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Autoimmune inflammation is caused by the loss of tolerance to specific self-

antigens and can result in organ-specific or systemic disorders. Systemic

autoimmune diseases affect a significant portion of the population with an

increasing rate of incidence, which means that is essential to have effective

therapies to control these chronic disorders. Unfortunately, several patients with

systemic autoimmune diseases do not respond at all or just partially respond to

available conventional synthetic disease-modifying antirheumatic drugs and

targeted therapies. However, during the past few years, some new medications

have been approved and can be used in real-life clinical settings. Meanwhile,

several new candidates appeared and can offer promising novel treatment

options in the future. Here, we summarize the newly available medications and

the most encouraging drug candidates in the treatment of systemic lupus

erythematosus, rheumatoid arthritis, Sjögren’s disease, systemic sclerosis,

systemic vasculitis, and autoimmune myositis.
KEYWORDS
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Introduction

Pathogenic autoimmunity occurs when specific self-molecules trigger a massive

inflammatory response by autoreactive T or B cells and/or autoantibodies, which recruit

innate and more adaptive immune cells. The consequent inflammation can be limited to a

single organ (e.g., in autoimmune thyroiditis) or can affect several tissues in the body. These

latter conditions, systemic autoimmune diseases, affect a significant proportion of the

population. Their incidence is growing, they often appear as severe/organ- or life-

threatening disorders, and a group of patients still cannot reach clinical remission.

Autoimmune disorders are characterized by chronic inflammation, which can affect

and damage various organs and tissues. Despite many differences in the pathogenesis and
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clinical manifestations of autoimmune diseases, there are also many

similarities. Autoimmune disorders are believed to have three

phases (Figure 1). In the first so-called “immunization” phase,

patients are typically unaware of clinical symptoms (1). Often

genetic factors (modified alleles) and environmental triggers (e.g.,

smoking, UV light, and microbial infections) collectively predispose

to the development of autoimmunity (1). This process leads to the

loss of immune tolerance to self-antigens by the appearance of

autoreactive T lymphocytes, which escape central tolerance (2). As a

consequence, self-reactive T lymphocytes can contribute to

autoreactive B-lymphocyte development and autoantibody

production (2). During the transition phase, complex

immunological processes occur, such as immune complex

formation or deposition (e.g., in the joints or the kidney) and the

initiation of immune cell recruitment (3, 4). As a result, in the

effector phase, many cell types become activated and initiate cellular

responses. These effector functions mediate host tissue damage and

maintain chronic inflammation. Based on these similar steps of

pathogenesis, drug candidates targeting common participating

factors may have beneficial effects in the treatment of various

autoimmune disorders.

Patients living with systemic autoimmune diseases require

lifelong therapy, and therefore, the choice of the right medication

is key to the long-term outcome. Although several therapies are

available, the desired complete remission is not achieved in a

significant proportion of patients. However, the range of available
Frontiers in Immunology 02
therapies is constantly expanding due to the large number of drugs

successfully tested in clinical trials. Here, we collected the most

recently approved and the majority of the most promising

forthcoming drugs to have an overview of this expanding field

(Table 1 and Figure 2).
Novel therapies in SLE

Recently approved therapies

Systemic lupus erythematosus (SLE) can affect multiple organs,

most often in women of childbearing age, leading to a significant

decrease in quality of life in the majority of the cases (4). The innate

and adaptive immune systems are jointly responsible for the

development of SLE (4). The presence of nucleic acid-containing

immune complexes triggers type 1 interferon (IFN) production in

plasmacytoid dendritic cells through a Toll-like receptor-dependent

or receptor-independent pathway and activates several immune

cells (4). The helper T cell population contributes to excessive

autoreactive B cell activation and proliferation partly through

CD40L–CD40 ligation, while decreased interleukin-2 (IL-2)

production and regulatory T cell dysfunction are also seen in SLE

(4). The presence of proliferation- and differentiation-promoting

factors (e.g., BAFF/BLyS) helps the survival of self-reactive B cells,

which can differentiate into autoantibody-producing plasma cells
FIGURE 1

Common features of the pathogenesis of autoimmune disorders. The pathogenesis of different autoimmune diseases has many similar aspects. In
general, genetic factors and environmental triggers collectively predispose to the development of autoimmunity. Due to the loss of immune
tolerance, initiation phase leads to the appearance of autoreactive T lymphocytes, which contribute to the maturation of autoreactive B lymphocytes
and autoantibody production. During the transition phase, complex immunological processes occur, such as immune complex formation and
deposition or the initiation of immune cell recruitment. In the effector phase, different cell types are activated, which mediate tissue damage and
chronic inflammation. AAV, ANCA-associated vasculitis; ACPA, anti-citrullinated protein antibody; ANCA, antineutrophil cytoplasmic antibody; APC,
antigen-presenting cell; FLS, fibroblast-like synoviocyte; IC, immune complex; MMP, matrix metalloproteinase; NETosis, neutrophil extracellular trap
formation; pDC, plasmacytoid dendritic cell; RA, rheumatoid arthritis; RF, rheumatoid factor; ROS, reactive oxygen species; SLE, systemic
lupus erythematosus.
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TABLE 1 Newly approved drugs and some selected promising candidates from phase 2 or 3 trials.

Drug Target Status (approved or clinical study phase) Disease Refs.

Anifrolumab
Type I interferon receptor

subunit 1

Approved (FDA, EMA)
Phase 2
Phase 3

SLE
Sjögren’s syndrome

SSc

(5)
NCT05383677
NCT05925803

Voclosporin Calcineurin Approved (FDA, EMA) SLE (6)

Belimumab BAFF/BLyS
Approved (FDA, EMA)

Phase 2
Phase 2

SLE
SSc

Sjögren’s syndrome

(7, 8)
NCT01670565,
NCT03844061

(9, 10)

Sifalimumab Interferon-a Phase 2 SLE (11, 12)

Obinutuzumab CD20 Phase 3 SLE NCT04963296

Telitacicept BAFF/BLyS
and APRIL

Phase 3 SLE (13, 14)

Atacicept Phase 2 SLE (15)

Ianalumab BAFF receptor Phase 3
SLE

Sjögren’s syndrome
(16), NCT05639114,

NCT05349214

Daratumumab CD38 Phase 2 SLE
(17, 18)

