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Inflammation and autoimmunity
are interrelated in patients with
sickle cell disease at a steady-
state condition: implications
for vaso-occlusive crisis, pain,
and sensory sensitivity
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Brandon M. Hardesty5, Anne Greist3,5, Steven E. Harte6,
Richard E. Harris6,7, Qigui Yu1* and Ying Wang2,3*

1Department of Microbiology and Immunology, Indiana University School of Medicine,
Indianapolis, IN, United States, 2Department of Anesthesia, Stark Neurosciences Research Institute,
Indiana University School of Medicine, Indianapolis, IN, United States, 3Division of Hematology/
Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis,
IN, United States, 4Children’s Health Services Research, Department of Pediatrics, Indiana University
School of Medicine, Indianapolis, IN, United States, 5Indiana Hemophilia and Thrombosis Center,
Indianapolis, IN, United States, 6Chronic Pain and Fatigue Research Center, Department of
Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States, 7Susan Samueli
Integrative Health Institute, and Department of Anesthesiology and Perioperative Care, School of
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This study aimed to comprehensively analyze inflammatory and autoimmune

characteristics of patients with sickle cell disease (SCD) at a steady-state

condition (StSt) compared to healthy controls (HCs) to explore the

pathogenesis of StSt and its impact on patients’ well-being. The study cohort

consisted of 40 StSt participants and 23 HCs enrolled between July 2021 and

April 2023. StSt participants showed elevated white blood cell (WBC) counts and

altered hematological measurements when compared to HCs. A multiplex

immunoassay was used to profile 80 inflammatory cytokines/chemokines/

growth factors in plasma samples from these SCD participants and HCs.

Significantly higher plasma levels of 35 analytes were observed in SCD

participants, with HGF, IL-18, IP-10, and MCP-2 being among the most

significantly affected analytes. Additionally, autoantibody profiles were also

altered, with elevated levels of anti-SSA/Ro60, anti-Ribosomal P, anti-

Myeloperoxidase (MPO), and anti-PM/Scl-100 observed in SCD participants.

Flow cytometric analysis revealed higher rates of red blood cell (RBC)/

reticulocyte-leukocyte aggregation in SCD participants, predominantly

involving monocytes. Notably, correlation analysis identified associations

between inflammatory mediator levels, autoantibodies, RBC/reticulocyte-

leukocyte aggregation, clinical lab test results, and pain crisis/sensitivity,

shedding light on the intricate interactions between these factors. The findings

underscore the potential significance of specific biomarkers and therapeutic

targets that may hold promise for future investigations and clinical interventions
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tailored to the unique challenges posed by SCD. In addition, the correlations

between vaso-occlusive crisis (VOC)/pain/sensory sensitivity and inflammation/

immune dysregulation offer valuable insights into the pathogenesis of SCD and

may lead to more targeted and effective therapeutic strategies.

Clinical Trial Registration: ClinicalTrials.gov, Identifier: NCT05045820.
KEYWORDS

sickle cell disease, inflammation, autoantibody, aggregate, steady-state condition,
vaso-occlusive crisis, pain sensitivity
Introduction

Sickle cell disease (SCD) is a lifelong illness that affects multiple

organ systems and can cause a range of complications, including

acute and chronic pain, anemia, stroke, pulmonary hypertension,

and organ damage (1, 2). The clinical manifestations of SCD can be

broadly categorized into two phases: the steady-state (StSt) phase,

characterized by mild to no symptoms associated with chronic

hemolysis and persistent pain (3), and the severe pain and other

clinical complications in the acute hemolytic/vaso-occlusive crisis

(VOC) phase (4, 5). The acute VOC phase is marked by the sudden

onset of severe pain, possibly accompanied with acute chest

syndrome and stroke due to the blockage of small blood vessels

by sickle-shaped red blood cells (RBCs). Individuals with SCD

requiring high doses of opioids to manage VOC confront a series of

substantial risks, such as an increased vulnerability to overdose and

mortality, the potential development of opioid-induced

hyperalgesia, and a compromised quality of life (QoL).

Addressing these challenges becomes paramount, emphasizing the

urgent need for evidence-based, effective, and safe pain

management therapies tailored specifically for SCD. Indeed, pain

is the hallmark of SCD, manifesting anywhere in the body and

profoundly impacting patients’ QoL (6–8). SCD pain can manifest

as acute recurrent painful crises associated with VOCs as well as

chronic pain with or without nerve damage (7). The painful crisis,

which evolves through four phases—prodromal, initial, established,

and resolving—is a leading cause of hospitalization and emergency

department treatments in SCD (7).

SCD is characterized by the presence of sickle-shaped RBCs

with altered biophysical and biochemical properties (9). Unlike

normal RBCs, which have a biconcave disc shape for flexibility and

deformability, sickle-shaped RBCs lose their ability to deform and

navigate through small blood vessels efficiently, leading to blockages

and reduced blood flow. To compensate for the RBC loss, bone

marrow produces more immature RBCs known as reticulocytes,

releasing them into circulation and leading to elevated reticulocyte

levels in the blood. In SCD participants, reticulocytes express higher

levels of surface adhesion molecules such as Lutheran/basal cell

adhesion molecule (Lu/BCAM) and alpha-4 beta-1 (a4b1) integrin
02
(10–15). These adhesion molecules facilitate the binding of

reticulocytes to the endothelium lining the blood vessels, causing

activation of endothelial cells (ECs) and the release of inflammatory

molecules (16–18). Moreover, reticulocytes in SCD interact with

circulating leukocytes, including polymorphonuclear neutrophils

(PMNs) and monocytes, leading to the formation of aggregates and

increasing the occurrence of VOCs (19–21). These interactions are

primarily mediated by a4b1 integrin and Lu/BCAM, reinforcing

their adhesion to the endothelium (9, 22). In vitro studies have

demonstrated that sickle-shaped RBCs can also bind to peripheral

leukocytes, especially monocytes, via erythroid LW/ICAM-4 and

CD44 receptors. These RBC/reticulocyte-leukocyte aggregates

interact with ECs, resulting in EC activation (21). Thus, SCD is

associated with increased adhesion of RBC/reticulocytes to

leukocytes and ECs, which contribute to the complex

pathophysiology underlying SCD pain (10–18).

Chronic inflammation persists in SCD due to continuous

activation of immune cells or autoimmune responses triggered by

various factors, such as hemolysis, vaso-occlusion, and sickle-

shaped RBC aggregates. Hemolysis is a primary inflammatory

trigger in SCD (17). Sickle-shaped RBCs are more fragile and

prone to rupture, leading to the chronic release of hemoglobin

and other cellular components. Hemoglobin is a potent pro-

inflammatory molecule that activates immune cells such as

monocytes, macrophages, and dendritic cells (DCs), prompting

them to produce pro-inflammatory cytokines such as IL-1b (23),

IL-6 (24), and TNF-a (23). Additionally, heme, an iron-containing

component of hemoglobin, can further induce the production of

pro-inflammatory cytokines, chemokines, and adhesion molecules

by activating NF-kB and TLR4 signaling pathways, and promote

the recruitment of leukocytes and platelets to sites of inflammation,

exacerbating the inflammatory response (25). In addition, vaso-

occlusion of small blood vessels by sickle-shaped RBCs leads to

tissue ischemia and subsequent hypoxia, activating ECs. The

activated ECs produce and release pro-inflammatory cytokines

and adhesion molecules (26, 27), which recruit lymphocytes to

the site of inflammation, further perpetuating the inflammatory

response. Furthermore, chronic activation of the coagulation system

in SCD participants results in the release of pro-inflammatory
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mediators such as thrombin, which can activate ECs and promote

the recruitment of inflammatory cells. SCD is also associated with

oxidative stress, which contributes to inflammation by activating

the NF-kB pathway, leading to the production of pro-inflammatory

cytokines and chemokines. Finally, the impact of autoantibodies on

inflammation in SCD participants is noteworthy. Elevated

inflammatory mediators, such as the B-cell activating factor

(BAFF), can lead to less efficient negative selection of autoreactive

B cells (28) and promote polyclonal B cell activation, leading to the

production of autoantibodies (29). These autoantibodies exacerbate

inflammation by forming immune complexes that activate pro-

inflammatory pathways, recruit immune cells, and contribute to

tissue damage. Highlighting the complex pathophysiology that

contributes to inflammation in SCD, a recent study quantified

serum levels of 27 inflammatory cytokines, chemokine, and

growth factors in 27 individuals in StSt, 22 individuals in VOC,

and 53 healthy individuals (30). The study found that both pro- and

anti-inflammatory cytokines are involved in the inflammatory

response during SCD, regardless of clinical phase (30). This

suggests that the dysregulation of cytokine production and

balance may play a role in the disease’s pathophysiology.

