomics

In the current study, we employed Kaplan-Meier survival

analysis to evaluate the correlation between metabolic markers

that were previously reported and patient outcomes. A

hierarchical cluster analysis of identified metabolites revealed that

COVID-19 symptoms severity clearly differed in their metabolic

signatures, indicating that the observed metabolic alteration is

indeed specific to COVID-19 patients (Supplementary Figure 1).

609 metabolites were analyzed in patients classified as

asymptomatic (n=36), mild symptomatic (n=23), mild

pneumonia (n=32), severe (n=23) and critical (n=40) based on

WHO classification. Distinct metabolites allowed for discrimination

of COVID-19 clinical symptoms (Supplementary Figure 1) and this

was further highlighted by the scaled principal component analysis

(PCA), which revealed metabolic phenotypes of sera from COVID-

19 asymptomatic/mild symptomatic groups differing substantially

from severe/critical groups (Figure 1A). We examined the

relationship between survival and metabolic profile of COVID-19

patients and a PCA plot revealed a clear separation between

survivors and non-survivors (Figure 1B). Similarly, a PCA plot of

neutrophil counts in COVID-19 patients revealed similar
Frontiers in Immunology 05
distributions as in patients with asymptomatic/mild (ANC=<7)

and severe/critical (ANC>7) groups, indicating that a severe

disease positively correlates with a high neutrophil count

(Figure 1C). An analogous PCA plot of WBC counts (=<10 for

asymptomatic/mild and >10 for severe/critical groups) revealed

similar results (Figure 1D). The observed clear separations

between the COVID-19 clinical phenotypes for neutrophil and

WBC counts indicates a potential association between the

metabolic changes in these subgroups and disease severity.

Neutrophils rely on both the tricarboxylic acid (TCA) cycle and

the pentose phosphate pathway (PPP) to achieve their desired

outcomes as effector cells by making reactive oxygen species

(ROS) (35). However, when crucial amino acids like arginine and

histidine are depleted, it can severely impair the functionality of

neutrophils even with high neutrophil count (36). On the other

hand, the proliferation of lymphocytes is contingent upon the

availability of tryptophan (37). Volcano plots highlighted the

most differentially expressed metabolites in COVID-19 plasma

samples associated with disease severity distinct metabolites in

COVID-19 plasma samples compared to controls (Supplementary

Figure 1). A comparison of survival rates between individuals

presenting with elevated levels of several metabolites, and those

with lower levels, revealed statistically significant differences in

survival outcomes. These metabolites included amino acids,

tryptophan and kynurenine, their associated metabolites, creatine,

s ymme t r i c d ime thy l a r g i n in e ( SDMA) , a s ymme t r i c

dimethylarginine (ADMA), 1-methylhistidine (1-MH), as well as

carnitine palmitoyltransferase 1 and 2 enzymes indicators

(Supplementary Figures 2, 3).
3.3 Association between circulating amino
acids profile and COVID-19 severity

The severity spectrum of COVID-19 symptoms has been

associated with circulating amino acids concentrations (38).
TABLE 1 Continued

Severity

Characteristic N Total Asymptomatic
N = 361

Mild
Symptomatic

N = 231

Mild
Pneumonia
N = 321

Severe
N = 231

Critical
N = 401

p-value2

Alkaline
phosphatase (ALP)
[U/L]

138 92
(70-
129)

82 (70-104) 63 (60-74) 78 (64-94) 108 (85-148) 150 (96-287) <0.001

Calcium [mmol/L] 143 2.22
(2.12-
2.33)

2.32 (2.28-2.38) 2.33 (2.23-2.40) 2.18 (2.14-2.31) 2.14 (2.08-2.28) 2.12 (2.05-2.20) <0.001

C-reactive protein
(CRP) [mg/L]

152 18
(5-69)

4 (2-11) 3 (2-9) 41 (17-83) 40 (10-101) 67 (40-111) <0.001

Ferritin [ug/L] 104 688
(318-
1,371)

218 (144-396) 265 (114-365) 518 (219-860) 670 (438-1,124) 1,276
(704-2,656)