NCT04810754

Litifilimab BDCA-2 Phase 3 SLE, CLE (19, 20)

Low-dose IL-2 regulatory T cells Phase 2 SLE (21, 22)

Filgotinib

JAK1

Approved (EMA) RA (23–25)

Upadacitinib
Phase 2
Phase 3

SLE
Takayasu’s

arteritis, GCA

NCT03978520
NCT04161898,
NCT03725202

Peficitinib All JAKs Approved (South Korea, Japan) RA (26, 27)

Mavrilimumab GM-CSFR Phase 2 RA, GCA (28, 29)

Dazodalibep CD40L
Phase 2
Phase 3

RA
Sjögren’s syndrome

(30–32),
NCT06104124

Olokizumab IL-6 Phase 3 RA (33–35)

Baricitinib JAK1 and JAK2
Phase 2
Phase 4

Sjögren’s syndrome
SSc

NCT05016297
NCT05300932

Nintedanib VEGFR, PDGFR, FGFR Approved (FDA, EMA) SSc (36)

Tocilizumab IL-6R Phase 3 SSc (37)

Brodalumab IL-17A receptor Phase 3 SSc (38)

Tofacitinib JAK1 and JAK3 Phase 2
Sjögren’s syndrome

SSc
NCT04496960

(39)

Inebilizumab CD19 Phase 3 SSc NCT05198557

Secukinumab IL-17A Phase 2 GCA (40)

Avacopan C5a receptor Approved (FDA, EMA) GPA, MPA (41, 42)

Mepolizumab
IL-5

Approved (FDA, EMA) EGPA (43–45)

Reslizumab Phase 2 EGPA (46)

Benralizumab IL-5R Phase 3 EGPA
(47)

NCT04157348

IVIG ? Phase 3 DM (48)

Apremilast PDE-4 Phase 2 DM (49)

(Continued)
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(4). During the last few years, novel therapies have been approved

for the treatment of systemic lupus erythematosus.

While it has been known for several decades that type I

interferons have an important role in the pathogenesis of SLE, it

took a long time to have the first approved medication targeting this

pathway. Anifrolumab is a monoclonal antibody against the type I

interferon receptor subunit 1 (IFNAR1), which has been shown to

be effective in a phase 3 clinical trial in SLE patients who received

300 mg intravenous injection every 4 weeks for 48 weeks according

to the British Isles Lupus Assessment Group (BILAG)-based

Composite Lupus Assessment (BICLA) response (5). Anifrolumab

seemed to be a relatively safe biological therapy and was associated

with a moderate increase in the incidence of herpes zoster

compared to placebo (5). These data led to the approval of the

drug by the US Food and Drug Administration (FDA) and the

European Medicines Agency (EMA) of the European Union for

non-renal manifestations. A 3-year long-term extension study —

where the occurrences of non-opportunistic infections, malignancy,

or major acute cardiovascular events were comparable with those of

the placebo group — further proved a good benefit–risk ratio in

patients with moderate-to-severe disease activity (51).
Frontiers in Immunology 04
Voclosporin, which belongs to the calcineurin inhibitor family

and mainly targets T cells, was found to be an effective therapy in

Class III, IV, or V lupus nephritis patients at a 23.7-mg twice-daily

dose in combination with background mycophenolate mofetil

(MMF; 1 g/day) and low-dose corticosteroid (loCS) therapy

compared to placebo with MMF plus loCS (in other words,

voclosporin caused a superior complete renal response rate by

week 52 in treated patients) (6). Meanwhile, voclosporin showed

a good safety profile: the incidence of serious adverse events did not

differ in the two groups (6). These findings led to the approval of the

drug for the treatment of lupus nephritis by the FDA and EMA.

Compared to tacrolimus, voclosporin shows predictable

pharmacokinetics and does not need drug monitoring (52).

Moreover, voclosporin therapy has a less severe impact on the

lipid or electrolyte profile and has no effect on mycophenolate

mofetil levels (52). Voclosporin could be also used in combination,

which is considered to be a promising feature (53).

B cells are key players in the pathogenesis of SLE, and elevated

serum levels of BAFF/BLyS can be detected in these patients (54).

The anti-BAFF/BLyS monoclonal antibody belimumab was the first

approved biological therapy for autoantibody-positive SLE patients;
FIGURE 2

Mechanism of action of some selected newly approved therapies and promising drug candidates. The main cell types that contribute to the
development of systemic autoimmune diseases are T and B cells, macrophages, neutrophils, and eosinophils. The reviewed drugs mostly have an
impact on these cells either by targeting cellular functions from the extracellular side (like cytokine and cytokine receptor blockers) or by modifying
intracellular signaling.
TABLE 1 Continued

Drug Target Status (approved or clinical study phase) Disease Refs.

Arimoclomol HSP Phase 3 IBM
(50)

NCT04049097
DM, dermatomyositis; EGPA, eosinophilic granulomatosis with polyangiitis; EMA, European Medicines Agency; FDA, Food and Drug Administration; GCA, giant cell arteritis; GPA,
granulomatosis with polyangiitis; HSP, heat shock protein; IBM, inclusion body myositis; IVIG, intravenous immunoglobulin; MPA, microscopic polyangiitis; RA, rheumatoid arthritis; SLE,
systemic lupus erythematosus; SSc, systemic sclerosis.
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however, the indication was restricted to non-renal manifestations.