The current study represents the initial phase of an ongoing

clinical trial (ClinicalTrials.gov, NCT05045820) focused on

investigating the clinical efficacy and neurobiological mechanisms of

acupuncture analgesia in SCD participants, for which recruitment is

ongoing. The primary objective of the current study was to characterize

the pain and the underlying immune and inflammatory abnormalities

in SCD participants. To achieve this objective, we examined plasma

levels of inflammatory cytokines, chemokines, growth factors, soluble

receptors, and effector molecules, as well as the profiles of

autoantibodies and the aggregation between RBCs/reticulocytes and

leukocytes. Moreover, we investigated the association between these

analytes and VOCs, patient reported pain- and QoL-related outcomes,

and sensory sensitivity. Our long-term goal is to identify potential

mechanisms and therapeutic targets in SCD, gaining an improved

understanding of the mechanisms behind acupuncture intervention.
Materials and methods

Study participants

This work constitutes an initial part of an ongoing randomized

clinical trial in SCD that commenced on June 29, 2021, and is

scheduled to conclude on May 31, 2026. The primary inclusion

criteria for participant enrollment included: 1) has been diagnosed

with SCD, 2) experiencing chronic pain within the last 6 months or

encountered at least one VOCwithin the past 12 months, 3) no recent

changes in stimulant medication dosage or initiation, 4) willingness to

continue their ongoing treatments, and 5) an agreement to limit using

any new medications or treatment methods for pain management

throughout the study. The major exclusion criteria included: 1)

individuals with COVID-19 suspected or confirmed, 2) recent or

ongoing pain management using acupuncture or acupuncture-related

techniques within the last 6-months, and 3) presence of a concurrent

autoimmune or inflammatory disease such as rheumatoid arthritis,
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In addition, participants who received a blood transfusion within the

90 days prior to recruitment were excluded for analyses. Age-, gender-

, and ethnicity-matched health subjects without SCD were recruited

as healthy controls (HCs). Detailed information regarding the

inclusion and exclusion criteria can be found on ClinicalTrials.

gov (NCT05045820).

Peripheral blood samples were collected from 40 SCD

participants, comprising 17 males and 23 females, with ages

ranging from 14 to 73 years. All participants were Black/African

American. SCD participants and HCs were enrolled in this study

through Indiana University Health hospitals in Indianapolis, the

Indiana Hemophilia & Thrombosis Center, community hospitals,

and other resources between July 2021 to April 2023. Peripheral

blood was collected at StSt phase in heparin-coated tubes (BD

Biosciences, Franklin Lakes, NJ) and subsequently separated into

plasma and peripheral blood mononuclear cells (PBMCs). PBMCs

were either directly used or cryopreserved in liquid nitrogen until

use. Plasma samples were stored at -80°C until use. To establish a

comparison, we included PBMC and plasma samples from 23

healthy volunteers, matched in terms of age, sex, and race, to

serve as HCs. Detailed demographic and clinical characteristics of

both SCD participants and HCs are summarized in Table 1. This

study was performed with the approval of the Institutional Review

Boards (IRB) at Indiana University School of Medicine, and each

participant provided written informed consent during the screening

visit prior to the subsequent study procedure.
Patient-reported outcome
measures (PROMs)

The Patient-Reported Outcomes Measurement Information

System (PROMIS)-29 Questionnaire was used to evaluate pain

intensity and interference, as well as physical function (31).

Neuropathic pain symptoms were evaluated using the

PainDETECT Questionnaire (higher score indicated higher pain)

(32, 33). The Widespread Pain Index was used to evaluate the

spatial distribution of pain across the body (higher score indicated

higher pain) (34, 35). In addition, depression was evaluated using

the Hospital Anxiety and Depression Scale (HADS) (higher score

indicated higher depression) (36). Physical function was assessed

with PROMIS-29 (higher score indicated more physical

dysfunction) (31). Pain-related QoL was evaluated using the

Pediatric Quality of Life Inventory (PedsQL) targeting 3 different

age groups (13-18, 18-25, or 25+ years old), with higher scores

representing better QOL (37). The number of patient-reported

VOCs in the preceding 12 months was documented (38, 39). The

number of days between blood draw and the most recent or future

VOCs was recorded as the time intervals after or before VOCs.
Quantitative Sensory Testing (QST)

QST is a well-established experimental protocol designed to

investigate both ascending excitatory and descending inhibitory
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aspects of pain processing by assessing an individual’s perceptual

response to various stimuli (40). QST was performed at up to three

different body sites, including the primary testing site(s), which was

the area(s) reported as most painful by each patient, along with the

dominant-side ventral forearm and/or the dominant-side upper

trapezius muscle, as described in previous studies on SCD (40, 41).

HCs received primary testing at sites matched with those identified
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in patients, in addition to testing at the dominant forearm and/

or trapezius.

Thermal (heat/cold) Detection/Pain Threshold was determined

at each testing site using a TCA11 (QST-Lab, Strasbourg, France)

with a thermal probe in contact with the subject’s skin surface. The

thermode temperature was gradually adjusted from a baseline

temperature at a controlled rate of 0.5 - 1°C/s. Subjects indicated

the thermal detection threshold (when they first felt the thermal

stimulus) and the hot pain threshold (when they first felt pain from

the thermal stimulus). The average of three trials for each test was

used for analysis.

Mechanical Detection Threshold (MDT)/Mechanical Pain

Threshold (MPT) were examined using von Frey monofilaments

(Stoelting, Wood Dale, IL) and calibrated pinprick stimuli (MRC

Systems GmbH, Heidelberg, Germany) respectively. Each von Frey

monofilament was applied three times in ascending sequence until

the stimulus was detected in at least two out of three trials. The next

lower von Frey monofilament was then applied, and the lowest

filament to be detected at least twice was considered the detection

threshold. The MPT was determined using different pinprick

probes applied to the skin surface of each site. Testing started

with a stimulation intensity of 8 mN and in each case, the next

higher pinprick stimulator was applied until the perception of

“touch” changed its quality toward an additional percept of

“sharp”, “pricking,” or “stinging.” The corresponding intensity

represented the first suprathreshold value. Once the first painful

stimulus was perceived, the testing direction was changed step-wise

toward lower stimulus intensities until the first stimulus perceived

as “blunt” and no longer as being “sharp,” “pricking” or “stinging”

(subthreshold value). Again, a directional change toward higher

intensities occurred and the cycle was repeated until five

suprathreshold and five subthreshold values were determined. An

inflection point was calculated as the average value of the ten

suprathreshold and subthreshold to determine the MPT.

Mechanical Temporal Summation (MTS) was assessed using a

single 256 mN pinprick (MRC Systems GmbH, Heidelberg,

Germany) stimulus applied in triplicate to the skin surface of the

selected sites, followed by a series of 10 identical stimuli (1 Hz –

metronome-guided). MTS was calculated as the average pain rating

from the series of 10 stimuli minus the average pain rating from the

three trials with the single stimulus.