<0.001
Parametric traits are described with mean ± sd, non-parametric using median, whilst categorical variables are given in counts. Significant p-values are in bold text.
1n (%); Median (25%-75%).
2Fisher’s exact test; Kruskal-Wallis rank sum test; Pearson’s Chi-squared test.
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Hence, we examined the correlation between the amino-acid profile

and the severity of the disease in COVID-19 patients. We measured

the levels of alanine, phenylalanine, tryptophan, serine, cysteine,

glutamine, aspartic acid, glutamic acid, and histidine in different

clinical phenotypes (Figure 2). We found that levels of certain

amino acids, such as alanine, tryptophan, serine, glutamine, and

histidine were significantly reduced in critical and severe cases of

COVID-19 and this reduction was associated with disease severity

(Figure 2). On the other hand, levels of phenylalanine and cysteine

were increased in severe and critical patients compared to

asymptomatic group (Figures 2B, E). Interestingly, levels of some

amino acids, such as serine (Figure 2D) and aspartic acid

(Figure 2G) varied among different severity groups. While

aspartic acid levels were lowest in critically-ill patients, its levels

were highest in those with mild-pneumonia (Figure 2G). These

findings suggest that changes to amino acid profile can be associated

with severity of COVID-19 symptoms. Moreover, in severe

COVID-19 patients, we found an increase in the ratio of

phenylalanine to tryptophan (Figure 2J) (suggestive of decreased

protein synthesis), as well as a decrease in the ratio of phenylalanine

to tyrosine (Figure 2K) (suggesting the utilization to generate

neurotransmitters) in comparison to mild and asymptomatic

patients. Consistent with other studies, Fisher’s ratio correlated

negatively with the disease severity (39) (Figure 2L). Similarly,

analysis of serum amino acid levels revealed significant differences

between survivors and non-survivors (Figure 3). The levels of

alanine, tryptophan, serine, aspartic acid, glutamic acid, and
Frontiers in Immunology 06
histidine were found to be significantly decreased in individuals

who did not survive in comparison to those who did. On the other

hand, the levels of phenylalanine were found to be elevated in non-

survivors (Figure 3). This data correlates well with the amino acid

levels observed in severe/critical cases (Figure 2).
3.4 Alterations in tryptophan and
kynurenine metabolism and kynurenine/
tryptophan ratio

Tryptophan is an essential amino acid that plays a vital role in

protein synthesis, growth, mental health, and immune responses (40).

Tryptophan pathway was among the top pathways that was impacted

by SARS-CoV-2 severe infection. Our analysis revealed that

tryptophan derivatives serotonin and tryptophan betaine were

significantly reduced in the severe/critical group compared to mild

and asymptomatic groups (Figures 4A, B) and this reduction was

associated with disease severity. Previous study showed that the levels

of tryptophan were significantly decreased in COVID-19 patients and

were inversely correlated with IL-6 levels (41). It is well known that

the essential amino acid tryptophan catabolism is tightly controlled

by the rate-limiting enzyme indoleamine 2,3-dioxygenase (IDO) (37).

IDO contributes to immune-metabolic regulation by depleting

tryptophan or producing kynurenine, which both contributing to

an increased susceptibility to infection (42). Our further analysis

showed that 3-indolepropionic acid and kynurenine, the two
B

C D

A

FIGURE 1

Principal components analysis (PCA) for COVID-19 patients based on putative metabolites. (A) PCA plot showing the distribution of 609 metabolites
in individuals classified as Asymptomatic (green), Mild Symptomatic (orange), Mild Pneumonia (purple), Severe (pink), and Critical (green) based on
their clinical symptoms. (B) PCA plot showing the distribution of 609 metabolites in individuals classified as survivors (blue) and non-survivors (pink)
of COVID-19. (C) PCA plot showing the neutrophil counts in COVID-19 patients with asymptomatic/mild (ANC=<7) and severe/critical (ANC>7)
groups. (D) PCA plot showing the WBC counts in COVID-19 patients with =<10 for asymptomatic/mild and >10 for severe/critical groups.
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tryptophan derived metabolites, and the ratios of kynurenine to