In a 2-year, multicenter, randomized, double-blind, placebo-

controlled, phase 3 trial, belimumab (at a 10-mg/kg monthly

dose) plus standard therapy (mycophenolate mofetil or

cyclophosphamide) had better renal response rates than standard

therapy alone in lupus nephritis patients (7). The efficacy was stable,

and no new safety concerns were raised during a 28-week, open-

label extension study (8).
Promising new drug candidates

The effect of anifrolumab is being tested in lupus nephritis

patients. In a phase 2 study, the primary endpoint (change in

baseline 24-hour urine protein–creatinine ratio at week 52) was not

reached; however, more patients achieved complete renal response

(CRR) with ≤0.5 mg/mg urine protein–creatinine ratio or sustained

oral glucocorticoid dosage reduction (≤7.5mg/day, from week 24 to

week 52) in the intensified regimen group (receiving 900 mg

anifrolumab three times and 300 mg after) compared to the

placebo (all participants received mycophenolate mofetil and oral

glucocorticoids) (55). Based on these results, the authors decided to

proceed with a phase 3 clinical trial (ClinicalTrials.gov Identifier:

NCT05138133). It is important to mention that there are other

interferon-blocking agents in the pipeline. Sifalimumab is a fully

human IgG1 k monoclonal antibody that binds to the majority of

IFN-a subtypes (11). In a randomized, double-blind, placebo-

controlled study with moderate-to-severe active SLE patients, the

1,200 mg/month sifalimumab dose caused a significantly higher SLE

responder index-4 (SRI-4) responder rate by week 52 compared to

placebo, while the Cutaneous Lupus Erythematosus Disease Area and

Severity Index (CLASI) responder rate also tended to be higher in the

sifalimumab groups (11). Meanwhile, sifalimumab showed a tolerable

safety profile, with a comparable serious adverse event rate with

placebo, while herpes zoster infections were more frequent in

sifalimumab-treated individuals (11). The tolerability was further

strengthened by a more recent phase 2 study with Japanese patients

(12). However, more investigations are needed to explore the efficacy

of sifalimumab in active SLE patients.

In addition to belimumab, other B cell-targeted therapies have

been also tried in SLE patients, and some have promising results.

While rituximab, a chimeric anti-CD20 antibody, failed to show

significant efficacy in a randomized, double-blind, phase 2/3 trial in

patients with extrarenal SLE, this was probably due to an

unfortunate study design, as there are many non-trial-based

clinical data showing the successful off-label use of rituximab in

individuals with SLE (56–58). Based on the positive clinical

experiences with the (off-label) administration of rituximab under

non-study-related clinical conditions, the monoclonal antibody was

included in the 2019 update of the European Alliance of

Associations for Rheumatology (EULAR) SLE treatment

recommendation as second-line therapy for patients with

refractory, severe non-renal SLE (Rituximab can also be found in

the 2023 update with both renal and non-renal indications (59, 60).

It is important to note that belimumab therapy following rituximab

treatment could be beneficial (61). Ofatumumab, a fully humanized
Frontiers in Immunology 05
anti-CD20 monoclonal antibody, can be an alternative option for B

cell depletion in patients who have previously had an allergic

reaction to the off-label rituximab therapy (62). In a single-center

retrospective case series of 16 patients with SLE, the use of

ofatumumab was shown to be well-tolerated in 14 individuals, 12

patients achieved B cell depletion, and six lupus nephritis patients

(out of 12) reached renal remission by 6 months (62). Ofatumumab

seems to be a promising agent in the treatment of patients with life-

threatening myeloid manifestations and in individuals with juvenile

SLE according to case reports (63–65). Basic research data show

that a new member of anti-CD20 antibodies, obinutuzumab, is

more effective than rituximab in achieving B cell depletion (66, 67).

In a phase 2 study, patients with lupus nephritis who received

obinutuzumab with mycophenolate and corticosteroid therapy had

a higher rate of achieving complete renal response at week 52 than

the placebo group, while obinutuzumab was well tolerated (68). A

phase 3 clinical trial is currently ongoing (ClinicalTrials.gov

Identifier: NCT04963296).

Telitacicept is a fusion protein consisting of the transmembrane

activator calcium modulator and cyclophilin ligand interactor

(TACI) plus the Fc portion of human IgG (69). TACI can bind to

both BAFF/BLyS and the proliferation-inducing ligand (APRIL)

and was tested in moderate-to-severe Chinese SLE patients in a

phase 3 clinical study (69). The subcutaneous administration of

telitacicept caused an SLE responder index-4 (SRI-4) response in a

significantly greater proportion of patients by week 52 than placebo

(13, 14). Telitacicept also increased the serum C3 and C4 levels and

reduced B cell numbers, serum IgM, and IgG titers while showing a

good safety profile (14). Atacicept, a similar fusion protein, also

seemed to be effective and well tolerated in a phase 2b clinical study

(15). Ianalumab, a monoclonal antibody against the BAFF receptor,

met the primary endpoint of SRI-4 response in a multicenter,

randomized, double-blind trial in SLE patients (16). The chimeric

antigen receptor (CAR) is a specially engineered synthetic protein,

which is produced in a laboratory and consists of an antibody-

derived antigen-binding, a hinge or spacer, a transmembrane, and

two intracellular (the co-stimulatory and the CD3z) regions (70,

71). CAR-expressing T cells have the advantage of binding to the

antigen in an MHC-independent manner (71). During CAR T cell

therapy, T cells are collected from the peripheral blood of the

patient, the CAR construct is inserted into the cells, and the CAR T

cells are injected back into the patient (70). CAR T cell therapy

caused a revolution in the treatment of refractory hematological

malignancies, but its effect is also investigated in solid tumors (72,

73). In 2021, a German group published the case of a 20-year-old

woman with severe and refractory SLE, having lupus nephritis,

nephrotic syndrome, arthritis, pericarditis, pleurisy, and rash, where

previous treatments with hydroxychloroquine, high-dose

glucocorticoids, cyclophosphamide, mycophenolate mofetil,

tacrolimus, rituximab, and belimumab were unable to control the

disease and where anti-CD19 CAR T cell therapy resulted in

complete remission (74). This observation was further

strengthened by five more SLE patients with a refractory disease

who received autologous anti-CD19 CAR T cell therapy and

achieved drug-free remission (75). As a result of the treatment, all

patients achieved low disease activity or remission by month 3,
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while their proteinuria and anti-dsDNA levels decreased and their

C3 complement levels increased (75). Immune phenotyping of B

cell before and after treatment revealed that the pathognomonic

CD11c+CD21lo-activated memory B cells disappeared from the

blood, while the therapy did not have a main effect on previous

vaccination responses (75). Tolerability of the therapy was

acceptable, as only one patient had a mild cytokine release

syndrome that was successfully treated with tocilizumab (75). In

addition to CAR T cell therapy, T cell engager agents also lead to B

cell death via T cell activation; however, the data on this field are

even more limited (preprint, doi: 10.31219/osf.io/fv7mn).

Daratumumab mainly targets plasma cells by binding to CD38

and is approved for the treatment of multiple myeloma (17).