Pressure Pain Threshold (PPT)/Pressure Pain Tolerance

(PPTol) was assessed using a digital, handheld pressure algometer

(Algometer II, Somedic SenseLab AB, Norra Mellby, Sweden). The

pressure was manually increased at a rate of 50 kPa/s (1000 kPa

max) until participants indicated that the sensation of pressure

became one of faint pain (PPT) and the maximum pressure pain

that the participant can tolerate (PPTol), respectively. The average

of 3 trials per site was used for analysis.

Conditioned Pain Modulation (CPM): Tonic pressure pain was

used as the conditioning stimulus delivered via a cuff (Hokanson,

Bellevue, WA) attached to the gastrocnemius muscle of the non-

dominant leg. Pressure intensities were individually calibrated for

each participant to elicit moderate pain (pain rating at 40-60 on a

scale of 100) (42, 43). PPT served as the test stimulus and was

measured 3 times at the dominant trapezius muscle prior to and
TABLE 1 Clinical and hematological characteristics of the
study participants.

Parameters
HCs

(n=23)
SCD

(n=40)
p

value

Demographics

Age (years) 38 (22-57) 34 (23-41) 0.16

Gender (% females) 13 (57%) 23 (58%) 0.94

SS/Sb0/SC/Sb+ thalassemia
(n/n/n/n)

N/A 23/3/11/3

Hemogram/Platelets/WBC Differential

WBC (k/cumm) 5.1 (4.0-6.3) 8.8 (6.1-11.4) 0.0001

RBC (million/cumm) 4.6 (4.3-5.1) 2.9 (2.4-3.7) <0.0001

Hgb (GM/dL)
13.0

(12.2-14.3)
10.2 (8.0-11.6) <0.0001

HCT (%)
38.8

(36.4-41.9)
29.2

(23.6-34.0)
<0.0001

Absolute Retic Number
(k/cumm)

48.8
(41.6-71.0)

131.2
(88.5-216.4)

<0.0001

Hemoglobin A (%)
97.4

(88.5-97.6)
23.0

(13.8-30.6)
<0.0001

Hemoglobin S (%)
63.4

(49.1-73.1)

Hemoglobin F (%) 5.8 (2.4-13.4)

MCV (fL) [81-99] 86 (81-89) 94 (83-104) 0.020

MCH (pg) [27.0-34.0]
28.4

(27.3-29.6)
32.3

(27.5-35.8)
0.0033

RDW (%) [11.5-14.5]
13.7

(13.3-14.9)
18.4

(15.8-23.6)
<0.0001

Platelet (k/cumm) [150-450]
246

(231-270)
309 (247-424) 0.0029

Absolute Neutrophil 2.75 (1.6-3.8) 4.8 (3.1-7.2) 0.0005

Absolute Lymphocyte 2.1 (1.5-2.5) 2.4 (1.7-4.1) 0.055

Absolute Monocyte 0.4 (0.3-0.4) 0.8 (0.5-1.1) <0.0001

Absolute Eosinophil 0.1 (0.1-0.2) 0.2 (0.1-0.4) 0.058

Absolute Basophil 0 (0-0) 0.1 (0-0.1) 0.0007

Immunological tests

C-reactive protein (mg/ml) 1.1 (0.4-2.7) 3.9 (1.6-7.3) 0.0038
HCs, healthy controls; SCD, sickle cell disease; WBC, white blood cell; RBC, red blood cell;
Hgb, hemoglobin; HCT, hematocrit; MCV, mean corpuscular volume; MCH, mean
corpuscular hemoglobin; RDW, red cell distribution width; N/A, not applicable. The
Mann-Whitney test was used to compare differences between patients with SCD and
healthy controls (HC) for continuous variables. c2 test was used for comparison of gender
distribution between the 2 groups. p < 0.05 was considered significant and shown in bold.
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during the cuff stimulation. Pain ratings were obtained every 15 s

prior to and during cuff stimulation for up to 90s. CPM magnitude

was calculated as patient-reported pain ratings during conditioned

cuff pressure stimuli.

Only QST results on the standard sites (forearm, trapezius)

were used for correlation analysis as each SCD participant often had

different primary painful site(s).
Multiplex immunoassays and enzyme-
linked immunosorbent assay (ELISA)

Plasma concentrations of 80 inflammatory human cytokines,

chemokines, growth factors, soluble receptors, and effector

molecules and 18 human autoantibodies were simultaneously

measured using the Immune Response 80-Plex Human

ProcartaPlex™ Panel (Cat. #: EPX800-10080-901, Invitrogen,

Carlsbad, CA) and the MILLIPLEX MAP Human Autoimmune

Autoantibody Panel (HAIAB-10K, MilliporeSigma, Burlington,

MA), respectively, according to the manufacturer’s instructions.

The beads were read on a BioPlex 200 system (Bio-Rad, Hercules,

CA). The standards at 4-fold serial dilutions were run on each plate

in duplicate and used to calculate the concentrations of human

cytokines, chemokines, growth factors, soluble receptors, and

effector molecules using the Bio-Plex Manager Software (Bio-Rad,

Hercules, CA) as previously reported (44). Plasma samples were

diluted 100-fold for the autoantibody multiplex assay, and the levels

of the autoantibodies were reported as mean fluorescence intensity

(MFI) after background MFI subtraction. The plasma levels of C-

reactive protein (CRP) were quantified using human CRP Duoset

ELISA Kit (R&D Systems, Minneapolis, MN) according to the

manufacturer’s instructions.
Flow cytometry

Freshly prepared PBMCs were stained with fluorochrome-

conjugated antibodies against human CD45, CD71 (expressed on

erythroid precursors), BCAM, and CD235ab (also known as GPA:

glycophorin A, the major sialoglycoprotein on RBCs and their

precursors) to measure the aggregation between RBC/erythroid

precursors and CD45+ leukocytes. Cells stained with surface

markers were acquired using a BD LSRFortessa flow cytometer

(BD Biosciences, San Jose, CA). Flow data were analyzed using

FlowJo v10 software (Tree Star, San Carlos, CA). The percentage of

CD235abhi cells among the CD45+ leukocytes was defined as the

RBC/reticulocyte-leukocyte aggregation rate. The association of

RBCs/reticulocytes with lymphocytes or monocytes were

determined based on their characteristics of FSC and SSC on flow

cytometry, respectively.
Statistical analysis

Statistical analysis was performed using GraphPad Prism 10

and SPSS 29. Data were expressed as median and interquartile range
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Mann-Whitney test for continuous variables (Tables 1–3). c2 test

was used for comparison between 2 groups for gender distribution

(Table 1). Adjusted p values were calculated for the 80-plex and 18-

plex analytes using the Holm-Šıd́ák correction for multiple

comparisons (Table 3). Inflammatory mediators that were

heightened in the SCD participants were used for subsequent

Spearman correlation analyses using age, gender and SCD

genotype as covariables (Tables 4-6). p < 0.05 was considered

statistically significant.
Results

Characteristics of the study cohort:
demographics, laboratory exams, patient
reported outcomes and sensory sensitivity

Demographics and clinical characteristics of participants are

summarized in Table 1. SCD participants and HCs showed no

significant differences in terms of age and gender distribution.

Compared to the HCs, SCD participants exhibited higher numbers

of white blood cells (WBCs), reticulocytes, platelets, neutrophils,

monocytes, and basophils but reduced RBCs, hemoglobin, and

hematocrit (HCT). Additionally, SCD participants displayed

elevated levels of mean corpuscular volume (MCV), mean

corpuscular hemoglobin (MCH), red cell distribution width (RDW),

and the systemic inflammation marker CRP than HCs (Table 1). The

differences in the absolute numbers of lymphocytes and eosinophils

approached a clear trend toward significance (p = 0.055 and p = 0.058,

respectively) between the two groups (Table 1).

As indicated in Table 2, SCD participants reported increased pain

interference and intensity, more painful body sites, reduced physical

functioning, and higher levels of depression relative to HCs.