tryptophan and kynurenine to tryptophan betaine were elevated

(Figures 4C, D) in patients with severe/critical COVID-19

(Figures 4E, F). Additionally, receiver operating characteristic

(ROC) curve analysis in our total cohort revealed an area under

the curve (AUC) of 0.929 and 0.904 for kynurenine and kynurenine
Frontiers in Immunology 07
to tryptophan ratio respectively (Figure 4G). These results have

shown good predictive value to discriminate between hospital

deaths and survivors (Figures 4C–G). A significant negative

correlation between kynurenine to tryptophan ratio and either

lymphocyte percentage or albumin were observed with a Pearson

coefficient of R=0.61 and 0.72 (p < 0.05), respectively (Figures 4H, I).
B C

D E F

G H I

J K L

A

FIGURE 2

Changes in circulating amino acids associated with COVID-19 clinical severity. Box and whisker plots showing the levels of various amino acids in
patients classified by severity of illness. Non-polar amino acids (A–C), polar uncharged amino acids (D–F), Charged amino acids (G–I), ratios of
phenylalanine to tryptophan (J) and to Tyrosine (K) are shown. Fishers ratio is depicted (L). The boxes depict the interquartile range (IQR) and the
whiskers extend to the most extreme data points that are not outliers. Outliers are indicated by black circles. The following symbols were used to
indicate statistical significance in differences in the levels of amino acids between different severity groups NS, *(0.05); **(0.01); ***(0.001);
****(0.0001).
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In accordance with the alterations in metabolite levels mentioned

above, patient survival probability in high serotonin (Figure 4J),

tryptophan (Figure 4L), and tryptophan betaine (Figure 4M)

groups was significantly improved compared to patients with low

levels (p < 0.0001). Whereas high levels of kynurenine (Figure 4K)

and elevated kynurenine:tryptophan (Figure 4N) and kynurenine:

tryptophan betaine ratios (Figure 4O) were associated with decreased

survival probability. Taken together, high levels of serotonin,

tryptophan, and tryptophan betaine were associated with improved

survival, while high levels of kynurenine, kynurenine to tryptophan

ratio, and kynurenine to tryptophan betaine ratio were associated

with decreased survival probability. Therefore, these metabolites

warrant further testing as possible prognostic markers for severe/

critical COVID-19 cases.
3.5 COVID-19 positive patients display
alterations in carnitine metabolism

The effects of SARS-CoV-2 infection on intermediary

metabolism, including metabolism of acylcarnitines, has not been

well studied. Nevertheless, measurement of total carnitine has been

used as a precision biomarker to predict mortality risk in diseases

such as sepsis, Type-2 diabetes, cancer, and heart failure (43). To

better understand the dysregulation of acylcarnitine metabolism

associated with the COVID-19 symptoms severity, we further

analyzed our data for short-chain acylcarnitines (SCACs)

concentration. Elevated levels of SCACs have been observed in

critically ill COVID-19 patients, likely due to increased demand for
Frontiers in Immunology 08
energy, inflammation, and mitochondrial dysfunction (Figure 5A).

Furthermore, elevated levels of carnitine palmitoyltransferase 1 and

2 (CPT1 and CPT2) enzymes, which are involved in fatty acid

transport, have also been observed in critical COVID-19 patients as

compared to asymptomatic (Figures 5B, C). ROC curve analysis

demonstrated a high discriminatory power for carnitines and CPT1

indicator, with an area under the curve of 0.886 and 0.812

respectively, indicating their potential usefulness as predictors of

hospital mortality in COVID-19 patients (Figure 5D). In addition, a

positive correlation between acetylcarnitine and propionylcarnitine,

the amino acid derivatives involved in fatty acid transport, and urea,

a waste product of protein metabolism, was observed in COVID-19

patients (Figures 5E, F). Moreover, we utilized Kaplan-Meier

survival curves to analyze the relationship between various

metabolic markers and patient outcomes. Our analysis showed

that patients with elevated levels of carnitine (Figure 5G),

acylcarnitines (Figures 5H–K), and CPT1 (Figure 5L) markers

had a poor survival outcome probability compared to those with

normal levels. These findings suggest that these metabolic markers

may have a potential prognostic value in COVID-19 patients and

may be useful in the management of the disease.
3.6 Arginine metabolism and
methylhistidines levels in non-survivors
and severe cases