Ostendorf and colleagues described the cases of two patients with

life-threatening refractory lupus who responded well to this anti-

CD38 therapy and showed decreased urine protein–creatinine ratio,

serum creatinine levels, serum anti-dsDNA titers, and SLEDAI-2K

scores upon treatment (17). Moreover, daratumumab was

successful in five out of six patients with refractory lupus

nephritis in another case series investigation (18). An open-label,

phase 2 clinical trial to explore the effectiveness of daratumumab in

refractory SLE patients is ongoing (ClinicalTrials.gov Identifier:

NCT04810754). Plasma cells are more susceptible to proteasome

inhibition than other cell types, and therefore, drugs with this

mechanism of action have been developed for the treatment of

antibody- and plasma cell-dependent diseases like SLE (76). These

drugs include bortezomib, which was previously approved by the

EMA and FDA for the treatment of multiple myeloma. In one case

study, dexamethasone therapy was combined with bortezomib

infusion in a patient who was diagnosed with multiple myeloma

in addition to SLE (77). Over two cycles, both diseases went into

remission (77). In a study, bortezomib therapy reduced plasma cell

counts in both the peripheral blood and the bone marrow, while it

reduced circulating anti-dsDNA levels and SLE disease activity (78).

However, several patients discontinued bortezomib therapy due to

adverse events (78). In three out of five patients diagnosed with

lupus nephritis, the bortezomib–glucocorticoid combination caused

complete remission, and the therapy reduced circulating antibody

levels and improved renal function according to another

publication (79). In another study, bortezomib therapy caused

complete remission in one out of 12 patients with lupus nephritis

and partial remission in 10 patients, while two patients had to stop

therapy because of adverse events (80). Compared to placebo in a

double-blind clinical trial, half of the patients in the bortezomib

group discontinued therapy because of adverse events (81). While

the reduction in the antibody titer was not observed, bortezomib

appeared to be effective in terms of the SLE responding index (81).

However, cautious use is necessary due to many adverse events (81).

A plasmacytoid dendritic cell-specific C-type lectin, BDCA-2, has

been shown to be able to suppress interferon production upon

ligation (82). Litifilimab, a novel anti-BDCA-2 antibody, has been

shown to decrease the interferon secretion of plasmacytoid dendritic

cells and could reduce the articular involvement in SLE patients

compared to placebo in a multicenter, phase 2 trial (19).

Furthermore, subcutaneous litifilimab was effective in lowering the

area of the involved skin in cutaneous lupus erythematosus (CLE) in
Frontiers in Immunology 06
another phase 2 clinical study (20). Meanwhile, the adverse event rate

was similar in the litifilimab and placebo groups, with a moderate

tendency to increased susceptibility to viral infections in CLE patients

(19, 20). These led to the continuation of testing this agent in phase 3

trials in both SLE and CLE individuals (ClinicalTrials.gov Identifiers:

NCT05352919 and NCT05531565, respectively).

Ikaros and Aiolos are transcription factors involved in the

pathogenesis of SLE, where Ikaros mediates type 1 interferon

production of plasmacytoid dendritic cells and B lymphocytes,

while Aiolos is involved in the differentiation of B cells (83).

Iberdomide is a cereblon modulator, which leads to the

ubiquitination and degradation of both Ikaros and Aiolos and

reduced CD19- and CD20-positive B cell numbers and type 1

interferon gene expression in SLE patients, while increasing

regulatory T cell counts and serum interleukin-2 levels, pointing

toward a reshaping of the function of the immune system (83). In

line with these findings, iberdomide at a 0.45 mg oral daily dose

significantly increased the percentage of patients achieving an SRI-4

response at week 24 compared to the placebo group, especially in

subjects with a high Aiolos or type 1 interferon gene expression

signature in a phase 2 clinical study (84). Most of the adverse events

were mild to moderate and involved urinary or upper respiratory

tract infections, while the serious adverse event rate was similar in

the iberdomide and placebo groups (84).

Regulatory T cell dysfunction is a common feature in SLE,

which can lead to immune dysregulation and the breakdown of

immune tolerance (85). The recovery of regulatory T cell function

by the administration of low-dose IL-2, which is an important

regulator of Tregs, is another promising therapeutic agent in SLE

(85). In a placebo-controlled pilot study, 30 patients received 1

million IU/day subcutaneous IL-2 every other day for 2 weeks,

which was followed by a 2-week break, and this 4-week period was

repeated twice (21). Despite of the fact that the low-dose IL-2

therapy did not reach its primary endpoint (the SRI-4 response rate

at week 12), it showed a significant difference compared to the

placebo in the response rate at week 24, while no serious adverse

events occurred in the IL-2 group (21). Furthermore, the complete

remission rate of low-dose IL-2-treated lupus nephritis patients was

also significantly higher at both weeks 12 and 24, while IL-2-treated

individuals had reduced 24-hour proteinuria in contrast to the

placebo group (21). In line with this observation, serum albumin

levels rose in those receiving low-dose IL-2 by weeks 12 and 24 (21).

In a larger, multicenter, randomized, double-blind, placebo-

controlled, phase 2 trial, 50 patients received subcutaneous IL-2

(1.5 million IU/day dose for 5 days, which was followed by weekly

injections for 12 weeks) (22). While the primary endpoint (in the

context of the SRI-4 response rate) was not reached in the total

investigated population, a post hoc per-protocol analysis — which

excluded patients from two sites, where the SRI-4 response rate was

100% in the placebo group — showed a statistically significant

difference in connection with the primary endpoint, which

encourages further investigations (22). The effect of efavaleukin a,
an IL-2 mutein Fc fusion protein with a high affinity to CD25, is also

intensively investigated in SLE: in a phase 1b trial, different doses of

efavaleukin had a tolerable safety profile while causing a selective

and prolonged regulatory T cell expansion (86).
frontiersin.org

https://www.ClinicalTrials.gov
https://www.ClinicalTrials.gov
https://doi.org/10.3389/fimmu.2024.1249500
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Balogh et al. 10.3389/fimmu.2024.1249500
There are some positive and promising experiences with the off-

label use of intravenous immunoglobulin (IVIG) therapy in

refractory SLE patients; however, controlled trials are needed to

define its potential role in the treatment of SLE (87).