Compared to HCs, SCD participants also displayed hypersensitivity

to experimental mechanical (MDT, MPT, MTS), cold (CPT), and

pressure stimuli (PPT and PPTol), but not hot stimuli (HDT, HPT)

as measured by QST (Table 2). In addition, the CPM pain rating was

similar between HCs and SCD subjects (Table 2).
SCD participants presented with elevated
proinflammatory cytokines, chemokines,
growth factors, effector molecules, and
soluble receptors compared to HCs

SCD participants had significantly higher plasma levels of 35

analytes compared to HCs (Table 3). These elevated analytes

encompassed 10 chemokines (CCL21, CCL23, Eotaxin-2, Gal-3,

GRO-a, IP-10, MCP-2, MIP-1a, MIP-1b, and MIP-3a), 2 effector

molecules (granzymes A and B), 9 growth factors (BAFF, bNGF, G-

CSF, GM-CSF, HGF, IL-7, IL-20, IL-34, and LIF), 8 pro-inflammatory

cytokines (IFN-g, IL-1a, IL-2, IL-8, IL-9, IL-18, TNF-a, and TNF-b),
4 type II inflammatory/anti-inflammatory cytokines (IL-4, IL-5, IL-6,

and TSLP), and 2 immune modulating soluble receptors (PTX3 and

TREM-1) (Table 3; Supplementary Table 1). In addition, levels of the
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endothelial cell growth factor VEGF-A and the proinflammatory

cytokine IL-17A trended higher in the SCD participants (p = 0.052

and p = 0.055, respectively) (Table 3; Supplementary Table 1). After

being corrected for multiple comparisons, 9 out of the 37 altered

analytes remained significantly higher in the SCD participants

compared to the HCs. These included 4 chemokines (CCL23, Gal-3,

IP-10, and MCP-2), 2 growth factors (HGF and IL-34), 2

proinflammatory cytokines (IFN-g and IL-18), and the soluble

receptor PTX3 (Table 3; Supplementary Table 1). Notably, among

these altered analytes, HGF, IL-18, IP-10, and MCP-2 exhibited the

most significant upregulation in SCD participants in comparison to

HCs (Table 3; Supplementary Table 2).
Both anti-nuclear autoantibodies (ANAs)
and non-ANAs were present and elevated
in SCD participants

Plasma concentrations of autoantibodies against 18 human

antigens were simultaneously measured using a multiplex

immunoassay. We identified the presence of autoantibodies

against 4 human antigens, including Sjögren’s Syndrome-related

antigen A/Ro60 kDa (SSA/Ro60), ribosomal P, myeloperoxidase

(MPO), and PM/Scl-100, which were significantly elevated in SCD

participants when compared to HCs (Figures 1A,B). After multiple

comparison corrections, SSA/Ro60 and MPO remained

significantly higher in the SCD subjects (p = 0.048 and p = 0.022,

respectively). It is noteworthy that while SSA/Ro60 autoantibody is

typically classified as an ANA, autoantibodies against the ribosomal

P, MPO, or PM/Scl-100 are not categorized as ANAs (non-ANAs).

Thus, both ANAs and non-ANAs in the bloodstream were

significantly elevated in SCD participants compared to HCs.
SCD participants exhibited abnormally high
rates of RBC/reticulocyte-
leukocyte aggregation

RBC/reticulocyte-leukocyte aggregates in PBMCs from the SCD

participants were assessed using flow cytometry (Figure 2A).

Freshly isolated PBMCs were stained with antibodies again
TABLE 2 Patient-reported outcome measures and quantitative
sensory testing.

Parameters
HCs

(n=23)
SCD
(n=33)

p
value

PROMs

PainDetect_Total score 7 (7-7) 19 (14-24) <0.0001

BPI_Pain Interference Score 0 (0-0) 4.2 (1.8-5.6) <0.0001

FPS_Widespread Pain Index 0 (0-0) 6 (3-8) <0.0001

PROMISE 29_Physical
Function Score

4 (4-4) 7 (5-11.5) <0.0001

PROMISE 29_Pain
Intensity Score

0 (0-0) 5 (4-6) <0.0001

HADS_Depression Score 1 (0-3) 4.5 (2.0-7.8) 0.0002

Pain Episode Frequency Score N/A 8 (6-9)

Number of VOCs in
preceding 12 months

N/A 4 (2-7)

PedsQL_Total Score N/A 52 (43-63)

Quantitative Sensory Testing

MDT (forearm) 0.4 (0.2-0.5) 0.3 (0.1-0.5) 0.1019

MDT (primary site) 0.4 (0.2-0.6) 0.2 (0.1-0.4) 0.0216

MPT (forearm)
92.8

(77.0-131.0)
59.2

(23.0-132.2)
0.0167

MPT (primary site)
106.0

(48.0-166.8)
33.6

(13.2-89.2)
0.0011

MTS (forearm) 6.7 (0.0-29.2)
11.7

(3.5-23.3)
0.3222

MTS (primary site) 5.0 (1.7-20)
15.7

(6.7-24.2)
0.0436

CDT (forearm)
-2.3

((-3.3)-(-1.6))
-1.9

((-3.1)-(-1.5))
0.3788

CDT (primary site)
-2.2

((-3.4)-(-1.5))
-2.3

((-3.3)-(-1.5))
0.9597

CPT (forearm)
-15.0

((-25.1)-(-6.3))

-6.7
((-12.6)-
(-3.9))

0.0098

CPT (primary site)
-15.0

((-25.5)-(-3.0))

-7.3
((-11.6)-
(-4.0))

0.0476

HDT (forearm) 3.5 (2.6-4.0) 3.7 (2.3-4.4) 0.7433

HDT (primary site) 3.6 (3.1-5.9) 4.0 (2.7-5.3) 0.8930

HPT (forearm) 8.8 (6.0-11.2) 7.9 (5.4-9.9) 0.3305

HPT (primary site) 7.3 (6.5-11.0) 8.3 (6.1-10.2) 0.4843

PPT (trapezius)
255.5

(179.3-364.5)
198

(156.5-271.0)
0.0327

PPT (primary site)
321.0

(196.0-539.0)
186.0

(142.0-246.3)
0.0010

PPTol (trapezius)
427.5

(344.8-669.8)
312.0

(225.0-399.5)
0.0043

(Continued)
TABLE 2 Continued

Parameters
HCs

(n=23)
SCD
(n=33)

p
value

PPTol (primary site)
526.0

(316.0-827.0)
299.5

(221.3-424.0)
0.0018

CPM (pain rating) 43.5 (31.5-54.3)
40.0

(32.0-50.5)
0.6425
front
HCs, healthy controls; SCD, sickle cell disease; MDT, mechanical detection threshold; MPT,
mechanical pain threshold; MTS, mechanical temporal summation; Mechanical CDT, cold
detection threshold; CPT, cold pain threshold; HDT, heat detection threshold; HPT, heat pain
threshold; PPT, pressure pain threshold; PPTol, pressure pain tolerance; CPM, conditioned
pain modulation; N/A, not applicable. The Mann-Whitney test was used to compare
differences between patients with SCD and HCs. p < 0.05 was considered significant and
shown in bold.
iersin.org
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TABLE 3 Upregulated inflammatory mediators in SCD subjects as detected by 80plex immunoassay.