Recent reports show that arginine, one of the key amino acids

involved in many different biological processes, could also play a
B C

D E F G

A

FIGURE 3

Comparison of the levels of amino acids between COVID-19 patients who survived and those who did not. Non-polar amino acids (A-C) and polar
charged amino acids (D-G). Box plots depict the interquartile range (IQR) and the whiskers extend to the most extreme data points that are not
outliers. Outliers are indicated by black circles. The following symbols were used to indicate statistical significance in differences of the levels of
amino acids between survivors and non-survivors NS, *(0.05); **(0.01); ***(0.001); ****(0.0001).
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M N O

FIGURE 4

Alterations in tryptophan and kynurenine pathway metabolites. Levels of (A) Serotonin, (B) Tryptophan betaine, (C) 3-indolepropionic acid,
(D) Kynurenine, (E) Kynurenine to tryptophan, and (F) Kynurenine to tryptophan betaine in critical, severe, mild, and asymptomatic COVID-19
patients, and their association with patient outcomes. (G) ROC curve analysis of Kynurenine and Kynurenine to Tryptophan ratio, (H) Spearman
correlation between kynurenine to tryptophan ratio and lymphocytes percentage, (I) Spearman correlation between kynurenine to tryptophan ratio
and albumin, (J) COVID-19 survival probability in each high/low serotonin, (K) Kynurenine, (L) Tryptophan, (M) Tryptophan betaine, (N) Kynurenine to
tryptophan ratio, (O) and Kynurenine to tryptophan betaine ratio. p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001.
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crucial role in the COVID-19 infection (44). It is a substrate for

nitric oxide (NO) synthase (NOS) (45) to generate NO, which is a

major endothelial relaxation factor (46). In addition, arginine serves

as a precursor for molecules such as SDMA and ADMA (46, 47).

SDMA and ADMA are endogenous modulators of NO synthesis

and intracellular arginine availability in the endothelium (48) and

their circulating concentrations are known to be dysregulated in

hypoxia (49). In addition, inhibition of NO synthesis by ADMA and
Frontiers in Immunology 10
SDMAmay affect immune responses and inflammatory reaction, as

they also interfere with inducible NO synthase, an enzyme that is

upregulated by inflammatory cytokines (50). Furthermore, serum

SDMA and ADMAwere found to be significantly elevated in critical

and severe COVID-19 patients, than in other groups and were

significantly associated with disease severity (44). Our analyses

showed that patients with severe/critical disease had significantly

increased levels of SDMA and ADMA (Figures 6A, B) and 1-
B C

D E F

G H I

J K L

A

FIGURE 5

Metabolic markers in different COVID-19 severity groups. (A) Short chain acylcarnitines (SCACs). (B, C) Carnitine palmitoyltransferase 1 and 2 (CPT1
and CPT2) enzymes. (D) Receiver operating characteristic (ROC) curve analysis for carnitines and CPT1 indicators. (E, F) Correlation of acetylcarnitine
and propionylcarnitine with urea. (G–L) Kaplan-Meier survival curves for carnitine, acylcarnitines, and CPT1. p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤

0.001; ****p ≤ 0.0001.
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methylhistidine (1-MH) (Figure 6C), and non-survivors had even

higher levels (Figures 6E–G). Conversely, 3-methylhistidine levels

were lower in patients with severe disease (Figure 6D) and in non-

survivors (Figure 6H). We also found that SDMA, ADMA, and 1-

MH are good predictors of patient outcomes in COVID-19, as

shown by the high discriminatory power with an AUC of 0.817,

0.778, and 0.881 respectively, which indicate their potential as
Frontiers in Immunology 11
useful biomarkers (Figure 6I). A positive correlation was observed

between urea, 1-MH and SDMA levels in COVID-19 patients

(Figures 6J, K). Consistent with other studies, survival

probabilities were found to be higher when levels of SDMA,

ADMA (Figures 6L, M) and 1-methylhistidine (Figure 6N) were

reduced, confirming the association of ADMA, SDMA with

COVID-19 mortality (51).
B C D

E F G H

I J K

L M N

A

FIGURE 6

Levels of dimethylarginine and methylhistidine metabolites in COVID-19 patients and their association with outcomes. (A) Levels of SDMA, (B) ADMA,
(C) 1-MH, and (D) 3-MH in patients with severe/critical disease compared to those with mild/moderate disease and asymptomatic cases. (E) Levels
of SDMA, (F) ADMA, (G) 1-MH, and (H) 3-MH in non-survivors compared to survivors. (I) The AUC of SDMA, ADMA, 1-MH as biomarkers for patient
outcomes in COVID-19. (J) Correlation between urea and 1-MH and (K) SDMA concentrations in COVID-19 patients. (L) Survival probabilities in
relation to SDMA, (M) ADMA, and (N) 1-MH concentrations. p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001.
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3.7 Machine learning models to predict
mortality risk in Covid-19 patients

Machine learning (ML), a branch of artificial intelligence (AI)

that learns from past data to build predictive models (52), has been

applied in different fields in recent times, including medicine. ML is a

useful tool to analyze large amounts of data from medical records

including images (53) and to facilitate prediction of disease and

clinical decision-making. Recent advances using ML in COVID-19

include estimation of mortality risk and prediction of progression to a

severe or critical state and hospital stay duration (54). Although most

studies have predicted the severity of COVID-19 disease and

mortality risk using data from radiographic images (55–58), and

laboratory findings (59), we have attempted to use metabolites data

and ML to predict the severity of the disease and mortality risk in

patients with COVID-19. We utilized a combination of four

predictive biomarkers, namely tryptophan, kynurenine, asymmetric

dimethylarginine, and 1-Methylhistidine to propose a mortality risk

model. In this context, we used several machine learning methods

including Random Forest, Support Vector Machines, Bernoulli Naıve

Bayes, Gradient Boosting Classifiers, K-Nearest Neighbors, Neural

Network, and Logistic Regression. The results showed that Random

Forest yielded an accuracy of 96.77%, Support Vector Machine

(SVM) 87.1%, Bernoulli Naive Bayes 87.1%, Gradient Boosting

Classifier 100%, K-Nearest Neighbors 87.1%, Logistic Regression

93.55%, MLPClassifier 90.32% and Neural Network 90.32%.

Table 2 illustrates that the models were able to accurately predict

the risk of mortality using a panel of four metabolomic markers with

high sensitivity and specificity.
4 Discussion

Severe SARS-CoV-2 infection leads to changes in host

metabolism promoting viral replication, and alterations in

immune responses resulting in long‐term metabolic complications

and sequelae in infected individuals (60). Emerging research

provides compelling evidence that individuals experiencing severe

SARS-CoV-2 infections often exhibit multiple metabolic

disruptions. In this study, we employed Kaplan-Meier survival
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analysis to evaluate the correlation between metabolic markers

that were previously reported and the patient outcomes. Our

findings clearly revealed statistically significant differences in

survival outcomes between individuals presenting with altered

levels of several metabolites. To our knowledge our study is the

first to identify four metabolites using multiple established machine

learning models, which can help distinguish between COVID-19

clinical phenotypes and predict mortality risk.