Deucravacitinib, the inhibitor of the Janus kinase TYK2 was

tested in a phase 2 trial, where significantly more patients achieved

the SRI-4 response at week 32 in the inhibitor-treated group

compared to placebo (88). The JAK inhibitor upadacitinib and

the BTK inhibitor elsubrutinib are also tested in SLE patients in a

phase 2 clinical study (ClinicalTrials.gov Identifier: NCT03978520).
What is new in the RA field?

Rheumatoid arthritis (RA) has a prevalence of 0.5%–1% in the

population and can cause irreversible joint damage and loss of

articular function in patients, while it is associated with higher

cardiovascular morbidity and mortality (3, 89). Despite the fact that

there is a growing number of available therapies, a significant

proportion of patients still do not respond at all or adequately to

treatment (difficult-to-treat RA) (90). Several cell types and

mediators play important roles in the pathogenesis: resident cells

in the synovium (e.g., macrophage-like synoviocytes and synovial

fibroblasts) and recruited leukocytes (e.g., T and B cells and

neutrophils), which become activated, leading to the release of

proinflammatory cytokines, like tumor necrosis factor-alpha

(TNF-a) and interleukin-6 (IL-6) (which became therapeutic

targets in the everyday clinical routine) or granulocyte

macrophage colony-stimulating factor (GM-CSF) (3). Different

mediators signal through various tyrosine kinases [e.g., Janus

kinases (JAKs)] and contribute to the development of joint

damage, bone erosions, and the maintenance of chronic

inflammation (3).

JAK inhibitors are important drugs for the treatment of RA. In

addition to the three “older” agents (tofacitinib, baricitinib, and

upadacitinib), filgotinib is a relatively new candidate. Filgotinib is

mainly a JAK1 inhibitor, which interferes with the pathogenesis of

rheumatoid arthritis by modulating the effects of proinflammatory

cytokines (91). When tested as a monotherapy in a phase 3 clinical

trial, patients receiving filgotinib had a significantly higher response

rate compared to patients receiving placebo (23). It has also been

shown that filgotinib (at both 100 and 200 mg/day dosages) was

significantly more effective (in the context of the ACR20 response

rate at week 24) in combination with methotrexate compared to

methotrexate monotherapy (92). In a 52-week, placebo-controlled,

phase 3 trial, 200 mg filgotinib was non-inferior to adalimumab

therapy when the DAS28-CRP score was examined (both therapies

were combined with methotrexate) (24). Filgotinib has been shown

to be safe and effective both in combination with methotrexate or as

monotherapy in a 4-year open-label extension study (25). As a

consequence, filgotinib has been approved for moderate-to-severe

RA by the EMA. In parallel with selectivity, the safety profile is

expected to be more favorable than for non-selective JAK inhibitors

(e.g., baricitinib); for instance, it has been suggested that filgotinib

therapy is associated with a reduced risk of herpes zoster infection

compared to other JAK inhibitors (93).
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Another new JAK inhibitor, that has been studied in RA, is the

pan-JAK inhibitor peficitinib (94). In two 52-week, placebo-

controlled, phase 3 trials, peficitinib treatment as monotherapy

(at both 100-mg or 150-mg once-daily dosages) or in combination

with methotrexate resulted in a significant reduction in RA

symptoms (26, 27). Peficitinib has been approved for the

treatment of RA in South Korea and Japan.

Mavrilimumab is a fully human monoclonal antibody against

the GM-CSF receptor a chain. GM-CSF plays a central role in the

development of RA, and the binding of the cytokine to its receptor

leads to the activation of the JAK/STAT signaling route (95).

Compared to placebo, subcutaneous mavrilimumab monotherapy

at 30-mg and 100-mg doses helped more patients to achieve a more

than 1.2 decrease in the DAS28-CRP score by week 12 in a phase 2a

clinical trial (96). Moreover, no major safety concerns were raised

about its tolerability (28, 97).

CD40L–CD40 binding is required for the development of

humoral immune response since it has a major role in B cell

activation and the generation of plasma cells (98). Dazodalibep

binds CD40L and inhibits the attachment of the ligand to its

receptor. In a placebo-controlled, phase 2 trial, the authors found

that the intravenous administration of dazodalibep led to a

significant reduction in the DAS28-CRP score by day 113, while

no major safety concerns were raised (30, 31).

Olokizumab is a humanized monoclonal antibody against the

proinflammatory cytokine IL-6, which is involved in the pathogenesis

of RA in various ways (99). Subcutaneous administration of

olokizumab (64 mg every 2 weeks or 64 mg every 4 weeks in

combination with methotrexate) resulted in significant

improvements in symptoms and physical function in patients with

inadequate response to methotrexate or TNF-a inhibitors, while

olokizumab therapy was non-inferior to adalimumab considering

the ACR20 response rate at 12 weeks in another trial (33–35).

Meanwhile, a similar safety profile was observed as with other

approved IL-6 blockers (33–35). One can speculate whether there

are any major differences in the therapeutic features of blocking IL-6

rather than IL-6R. The efficacy and safety of olokizumab were

compared to those of the two IL-6R blockers (tocilizumab and

sarilumab) in a meta-analysis among methotrexate (MTX) non-

responder RA patients (100). According to this, all three drugs

showed very similar efficacy and safety (100).

The programmed cell death protein 1 (PD-1) on T cells has an

important role in the downregulation of T cell activation upon its

ligation to PD-L1. Peresolimab is a humanized anti-PD-1

monoclonal antibody that activates this inhibitory pathway (in

other words, it has the opposite effects as checkpoint inhibitors)

(101). In a phase 2a clinical trial, peresolimab treatment led to a

significantly greater reduction in the DAS28-CRP score at week 12

compared to placebo, which raises the possibility to control

autoimmune inflammation by influencing the PD-1 inhibitory

pathway (101).

In summary, recently, two JAK inhibitors (filgotinib and

peficitinib) have gained approval in the treatment of rheumatoid

arthritis, while several monoclonal antibodies (altering the

pathomechanism of RA from different directions) are the subject

of promising research in the RA field.
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New drug candidates in the treatment
of Sjögren’s syndrome

Sjögren’s syndrome, with a prevalence of 0.01%–0.72%, is

mainly associated with exocrine gland dysfunction and

consequent dryness of the mucous membranes but can also affect

several internal organs (e.g., the respiratory tract) over time (102).