Categories Analytes (pg/ml) HCs (n=18) SCD (n=36) p Adjusted p

Chemokines

CCL21 0.1 (0-12.8) 20.4 (0.6-71.5) 0.00280 0.17337

CCL23 487 (302-639) 874 (574-1285) 0.00014 0.01046

Eotaxin-2 0.1 (0-6.6) 10.4 (0-97.7) 0.04479 0.88393

Gal-3 6749 (4949-8982) 15144 (6910-34355) 0.00055 0.03958

GRO-a 1.7 (1.3-2.0) 2.4 (1.7-3.1) 0.00625 0.33050

IP-10 17.2 (10.1-25.6) 36.9 (21.3-60.7) 0.00012 0.00891

MCP-2 0.2 (0.1-0.7) 2.1 (0.7-5.3) 0.00001 0.00091

MIP-1a 0 (0-1.6) 2.7 (0.7-6.9) 0.00629 0.33050

MIP-1b 30.0 (14.9-40.5) 56.8 (29.7-71.5) 0.00134 0.09067

MIP-3a 5.1 (4.4-5.5) 5.9 (5.5-7.6) 0.00196 0.12821

Effectors
Granzyme A 3.4 (0-10.9) 11.1 (4.6-23.5) 0.00442 0.25324

Granzyme B 10.4 (7.0-28.0) 20.2 (12.6-31.9) 0.01758 0.62295

Growth factors

BAFF 3.053 (1.051-4.074) 4.283 (2.555-6.08) 0.01758 0.62295

bNGF 1.1 (0.9-3.1) 2.1 (1.2-4.6) 0.02762 0.75348

G-CSF 4.2 (0-89.4) 50.7 (25.3-116.3) 0.01299 0.51903

GM-CSF 0 (0-0) 3.8 (0-20.5) 0.00256 0.16236

HGF 6.4 (2.9-20.3) 56.2 (13.1-70.2) 0.00003 0.00253

IL-7 0 (0-0) 0 (0-1.1) 0.02305 0.70251

IL-20 6.9 (5.5-10.5) 9.6 (6.7-21.8) 0.02509 0.72631

IL-34 11.5 (8.3-18.5) 21.9 (13.7-43.9) 0.00051 0.03716

LIF 0.6 (0.4-2.7) 2.4 (1.1-4.8) 0.00991 0.44448

VEGF-A 50.02 (33.59-65.04) 73.17 (35.73-156.1) 0.0523 0.91076

Inflammatory cytokines

IFN-g 1.8 (1.4-2.2) 3.9 (2.3-4.8) 0.00023 0.01737

IL-1a 3.9 (2.5-11.0) 6.9 (4.1-16.4) 0.04832 0.89752

IL-2 4.3 (3.2-6.2) 9.1 (4.5-14.7) 0.00940 0.43242

IL-8 0.7 (0.1-6.9) 5.5 (2.1-10.2) 0.01183 0.49255

IL-9 0.2 (0-1.4) 1.4 (0.5-3.0) 0.01134 0.48383

IL-17A 0 (0-1.725) 0.98 (0-3.959) 0.05482 0.91633

IL-18 5.0 (3.4-7.1) 13.7 (7.2-50.8) 0.00002 0.00173

TNF-a 2.2 (1.9-2.6) 2.7 (2.3-3.2) 0.00460 0.25884

TNF-b 0.1 (0-2.2) 1.5 (0.4-4.8) 0.02021 0.66116

Type II inflammatory cytokines

IL-4 19.4 (11.2-35.1) 37.3 (18.5-77.2) 0.00901 0.42436

IL-5 0 (0-0.2) 3.5 (0-12.3) 0.00290 0.17675

IL-6 0 (0-0.8) 1.5 (0-7.4) 0.03843 0.84757

TSLP 1.3 (0.8-2.2) 2.3 (1.7-3.4) 0.00791 0.38881

Soluble receptors
PTX3 1137 (798-1924) 3045 (1557-5283) 0.00064 0.04533

TREM-1 0 (0-235.4) 248.2 (16.3-761.1) 0.02832 0.75524
F
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HCs, healthy controls; SCD, sickle cell disease. The Mann-Whitney test was used to compare differences between patients with SCD and healthy controls (HC) without and with Holm-Šıd́ák
correction for multiple comparisons. p < 0.05 was considered significant. Adjusted P values that are < 0.05 are shown in bold.
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human CD45 (a marker expressed on all leucocytes), CD235ab (a

marker expressed on RBCs and their precursors), BCAM, and

CD71 (transferring receptor-1, a specific marker of reticulocytes

among the RBC population). As depicted in Figure 2B, the

percentage of total CD235abhiCD45+ aggregates were significantly

higher in SCD participants compared to HCs. The percentage of

CD71+ reticulocyte aggregates was significantly higher in SCD

participants compared to HCs (Figure 2C, left panel). In parallel,

the percentage of CD71+ reticulocytes in free fraction were also

significantly higher in SCD participants compared to HCs,

indicating an increase of reticulocytes in SCD participants

(Figure 2C, right panel). Similarly, BCAM expression on

aggregates or unaggregated RBCs was significantly higher in SCD

participants compared to HCs (Figure 2D). This observation

suggested that StSt PBMC samples contained higher numbers of

RBCs or RBC precursors, such as reticulocytes, and higher levels of

the cell adhesion molecule BCAM, thus contributing to the

increased occurrence of aggregates. Compared to HCs, the

percentage of CD45+ lymphocytes in the aggregates were lower in

SCD participants, whereas the frequency of monocytes was

significantly higher (Figure 2E). When the immune cell types in

PBMCs and the aggregates in the SCD participants were analyzed

and compared, monocytes were enriched within the aggregates with

a corresponding decrease of lymphocytes within aggregation

relative to PBMCs (Figure 2F), indicating RBCs/RBC precursors

preferentially interacted with monocytes within the aggregates.
Frontiers in Immunology 08
Comprehensive analysis revealed
correlations of inflammatory mediators
with autoantibodies and RBC/reticulocyte-
leukocyte aggregation in SCD participants

Next, we evaluated correlations between the 37 elevated

inflammatory mediators (9 analytes with adjusted p<0.05 bolded)

that were listed in Table 3 and altered autoantibodies targeting SSA/

Ro60, ribosomal P, MPO, and PM/Scl-100 and RBC/reticulocyte-

leukocyte aggregation in StSt participants (Table 4). The elevated

plasma level of IL-4, a type II cytokine known for facilitating the

development of B cells into antibody-producing plasma cells,

exhibited significant positive associations with SSA/Ro60

autoantibodies (Table 4). These autoantibodies are a type of

ANAs commonly linked to autoimmune diseases such as SLE

(45). IL-4 also exhibited a trend toward correlation with

ribosomal P and MPO autoantibodies (r = 0.31, p = 0.076 for

both). Additionally, SSA/Ro60 autoantibodies showed significant

associations with multiple inflammatory mediators, including the

growth factor IL-34 and 2 proinflammatory cytokines (IL-1a and

IL-9). Furthermore, SSA/Ro60 autoantibodies trended to positively

correlate with another type II cytokine IL-5 (r = 0.33, p = 0.062), the

effector molecule granzyme A (r = 0.34, p = 0.055), and the growth

factor VEGF-A (r = 0.33, p = 0.063). Both IL-1a and MIP-1b
positively correlated with the non-ANA autoantibodies against

MPO. Conversely, none of the 37 elevated inflammatory
TABLE 4 Correlations of upregulated inflammatory mediators with altered autoantibodies and RBC/reticulocyte-leukocyte aggregation.

Autoantibodies Aggregation

Categories Analytes SSA/Ro60 Myeloperoxidase %

Chemokines

CCL23& 0.88*

MIP-1a 0.88*

MIP-1b 0.37*

Growth factors
HGF& 0.89*

IL-34& 0.48**

Proinflammatory cytokines
IL-1a 0.35* 0.39*

IL-9 0.36*

Type II cytokine IL-4 0.48**
Aggregation, RBC/reticulocyte-leukocyte aggregation. Spearman correlation analyses were performed including age, gender and SCD genotype as covariables. *p < 0.05; ** p <0.01, &mediators
with adjusted p < 0.05 and shown in bold in Table 3.
TABLE 5 Correlations of altered inflammatory mediators with time interval from after and before VOC crisis.

Days after crisis Days before crisis

GRO-a IL-6 IL-17A LIF IL-18& Granzyme A

r 0.47 0.38 0.39 0.48 -0.41 -0.43

p 0.010 0.044 0.035 0.008 0.028 0.022
VOC, vaso-occlusive. The linear relationship between two variables was calculated using the Spearman correlation test with age, gender, and SCD genotype as covariables, which generated
coefficient values (r) and statistical significance levels (p). p < 0.05 was considered significant, &mediators with adjusted p < 0.05 in Table 3.
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TABLE 6 Correlations of upregulated soluble factors/autoantibody with PROMs/Sensory sensitivity in SCD subjects.