A key finding reported by several COVID-19 studies is that

many amino acids and their related metabolites are dysregulated

following severe COVID-19 infection, the majority of which are

significantly downregulated (61, 62). Compared to these studies, in

our cohort, significant differences in serum amino acid levels

between different severity groups and survivors and non-survivors

were observed. Amino acids play a key role in immune cell function,

tissue regeneration and repair, while an abnormal amino acid

metabolism could cause neurological symptoms and multi-organ

failure (63). It is reported that recovered COVID-19 patients have a

certain degree of neurological sequelae and patients with severe

COVID-19, may develop multi-organ failure during hospitalization

(25, 27). We found that several amino acids and their associated

metabolites such as alanine, tryptophan, serine, glutamine, and

histidine were significantly reduced, while phenylalanine and

tyrosine were upregulated in severe and critical COVID-19 cases.

These amino acids are key players in energy metabolism,

neurotransmitter production and metabolic homeostasis

regulation (64, 65). Multiple studies have shown that COVID-19

patients had an enriched levels of taurine and hypotaurine

metabolic pathways (27, 66, 67) indicating that an overactive

taurine pathway may drive the excessive immune responses.

Therefore, amino acid pathways could be promising targets for

drug development.

Other amino acids, including tryptophan derivatives, serotonin

and tryptophan betaine, 3-indolepropionic acid, and kynurenine

remain dysregulated in the severe/critical group. Multiple studies

have revealed that the metabolome of COVID-19 patients, including

products of the tryptophan/kynurenine pathway, reflects the severity

of the disease and thus can be used to predict disease evolution (12,

68, 69). It has been shown that Interleukin-6 (IL-6) levels were linked

to tryptophan metabolism (26). Furthermore, kynurenine and
TABLE 2 Illustrates the results of accuracy of the ML models.

Model Name Accuracy True Positives False Positives False Negatives True Negatives

Random Forest Classifier 96.77% 26 1 0 4

Support Vector Machine (SVM) 87.10% 26 1 3 1

Bernoulli Naive Bayes 87.10% 27 0 4 0

Gradient Boosting Classifier (XGBoost) 100% 27 0 0 4

K-Nearest Neighbors (KNN) 87.10% 24 3 1 3

Logistic Regression 93.55% 26 1 1 3

MLPClassifier (Multilayer Perceptron) 90.32% 25 2 1 3

Neural Network (Multilayer Perceptron) 90.32% 25 2 1 3
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arginine are known to be essential for the immunosuppressive

activity of dendritic cells, which are critical immunomodulators

(70). Consistent with other studies, severe and critical COVID-19

patients showed increased levels of oxidative stress markers,

dysregulation of tryptophan metabolism, and renal dysfunction,

which correlated with the decreased lymphocyte count (71, 72).

Indeed, several metabolite levels in tryptophan pathway correlated

with clinical laboratory markers of inflammation and renal function

(26). Thus, their persistent dysregulation is most likely linked to the

underlying molecular mechanism of long-term COVID-19 and

requires further investigation and targeted interventions.

It is also worth noting that significantly elevated levels of short

chain acylcarnitines and CPT1 were observed in accord with disease

progression. Carnitine is a vitamin-like compound that plays an

important role in fatty acid metabolism (73). It is mainly

synthesized in the brain, liver and kidney and is primarily stored

in the skeletal muscle and heart (74). Elevated acylcarnitines in

COVID-19 patients have been proposed as activators of pro-

inflammatory pathways (75), and their imbalance has been

related to ATP depletion (76). Our results support the idea that

COVID-19 patients present an over utilization of lipid beta-

oxidation pathway to supply to the high energetic demand (66).

Thus, this could also suggest dysregulation of these metabolites

especially, the short chain acylcarnitines, which are fundamental for

maintaining optimal energy metabolism. Furthermore, random

forest analysis revealed that carnitine, acylcarnitines and CPT1

show excellent performance in survival outcome probability for

COVID-19 patients. This suggests that understanding the metabolic

changes of carnitine, acylcarnitines and CPT1 during COVID-19

may advance monitoring disease progression and have a potential

prognostic value.

An increase in ferritin level was observed and non-survivors

had higher serum ferritin level compared to survivors, confirming

enrichment of ferroptosis and energy metabolism pathways in

patients with COVID-19. The serum of patients with COVID-19

showed an iron imbalance (77) and significantly elevated ferritin

levels were related to disease severity, development of acute

respiratory distress syndrome (ARDS) and death in COVID-19

patients (78–81). Indeed, serum ferritin has recently been identified

as one of the predictors of death in COVID-19 patients (82–84).