In primary Sjögren’s syndrome (pSS) epithelial cells express a

variety of immune regulatory molecules, which — through

increased cytokine and chemokine production (e.g., IL-7, IL-17,

and IL-23) — induce abnormal T and B cell function and

autoantibody production, participate in the activation of

interferon signaling, and induce the accumulation and activation

of various immune cells, triggering chronic inflammation and

dysfunction of the exocrine glands (102). Several cytokines that

are involved in the pathogenesis signal through the JAK/STAT

route. Since pSS is a relatively frequent systemic autoimmune

disease with symptoms that significantly reduce the quality of life

and which has no licensed targeted therapies at the moment,

developing new potential drugs is highly necessary.

Efgartigimod is an antibody fragment that binds neonatal Fc

receptors, which are important in the recycling of IgG molecules,

thus prolonging the half-life of the antibodies. Efgartigimod, which

is already used in the treatment of myasthenia gravis patients, is

investigated in a phase 2 clinical trial (ClinicalTrials.gov

Identifier: NCT05817669).

A possible target in pSS therapy is the BAFF/BLyS pathway;

thus, ianalumab, a monoclonal antibody against the BAFF receptor,

is being tested in a phase 3 study (ClinicalTrials.gov Identifier:

NCT05349214). Ianalumab was tested in a multicenter, phase 2b

clinical trial in pSS patients (103). The findings were promising, and

the reduction of EULAR Sjögren’s syndrome disease activity index

score from baseline could be detected at all doses (103). It is

important to note that higher doses were related to a greater

reduction of the ESSDAI score (103). Administering 300 mg

ianalumab significantly reduced the Physician Global Assessment

(PGA) score, and an increased stimulated salivary flow (mL/min)

could be seen (103). In addition, two open-label, phase 2 clinical

trials have been fulfilled, where the BAFF/BLyS targeting

belimumab as monotherapy seemed to be efficient for pSS

patients (9, 10).

In a further study, the combination of belimumab and

rituximab was tested in a phase 2 clinical trial in pSS patients

(104). Patients were randomized into four groups: placebo, i.v.

rituximab, s.c. belimumab, and i.v. rituximab combined with s.c.

belimumab. The safety profile of the combined therapy was similar

to the safety of monotherapies (104). Furthermore, a near-complete

depletion of CD20+ B cells in minor salivary glands and a greater

and more sustained depletion of peripheral CD19+ B cells were

observed with belimumab combined with rituximab compared to

monotherapies (104).

Another B cell-targeting therapy, telitacicept, has shown good

efficacy and safety in a phase 2 clinical trial while reducing IgG, IgM,

and IgA levels and CD19-positive B cell numbers (105). Telitacicept

was administered subcutaneously every week in a 160-mg or 240-
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mg dose, and statistically significant improvements were found in

the ESSDAI score in the 160 mg telitacicept group compared to the

placebo group; however, there was no statistically significant

difference between the 240-mg and the placebo groups (106).

Dazodalibep is a CD40 ligand antagonist that blocks the

interaction between B cells and T cells. In a phase 2 clinical trial,

dazodalibep was found to be tolerable and effective in patients with

Sjögren’s syndrome (32). Therefore, recently, a phase 3 clinical trial

was started, evaluating the efficacy and safety of dazodalibep in

participants with Sjögren’s syndrome with moderate-to-severe

systemic disease activity (ClinicalTrials.gov Identifier:

NCT06104124). Iscalimab is an anti-CD40 monoclonal antibody.

The effect of iscalimab was investigated in a multicenter, double-

blind, placebo-controlled, phase 2 clinical trial, where patients

received either subcutaneous iscalimab (at a 3 mg/kg dose) or

intravenous iscalimab (at a 10 mg/kg dose) (107). The findings

were promising, as the intravenous treatment resulted in a

significant lowering of the ESSDAI score compared to placebo;

however, there was no significant difference in regard to the

ESSDAI score between subcutaneous iscalimab and the placebo

group (107).

Type I interferons have important roles in the pathogenesis.

Currently, there is an ongoing phase 2 clinical trial investigating the

safety and efficacy of anifrolumab in pSS subjects (ClinicalTrials.gov

Identifier: NCT05383677).

Deucravacitinib, a TYK2 inhibitor, is already in use for treating

plaque psoriasis in multiple countries and demonstrated positive

outcomes during phase 2 clinical trials in patients with psoriatic

arthritis and patients with SLE (88, 108, 109). Deucravacitinib could

suppress IFN and B cell pathway markers in lupus patients; therefore,

it could be useful in the treatment of patients with Sjögren’s

syndrome, where IFN and B cell pathways have important roles in

the pathogenesis (110). Accordingly, a phase 3 clinical trial is ongoing

(ClinicalTrials.gov Identifier: NCT05946941).

The effect of other JAK inhibitors is intensively investigated.

Baricitinib is tested in a phase 2 clinical trial that examines the

efficacy of hydroxychloroquine (HCQ) and baricitinib combination

therapy versus HCQ alone (ClinicalTrials.gov Identifier:

NCT05016297). Tofacitinib is also in a phase 2 trial for pSS,

which investigates the improvements in EULAR Sjögren’s

Syndrome Patient Reported Index (ESSPRI) with a 5-mg twice-

daily dose (ClinicalTrials.gov Identifier: NCT04496960).
Systemic sclerosis in the focus

Systemic sclerosis is triggered by microvascular damage and

immune activation, which leads to systemic fibrosis and can result

in multi-organ failure, while the disease itself is really difficult to

treat (111). The development of systemic sclerosis requires the

activation of various immune (e.g., T or B cells, macrophages, and

dendritic cells) and non-immune cell types (e.g., endothelial cells,

fibroblasts, and smooth muscle cells) (111). Danger-associated

molecular pattern (DAMP)- or immune complex-activated

immune cells produce various cytokines, such as type I IFN or
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IL-6, which signal through the JAK/STAT pathway, and contribute

to angiogenesis, wound healing, and fibrosis (111).

Interstitial lung disease (ILD) is a life-threatening complication

of systemic sclerosis (SSc). Pirfenidone is an anti-inflammatory,

anti-fibrotic drug inhibiting TGF-b and TNF-a. A phase 2 clinical

trial failed to find any significant difference between the pirfenidone

and placebo groups (112). However, 94.1% of the patients in the

pirfenidone group showed stabilization or improvement in forced

vital capacity (FVC), which led to a phase 3 trial (112). As a

consequence of a successful phase 3 clinical trial that investigated

the efficacy and safety of nintedanib, a small molecule tyrosine

kinase inhibitor, the molecule is now a possible therapeutic option

for SSc-associated lung fibrosis (36).