Quantitative Sensory Testing

rm)
MTS

(forearm)
CPT

(forearm)
PPT

(trapezius)
PPTol

(trapezius)

-0.51* -0.67*** 0.66***

-0.67** 0.50*

-0.51* -0.59** 0.49*

-0.42* -0.54** 0.48*

-0.45*

-0.55**

-0.48*

*

-0.46*

*

-0.42*
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Patient-Reported Outcomes

Categories Biomarkers
Pain

Intensity
Pain

Episode
Depression

Score

Physical
Function
Score

PedsQL
MDT

(forearm)
MP

(forea

Chemokines

Eotaxin-2

CCL21 0.43*

CCL23& -0.46*

G-CSF 0.47*

GM-CSF -0.37*

GRO-a -0.50** -0.43*

IP-10&

MCP-2& -0.41*

MIP-1a 0.50

MIP-3a

Effectors
Granzyme A 0.36*

Granzyme B -0.37* -0.51** 0.52*

Growth factors

BAFF -0.44* 0.37*

bNGF -0.40* -0.46* -0.48**

HGF&

IL-7 -0.46*

IL-20 0.46*

LIF -0.45* 0.47* -0.42

VEGF-A

Pro-
inflammatory
cytokines

IL-2 -0.43* -0.40* 0.45*

IL-8 -0.47

IL-9 0.37*

IL-17A -0.37* -0.53** -0.54** 0.43* 0.46*

TNF-a -0.42*
T
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mediators were found to be associated with anti-PM/Scl-100

autoantibodies (data not shown).

We also analyzed the association of the inflammatory mediators

with RBC/reticulocyte-leukocyte aggregation. Two chemokines

(CCL23 and MIP-1a) and the growth factor HGF exhibited

positive associations with the percentage of RBC/reticulocyte-

leukocyte aggregates (Table 4). Together, our data demonstrate

that inflammation is closely linked to autoimmunity and RBC

aggregation with leukocytes in SCD participants at the steady state.
Correlation analysis uncovered significant
associations between inflammatory
mediators and autoantibodies with VOCs/
pain/sensory sensitivity

To investigate potential underlying factors contributing to

VOCs, we examined the relationships of the elevated 37

inflammatory mediators, 4 autoantibodies, or RBC/reticulocyte-

leukocyte aggregates with the time intervals from blood draw for

biomarker analysis to the most recent VOC episode (days after

crisis) and to the future crisis (days before crisis) (Table 5). The

blood samples were all taken at the steady-state with varying

duration of before and after crisis time for individual SCD

subjects. The median time interval for before crisis was 42 days

with an interquartile of 14 and 61 days, whereas the median time

interval for after crisis was 26 days with an interquartile of 15 and

123 days. After being adjusted for age, gender, and SCD genotypes,

4 inflammatory mediators (GRO-a, IL-6, IL-17A, and LIF) showed

significant positive correlations with the time intervals after VOCs.

In addition, the chemokine Eotaxin-2 and the cytokine IL-2 trended

to positively correlate with the time intervals after VOCs (r = 0.36,

p = 0.058; r = 0.37, p = 0.051 respectively). Conversely, the

inflammatory cytokine IL-18 and granzyme A exhibited negative

associations with the time interval before VOCs. These results

suggest that specific inflammatory mediators, namely granzyme A

and IL-18, might play a crucial role in the early detection or

development of VOCs.

Next, we analyzed correlations of the inflammatory mediators

with pain and sensory sensitivity as assessed by PROMs and QST.

As presented in Table 6, several inflammatory mediators were

associated with patient-reported pain intensity, physical function,

and sensory sensitivity. A group of inflammatory mediators (G-

CSF, granzyme A, BAFF, IL-9, and IL-17A) exhibited positive

correlations with PedsQL scores. Conversely, most of the

correlations between inflammatory mediators and various

PROMs were negative. Specifically, 17 inflammatory mediators

(CCL23, GM-CSF, GRO-a, MCP-2, Granzyme B, BAFF, bNGF,

IL-7, LIF, IL-2, IL-17A, TNF-a, TNF-b, IL-5, IL-6, TSLP, and
TREM-1) displayed negative associations with physical and

psychological PROMs (Pain Intensity, Pain Episode, Depression

Score, and Physical Function Score). Notably, 14 of the 17 factors

were negatively correlated with the Physical Function Score, while 8

of them had negative correlations with Pain Episode Frequency/

Recency. Moreover, 8 out of the 17 factors (Granzyme B, LIF, IL-2,

IL-17A, TNF-b, IL-5, IL-6, and TSLP) showed a positive association
T
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with the mechanical threshold (MDT forearm). Two additional

factors, CCL21 and IL-20, were also positively associated with the

MDT forearm. Five factors (Eotaxin-2, CCL21, GRO-a, MCP-2,

and TREM-1) displayed positive correlations with pressure

threshold (PPT trapezius). Furthermore, a group of inflammatory

factors (Eotaxin-2, CCL21, GRO-a, MCP-2, MIP-3a, HGF, IL-20,

LIF, VEGF-A, IL-8, TNF-a, TNF-b, IL-5, PTX3, and TREM-1)

displayed negative correlations with mechanical pain threshold

(MPT forearm and MTS forearm), and sensitivity threshold to

cold (CPT forearm). Of note, several inflammatory factors,

including GRO-a, MCP-2, granzyme B, LIF, IL-2, IL-17A, TNF-

b, IL-5, and TREM-1, showed correlations with multiple measures

from both PROMs and QST.

We also assessed the relationship of PROMs and experimental

sensory sensitivity with the autoantibodies and RBC/reticulocyte-

leukocyte aggregations (Table 6). We found that elevated

autoantibodies against MPO exhibited a negative correlation with

Physical Function Score and a positive correlation with PPT

(trapezius) and PPTol (trapezius). However, no correlations were
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detected between PROMS/QST and increased rate of RBC/

reticulocyte-leukocyte aggregation, as well as BCAM and CD71

expression on the aggregates. Together, our results indicate that

multiple inflammatory/autoimmune markers are inversely

associated with the well-being of the SCD participants.
Discussion

This study represents an interim analysis of an ongoing clinical

trial that aims at investigating the clinical efficacy and

neurobiological mechanisms of acupuncture analgesia in SCD

participants (NCT05045820). Results showed that SCD

participants in StSt showed higher levels of sensory sensitivity, as

well as increased pain intensity, pain interference, widespread pain,

physical dysfunction, and depression compared to HCs (Table 2).

These results highlight the significant impact of SCD on patients’

physical and emotional well-being and align with previous studies

on SCD (32, 36, 40, 41, 46, 47).
A

B

FIGURE 1

Comparative analysis of quantity and individual incidence of elevated autoantibodies in SCD participants versus healthy controls. (A) The levels of
plasma autoantibodies against 18 autoantigens in SCD participants (n=40) versus healthy controls (HCs, n=23). The median fluorescence intensity
(MFI) after background MFI subtraction was used to represent relative expression of the 18 autoantibodies in SCD and HC samples, shown as
median + upper interquartile range (IQR). (B) Scatter plots demonstrating the plasma levels of 4 autoantibodies (anti-SSA/Ro60, anti-Ribosomal P,
anti-Myeloperoxidase, and anti-PM/Scl-100) that were significantly elevated in SCD participants compared to healthy controls. Lines represent the
median. SCD, sickle cell disease; HC, healthy control. Mann-Whitney test was used to compare the results from SCD patient versus HC samples.
*p < 0.05; **p < 0.01.
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We collected cross-sectional blood samples and clinical

parameters to comprehensively study inflammatory mediators,

autoantibody profiles, and presence of RBC/reticulocyte-leukocyte

aggregates, exploring their interrelations and potential relationship
Frontiers in Immunology 12
with VOCs, QoL, and sensory sensitivity. Specifically, we examined