Furthermore, a recent study has demonstrated that COVID-19

infection causes hemoglobin damage (85). Consequently, this

leads to detachment of porphyrins from iron, release of iron into

the circulation resulting in iron overload and subsequent elevation

of ferritin levels (80). Ferritin is a key mediator of immune

dysregulation, especially under extreme hyperferritinemia, via

direct immune-suppressive and pro-inflammatory effects, which

contribute to cytokine storm and multi-organ damage and failure

(86, 87).

ML has been demonstrated to play a significant role in

understanding and combating the pandemic, particularly in

predicting mortality risk and severity based on laboratory test

results. In the present study, we employed multiple well-

established ML models to predict the mortality risk model for

COVID-19 patients, based on altered metabolites identified through
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our data and recent literature. This highlights the potential for ML

models to provide a clinically valuable tool in predicting mortality

risk in COVID-19 patients based on their metabolomic profile and

suggests that research efforts should not overlook metabolic

signatures of the disease.

A significant contribution in our study is the incorporation of

five distinct severity categories, a characteristic less prevalent or

non-present in the majority of existing published research. This

distinctive approach allows us to explore a broader spectrum of

disease progression, enhancing the granularity of our analysis.

Additionally, our study uniquely identifies elevated serum SDMA

and ADMA concentrations within these severity groups, rather

than merely distinguishing between deceased and surviving

patients. This study also presents innovative dimensions,

including the integration of Kaplan-Meier survival curves and

machine learning techniques to evaluate patient outcomes and

predict mortality risk. We emphasize the significance of the

Kaplan-Meier survival curves in our research, as they provide a

dynamic perspective on the correlation between a diverse array of

metabolic markers and COVID-19 patient outcomes across time.

The limitation of this study is that the samples used were

collected during the early days of the pandemic, which may not

reflect the status of vaccinated population cohort that is prevalent.

This could potentially impact the generalization of the findings to

more recent cases, as the vaccination may impact the metabolic

changes observed. We also acknowledge that practical constraints,

such as limited sample availability, had led to unequal distributions

of samples among different groups. As a limitation, it should be

noted that the small number of female participants in our study

(n=16) may limit the statistical power to draw definitive conclusions

about potential differences between sexes. Future studies with a

larger and more balanced representation of both genders can

provide more robust insights into gender-specific variations in

COVID-19 disease outcomes. Further research is required to

better understand the underlying mechanisms of the relationship

between these metabolic markers and COVID-19 outcomes.

As a conclusion, the metabolomic fingerprint of COVID-19

related to disease progression is characterized by dysregulation of

amino acids and short chain acylcarnitines metabolic pathways,

particularly tryptophan and arginine, and fatty acid metabolism.

Our data suggest that metabolic dysregulation could induce states of

hypoxemia, ferroptosis and other clinical characteristics of COVID-

19. The dysregulation of amino acids and metabolites including

tryptophan, kynurenine, carnitine, arginine SDMA and ADMA

observed in our study was clearly associated with critical

outcomes in COVID-19 patients. Therefore, these metabolites

could be considered as promising biomarkers to identify patients

at risk of poor outcomes in COVID-19. In addition, short chain

acylcarnitines and carnitine palmitoyltransferase 1 and 2 enzymes

indicators could be considered as promising predictors of hospital

mortality and poor survival outcome. Importantly, high serum

ferritin level was found to be associated with more severe disease

and negative/poor outcome in COVID-19. Thus, serum ferritin

level can serve as an important predictive biomarker in COVID-

19 management.
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Altogether, these findings hold the potential to serve as

prognostic markers, aiding in the assessment of disease severity

and the prediction of patient outcomes. Notably, the identification

of specific metabolites linked to disease progression and mortality

risk contribute to more informed clinical decision-making,

ultimately enhancing patient care and management strategies as

well as COVID-19 prognosis and treatment.
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