Previous studies showed that the classic proinflammatory cytokine

IL-6 has a massive profibrotic effect; IL-6 levels are elevated in SSc

patients and correlate with the thickness of the skin (113). In a phase 3

trial, the IL-6 receptor-blocking tocilizumab could preserve lung

function in early SSc patients with ILD and elevated acute-phase

reactants; however, it had a poor effect on skin fibrosis (37).

Skin fibrosis and pruritus cause a life-quality reduction in SSc

patients; therefore, it is necessary to have more available therapeutic

options. One of the cytokines that play important roles in the

pathophysiology of SSc is IL-31, which is associated with pruritus

(114). Nemolizumab (an IL-31 receptor inhibitor) is now in phase 2

clinical trial (ClinicalTrials.gov Identifier: NCT05214794). An

encouraging multicenter, phase 3 trial has shown great efficacy of

brodalumab, an anti-IL-17A-receptor monoclonal antibody on

decreasing skin thickening (38). Brodalumab achieved a rapid,

significant, and sustained reduction of the modified Rodnan skin

score (mRSS) and inhibited the development of new digital ulcers

(38). Brodalumab also demonstrated a positive effect on respiratory

function and suppressed the progression of lung lesions (38).

Abatacept, the inhibitor of the costimulatory molecules CD80 and

CD86 on antigen-presenting cells, which, as a consequence, blocks T

cell activation, was investigated in two separate double-blind, phase 2

trials and had positive outcomes (both clinical trials evaluated the

change in mRSS) (115, 116). Despite the fact that the change in mRSS

was not statistically significant, both studies found that abatacept was

clinically effective, therefore suggesting the initiation of phase 3

clinical trials (115, 116). CD30+ lymphocytes are present in the

skin biopsies from SSc patients, who tend to have increased serum

CD30 levels (117). A chimeric anti-CD30 antibody, brentuximab, was

tested in a phase 2b clinical trial, where the results were promising, as

a significant decline of the mRSS score was detected (118). A further

potential therapy for skin involvement could be the tyrosine kinase

inhibitor imatinib according to a phase 2 trial, which showed

significant mRSS score reduction, while the efficacy on lung

involvement seemed to be poor (119).

Pulmonary arterial hypertension (PAH) is a severe consequence

of SSc, which can result in heart failure. Ambrisentan, an endothelin

receptor type A-selective antagonist, caused significant

improvements in hemodynamic parameters like cardiac index or

pulmonary vascular resistance. However, the mean pulmonary

arterial pressure, the primary endpoint, only showed a tendency

of improvement (120). In a multicenter, double-blind study, the
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efficacy of rituximab was investigated in SSc-ILD, where the 6-

minute walk test showed a non-statistical improvement (121).

The JAK/STAT signaling pathway is significantly activated in

SSc patients (122). The JAK inhibitor tofacitinib and baricitinib can

cause improvement in lung function in ILD and mRSS score in skin

fibrosis according to a systematic review of the literature (123).

Tofacitinib showed trends of improvement during phase 1 and 2

clinical trials in clinical outcome measures (e.g., in mRSS) in

patients with early diffuse cutaneous systemic sclerosis (39). In a

phase 2 trial, baricitinib showed significant improvement in mRSS

score and a favorable clinical effect on lung function and healing

digital ulcers (124). Despite the fact that no information could be

found on the results of a phase 3 trial, a phase 4 clinical trial is

currently ongoing investigating the effects of baricitinib

(ClinicalTrials.gov Identifier: NCT05300932). Itacitinib, another

JAK/STAT pathway inhibitor, is being investigated in a phase 2

clinical trial (ClinicalTrials.gov Identifier: NCT04789850).

Since increased expression and activation of type-1 IFN-

regulated genes have been reported in SSc patients, it might be

beneficial to use treatments against these targets (125). Therefore,

anifrolumab is undergoing a phase 3 clinical trial in scleroderma

patients (ClinicalTrials.gov Identifier: NCT05925803).

Another promising therapeutic option in SSc patients is B cell

inhibition. For instance, phase 2 clinical trials testing belimumab with

or without rituximab (in combination with MMF) are currently

ongoing (ClinicalTrials.gov Identifiers: NCT01670565 and

NCT03844061). Moreover, the previously approved drug for

neuromyelitis optica, inebilizumab (a CD19 inhibitor), is under

phase 3 trial investigations for possible use in SSc (ClinicalTrials.gov

Identifier: NCT05198557); however, there are no data on phase 2

results. During a phase 1 trial, inebilizumab therapy had a tendency to

lower the mRSS score; however, it had no effect on FVC in ILD-

associated SSc (126). Anti-CD19 CAR T cell therapy was used in a 60-

year-old man with diffuse cutaneous systemic sclerosis who had lung

and myocardial fibrosis, pulmonary arterial hypertension, Raynaud’s

phenomenon, and arthritis (127). The therapy showed great efficacy:

pulmonary fibrosis remained stable; right ventricular strain, arthritis,

and skin fibrosis displayed a tendency of improvement; RNA

polymerase III autoantibodies were no longer detectable (127).
Controlling systemic vasculitis

Large-vessel vasculitis

The large-vessel vasculitis group includes two systemic diseases,

giant cell arteritis (GCA) and Takayasu’s arteritis, which have many

similarities in the pathogenesis and can cause severe complications

or death, while their treatment options are limited (128). During the

initiation of the autoimmune inflammation, autoreactive T-helper

cells reach the vessel wall, differentiate into cytokine-producing Th1

and Th17 cells, and recruit macrophages to the inflamed area (129).

The inflammation is maintained by several mediators (e.g., by IL-

23, IL-17, or GM-CSF) and signaling pathways (e.g., through the

JAK/STAT signaling route) (129).
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IL-17 inhibition could contribute to lowering the maintained

dose of corticosteroids while decreasing the risk for relapse (129).