the plasma levels of 80 inflammatory mediators (Supplementary

Table 1), the profiles of autoantibodies against 18 human antigens

(Figure 1), and the presence of RBC/reticulocyte-leukocyte
A

B C D

E F

FIGURE 2

Comparison of RBC/reticulocyte aggregation with CD45+ PBMCs in SCD participants versus healthy controls. Freshly isolated peripheral blood
mononuclear cells (PBMCs) from the SCD participants (n=12) and healthy controls (HC, n=17) were analyzed for RBC/reticulocyte aggregation with
CD45+ PBMCs by flow cytometry. (A) Gating strategies for flow cytometric analysis of RBC/reticulocyte-CD45+ leukocytes aggregation. PBMCs were
stained with fluorochrome-conjugated antibodies against human CD45, CD235ab, CD71, BCAM and isotype control antibodies. CD235ab+ cells that
were not associated with CD45+ PBMCs were defined as RBC/reticulocyte in free fraction (RBC). Within the CD45+ cells, CD235abhi cells were
defined as the RBC/reticulocyte-CD45+ leukocyte aggregates. The gate for CD71+ RBC/reticulocyte and RBC/reticulocyte-leukocyte aggregates
were based on the isotype control. BCAM level was expressed as mean fluorescent intensity (MFI). Lymphocytes (LYM) and monocytes (MC) were
gated based on their FCS and SSC chrematistics. (B) Scatter plots showing a significantly higher percentage of RBC/reticulocyte-CD45+ leukocyte
aggregation in the SCD participants than HC. (C, D) Scatter plots displaying higher levels of CD71+ erythroid precursors (C) and the cell adhesion
molecule BCAM (D) on both aggregated and unaggregated RBC/reticulocyte in the SCD participants compared to HC. (E) Scatter plots comparing
the frequencies of lymphocytes and monocytes within RBC/reticulocyte-CD45+ leukocyte aggregates. (F) Before and after plots showing the
percentages of lymphocytes (left) were reduced while those of monocytes (right) were heightened in the aggregates compared to PBMCs in the
SCD subjects. Mann-Whitney test was used to compare the results from SCD patient versus HC samples. Wilcoxon test was used to calculate the
differences between aggregates and PBMCs. *p < 0.05; **p < 0.01; ***p < 0.001. ns, not significant.
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aggregates in these participants (Figure 2). Moreover, we

investigated the correlations between these analytes and their

potential relationship with VOCs, QoL, and sensory sensitivity in

SCD participants. By examining these analytes and their

relationships, we sought to identify potential mechanisms and

therapeutic targets for further exploration and investigation.

SCD is characterized by a persistent pro-inflammatory state that

leads to elevated levels of inflammatory mediators in the

bloodstream. Inflammatory mediators are vital signaling

molecules that play a crucial role in the development of pain,

VOCs, and the pathogenesis of SCD (8, 17, 48). A recent study

measured the serum levels of 27 inflammatory mediators including

15 cytokines, 7 chemokines, and 5 growth factors in 27 StSt and 53

HCs (30). The results revealed that significantly higher levels of

several cytokines, chemokines, and growth factors in SCD

participants compared to HCs (30). Strikingly, SCD participants

exhibited elevated serum concentrations of pro-inflammatory

molecules, such as IL-1b, IL-12p70, and IL-17A, when compared

to SCD participants experiencing VOC (30). Here we expanded the

spectrum of analyses and observed that SCD participants exhibited

higher plasma levels of 37 out of 80 analytes, including 13 pro-

inflammatory/anti-inflammatory cytokines, 10 chemokines, 10

growth factors, 2 effectors, and 2 soluble receptors (Table 3;

Supplementary Tables 1, 2). These findings collectively indicate a

pro-inflammatory bias in SCD participants as compared to HCs.

Numerous cytokines elevated in our study, such as IL-1a, IL-4,
IL-5,IL-6, IL-7, IL-8, TNF-a were previously shown to involved in

VOC-related acute clinical complications such as acute chest

syndrome, pulmonary hypertension, and pulmonary thrombosis

(49–55). Systemic inflammation and modulation of the immune

system with crosstalk of immunological molecules and immune

cells were associated with the pathogenesis of persistent pain and

the onset of VOCs in SCD. Plasma IFN-g was augmented in steady-

state SCD, which could modulate macrophage function and

increase T helper cell expansion in SCD and most likely reflect

inflammasome formation in inflammatory cells (54, 56, 57).

Endothelium activation could in turn produce and release a

number of potent inflammatory molecules, including IL-1a, IL-
1b, IL-6, IL-8, GM-CSF, MCP-1, plasminogen activator inhibitor-1,

and RANTES (54, 55, 58–60). The maturation and release of

bioactive IL-1b and IL-18 (61–67), two vital immunoregulatory

and proinflammatory cytokines, are governed by inflammatory

caspases operating within specialized signaling platforms referred

to as inflammasomes. Elevated plasma levels of IL-1b and IL-18 in

SCD participants strongly suggest an aberration in the regulation of

inflammasome activation within this particular group. In addition,

IL-1b exerts a potent activation effect on leukocytes and ECs.

Meanwhile, IL-18 plays an important role in stimulating vascular

smooth muscle cell proliferation and migration, along with

promoting the productions of IFN-g, IL-2 and IL-12. These

actions collectively exacerbate the inflammatory milieu in SCD

participants (53, 56, 57). Notably, excessive production of IL-8

and RANTES contributes to the dehydration of sickle RBC, leading

to an increase in RBC density and rigidity (68). This, in turn,

enhances the adhesion of RBCs to the endothelium (69), a

phenomenon closely linked to the severity of VOCs. These
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findings suggest that SCD participants experience persistently

high levels of inflammatory mediators during StSt phases, even in

the absence of severe clinical symptoms like VOCs.

Several inflammatory mediators were associated with the

presence of autoantibodies and RBC/reticulocyte-leukocyte

aggregation in SCD participants. Specifically, 5 inflammatory

factors (MIP-1b, IL-34, IL-1a, IL-9, and IL-4) were positively

associated with autoantibodies targeting 2 human antigens (SSA/

Ro60 and MPO) (Table 4). Anti-SSA/Ro60 autoantibodies are

typically classified as ANAs, while anti-MPO autoantibodies are

categorized as non-ANAs. Thus, our results indicate that elevated

inflammatory mediators are closely linked to both ANAs (anti-SSA/

Ro60 autoantibodies) and non-ANAs (anti-MPO autoantibodies)

in the bloodstream of SCD participants. Notably, the vast majority

(4 out of 5) of inflammatory mediators displayed positive

associations with ANA (SSA/Ro60) (Table 4). Given that mature

RBCs in mammals lack nuclei, mitochondria, and other organelles

(70), these inflammatory mediators are more likely to be implicated

in autoimmune responses to cellular debris from other types of cells

rather than mature RBCs. This finding suggests a potential link

between ANA-associated autoimmunity and the presence of

specific inflammatory mediators, which may contribute to our

understanding of autoimmune processes and their association

with certain cellular components in SCD.

In SCD participants, a complex and detrimental cycle is established

through the interplay between inflammation and the formation of

RBC/reticulocyte-leukocyte aggregates (71, 72). Inflammatory

mediators disrupt immune responses, leading to an increased

aggregation of RBCs/reticulocytes with leukocytes. Consequently,

these aggregates exacerbate blood vessel blockages, further impeding

blood flow and perpetuating the cycle of inflammation and tissue

damage. This process triggers the release of additional inflammatory

mediators, thus fueling a vicious circle of inflammation and VOCs.

This vicious circle plays a significant role in the pathophysiology of

SCD and significantly contributes to the recurrent pain crises and

organ damage observed in affected individuals. We analyzed the

association of inflammatory mediators with RBC/reticulocyte-

leukocyte aggregation. In line with previous studies, our results also

revealed 2 chemokines (CCL23 and MIP-1a) and 1 growth factor

(HGF) that were associated with the aggregation (Table 4). These

results provide important insights into the relationship between

inflammation and RBC/reticulocyte-leukocyte aggregates that are

associated with the occurrence and severity of VOCs.

SCD participants experience sudden and intense episodes of VOCs,

which are challenging to predict and manage (73, 74). However,

understanding of the circulating markers and their pathological

processes during the transitioning phase from StSt to VOC episodes

is extremely limited due to the unpredictable and rapid progression of

the onset of VOCs. A previous study identified PDGF-BB and IL-1Ra as

potential indicators for the acute-to-chronic stage in SCD (30). Our data

revealed that 2 elevated inflammatory mediators (IL-18 and granzyme

A) were associated with time the intervals prior to VOC onset and 4

mediators (GRO-a, IL-6, IL-17A, and LIF) were significantly associated
with time intervals after active VOCs (Table 5), suggesting that these 6

mediators hold the potential to serve as novel biomarkers for predicting

VOC episodes. Of particular note, IL-18 has emerged as a critical
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proinflammatory regulator in both innate and adaptive immune

responses (75), and blocking IL-18 has been associated with

mitigating neuropathic symptoms and enhancing the analgesic

activity of morphine and buprenorphine (76). Inhibition of Granzyme

A has been shown to reduce the levels of IL-6 and TNF-a (77). Thus,

our results underscore the significance of specific inflammatory

mediators in the early detection and development of VOCs, as well as

potential avenues for pain management in SCD participants

experiencing VOCs.

The existing literature has extensively studied the inflammation-

and immunity-based mechanisms in SCD as compared to HCs, as well

as the differences between StSt and VOC phases. However, there are

limited studies investigating the relationship of inflammatory markers

with clinical symptoms and sensory sensitivity during StSt. In the

present study, we found that multiple inflammatory molecules were

negatively associated with pain intensity (higher score indicated higher

pain), the frequency/recency of clinical pain episodes (higher score

indicated higher frequency/recency of acute pain episodes), emotional

distress (depression), and physical dysfunction (higher score indicated

higher physical dysfunction) in SCD participants. Conversely, higher

levels of several soluble factors correlated with higher QoL and less pain.

SCD participants with less severe Pain Episodes Score (higher score

indicated higher severity) were associated with higher levels of GRO-a,
MCP-2, granzyme B, bNGF, IL-7, IL-2, IL-17, and TREM 1 (Table 6).

Of particular interest, higher IL-17A levels were also correlated with less

pain intensity, physical dysfunction and higher QoL (higher PedsQL

score indicated higher QoL). In fact, elevated IL-17A is associated with

absence of acute chest syndrome in SCD participants, indicating a

protective role (78). Consistently, higher levels of many inflammatory

markers were also associated with decreased sensory sensitivity (in other

words: increased threshold/tolerance to experimental stimuli) in

response to mechanical (MDT MPT, and MTS), thermal (CPT), and

pressure (PPT and PPTol) stimuli. We observed that SCD participants

who had higher levels of Eotaxin-2, CCL21, GRO-a, MCP-2, HGF, IL-

20, TNF-b, and TREM-1 simultaneously exhibited lowered cold pain

sensitivity (in other words: increased tolerance of cold-induced pain).

These novel findings have not been reported in existing literature in

SCD. The underlying mechanisms of these intriguing observations are

unknown and warrant future investigation. We speculate that SCD

participants experiencing recurrent extremely painful VOCs-related

episodes developed resistance and pain inhibitory effect, thus

exhibited decreased sensory sensitivity and increased tolerance to

experimental pain stimuli, which therefore inhibited the antidromic

release of proinflammatory mediators at periphery. This correlation

profile suggested the interactive and distinct roles of inflammatory

mediators in the processing of pain, and sensory sensitivity at StSt, and

could be utilized for more extensive studies to explore the underlying

nociceptive pathways in SCD.

In line with the correlation profile presented in Table 6, elevated

anti-MPO autoantibodies were associated with decreased sensitivity

and tolerance to pressure pain (PPT trapezius and PPTol trapezius).

Notably, MPO plays a crucial role as a marker and modulator of

inflammation and oxidative stress, primarily originating from

activated leukocytes and neutrophils (79). A previous study

demonstrated that increased MPO impairs EC function through

vascular oxidative stress, while inhibiting MPO shows promise in
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improving vasodilation in mouse models of SCD (80). Furthermore,

many SCD participants experience heightened cold sensitivity (81),

and exposure to potential triggers, such as cold temperatures or

stress, can induce vasoconstriction, potentially leading to VOC (82,

83). Therefore, elevated autoantibodies, such as anti-MPO

autoantibodies (Figure 1), might contribute to vasoconstriction

during the prodromal phase of VOCs while simultaneously

interacting with immune- and inflammatory-targets (Table 4) to

modulate pain inhibitory effect at StSt.

Inflammation, autoimmunity, and RBC/reticulocyte-leukocyte

aggregations are believed to play a significant role in the

pathogenesis of pain and VOCs in SCD participants (23, 84, 85).

However, the direct connections of these factors with pain and VOCs

in SCD participants are not fully understood. Our comprehensive

analyses of these cross-sectional clinical samples provide valuable

insights into the correlations between inflammatory mediators,

autoantibody profiles, RBC/reticulocyte-leukocyte aggregation,

clinical lab test results, and their associations with the onset of VOCs

and pain sensitivity in SCD participants. This knowledge has the

potential to significantly contribute to the development of suitable

biomarkers/endpoints for clinical diagnosis of pain episodes in SCD

participants, as well as targeted therapeutic approaches and improved

management strategies for individuals affected by this condition.

However, it is essential to acknowledge the limitations of our cross-

sectional study, including small sample size, potential bias,

confounding factors, the absence of insight into temporal trends, and

the inability to establish causality. To address these limitations, we have

undertaken efforts to collect longitudinal clinical samples throughout

the duration of our clinical trial cohort and expand our sample size

with ongoing recruitment efforts. This longitudinal approach is

expected to provide a stronger foundation for establishing causal

relationships between the analyzed variables. By observing changes

over time, we can better infer cause-and-effect relationships of these

variables, thus advancing our understanding of the mechanisms

underlying the pathogenesis of SCD. Furthermore, the combination

of cross-sectional and longitudinal approaches will enable us to gather

complementary data, extending our investigations to address a broader

range of clinical questions in both SCD participants and SCD

participants experiencing acute VOC. The information gathered

from these approaches will be pivotal in evaluating the clinical

efficacy and neurobiological mechanisms of acupuncture analgesia in

SCD participants participating in our clinical trial.
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Glossary

a4b1 alpha-4 beta-1

ANA anti-nuclear autoantibody

BAFF the B-cell activating factor

CDT cold detection threshold

CPT cold pain threshold

CPM conditioned pain modulation

CRP C-reactive protein

DC dendritic cell

EC endothelial cell

GPA glycophorin A

HADS Hospital Anxiety and Depression Scale

HC healthy control

HCT hematocrit

HDT heat detection threshold

Hgb hemoglobin

HPT heat pain threshold

LIF leukemia inhibitory factor

Lu/BCAM lutheran/basal cell adhesion molecule

MCV mean corpuscular volume

MCH mean corpuscular hemoglobin

MDT mechanical detection threshold

MFI median fluorescent intensity

MPO myeloperoxidase

MPT mechanical pain threshold

MTS mechanical temporal summation

PBMC peripheral blood mononuclear cell

PedsQL Pediatric Quality of Life Inventory

PMN polymorphonuclear neutrophil

PPT pressure pain threshold

PPTol pressure pain tolerance

PROMIS Patient-Reported Outcomes Measurement Information System

PROMs patient-reported outcome measures

QST quantitative sensory testing

RBC red blood cell

RDW red cell distribution width

SCD sickle cell disease

SLE systemic lupus erythematosus

SSA/Ro60 Sjögren’s Syndrome-related antigen A/Ro60 kDa

(Continued)
F
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StSt steady-state condition

TSLP thymic stromal lymphopoietin

TSP temporal summation of pain

VOC vaso-occlusive crisis

WBC white blood cell.
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