Secukinumab is a monoclonal antibody targeting IL-17A. In a

placebo-controlled, phase 2 study, Wenhoff and colleagues found

that significantly more secukinumab-treated GCA patients were in

remission at weeks 28 and 52 compared to the control group, while

no unexpected safety signals were detected (40).

While IFNg-secreting Th1 cells are quite resistant to

corticosteroid therapy, they are dependent on the JAK/STAT

signaling pathways, meaning that JAK1 and 3 inhibitors could be

therapeutically beneficial (129). Unlike therapeutic monoclonal

antibodies, these drugs can be orally administered, which can be

more comfortable for the patients. In a case study involving five

patients suffering from refractory Takayasu’s arteritis, four patients

showed a reduction in symptoms, after tofacitinib therapy (5 mg

twice daily), while two patients could have their basal glucocorticoid

therapy reduced, and none of the five patients had adverse effects

(130). Koster and colleagues treated 15 patients with baricitinib: 14

patients completed the 52-week treatment and during the

investigated time period, only one patient had a relapse, and the

other 13 patients could reach corticosteroid discontinuation and

remained in remission (131). More patients with Takayasu's

arteritis achieved remission after 12 months and remained in

remission with 5-mg twice-daily tofacitinib compared to

methotrexate in a prospective study (both therapies were combined

with glucocorticoids) (132). Patients with Takayasu’s arteritis are

being recruited for the clinical trial of upadacitinib, another JAK

inhibitor (ClinicalTrials.gov Identifier: NCT04161898). There is also

an ongoing clinical trial with upadacitinib for GCA (ClinicalTrials.

gov Identifier: NCT03725202).

GM-CSF is believed to be one of the key factors in the

pathogenesis of GCA (129). During a placebo-controlled, phase 2

clinical trial, 150 mg subcutaneous mavrilimumab combined with

glucocorticoids performed better in terms of time to flare, compared

to the placebo-glucocorticoid combination (29). Of patients who

received mavrilimumab, 83% were in sustained remission at week

26, while only 50% were in remission in the placebo group (29).

Ustekinumab, a monoclonal antibody targeting IL-12 and IL-

23, is currently being tested in a phase 2 study for the treatment of

GCA (ClinicalTrials.gov Identifier: NCT03711448). There is also an

ongoing phase 2 trial with the anti-IL-23 antibody guselkumab for

GCA (ClinicalTrials.gov Identifier: NCT04633447).
Small-vessel vasculitis

Antineutrophil cytoplasmic (auto)antibody (ANCA)-associated

vasculitides (which belong to the small-vessel vasculitides) form a

group of severe autoimmune conditions with possible involvement

of nearly all kinds of tissues and sometimes result in severe organ

(e.g., lung or kidney) damage, making clinical settings and

therapeutic decisions difficult for patients and their doctors (133).
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In the pathogenesis of ANCA-associated vasculitis, the adaptive

immune system loses tolerance to neutrophil molecular

components like myeloperoxidase or proteinase-3, resulting in the

production of ANCAs, which trigger the activation of neutrophils

(133). Other immune cells (e.g., B cells, monocytes, and

macrophages) and humoral factors like C5a are also involved in

mediating vessel wall inflammation (133).

It is no longer a question that alternative complement activation

has a vital role in the pathogenesis of ANCA-associated vasculitis

(AAV) (134). Avacopan is an orally available inhibitor of the C5a

receptor 1 (135). Avacopan is a potential steroid-sparing drug: a 30-

mg twice-daily dose with or without prednisolone background was

non-inferior to glucocorticoid therapy, considering the proportion

of patients achieving 50% reduction or more in the Birmingham

Vasculitis Activity Score (BVAS) by week 12 (all patients received

cyclophosphamide or rituximab) (41). In a phase 3 trial, at week 26,

avacopan was as good as corticosteroids in maintaining remission,

and at week 52, avacopan seemed to be the more effective (136).

Avacopan was first approved for two forms of AAV in Japan and in

the USA in 2021, which was followed by the EMA approval (42).

Eosinophilic granulomatosis with polyangiitis (EGPA) is a rare

AAV subtype, which is characterized by eosinophilic inflammation

with bronchial asthma and small-vessel vasculitis (137). Th2-

derived cytokines seem to play a vital role in the pathophysiology

of the disease (137). IL-5 is critical for the proper maturation and

activation of eosinophils, which are key players in the development

of EGPA (138). Anti-IL-5 antibodies were originally used for

treating severe asthma. In a multicenter, phase 3 clinical trial, 300

mg of subcutaneous mepolizumab led to a significantly increased

duration of remission, and a larger proportion of patients remained

in remission at weeks 36 and 48 compared to the placebo group

(43). When combined with rituximab, a 100 mg every 4 week dose

of mepolizumab-induction therapy could reduce asthma attacks

while affecting sustained remission and having a steroid-sparing

effect (45). (It is important to note that the licensed dose for EGPA

is 300 mg every 4 weeks.) Reslizumab, another IL-5-blocking agent,

was able to reduce the glucocorticoid dose in the therapy of EGPA

patients, while it had a promising impact on outcomes of recipients

(46). Benralizumab, an anti-IL-5 receptor antibody, which reduces

eosinophil and basophil numbers, was found to be beneficial for

preventing acute asthmatic flares in EGPA, and it could also

contribute to steroid sparing (47, 139).

A very recent study was conducted with tofacitinib in

granulomatosis with polyangiitis (GPA) with a small number of

patients, and although this amount of patients was not enough for

true safety assessment, the results are promising (140).

Recently, some promising case reports were published about the

effect of daratumumab in patients with refractory ANCA-associated

vasculitis (141, 142). Daratumumab treatment significantly reduced

ANCA levels and caused fast and successful clinical improvements

(141, 142). These promising results should be confirmed by clinical

trials in the future.
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Potential future therapeutic options of
autoimmune myositis

The group of idiopathic inflammatory myopathies consists of

heterogeneous disorders, such as polymyositis, dermatomyositis,

antisynthetase syndrome, immune-mediated necrotizing

myopathy, inclusion body myositis, and overlap myositis

syndromes (143). These chronic diseases are mediated by various

humoral and cellular factors such as T cells and myositis-specific

autoantibodies (143). A frequent common symptom is muscle

weakness and muscle pain, but there can be several other

manifestations (e.g., lung involvement) (143). Due to various

mediators involved in the pathogenesis, a whole range of

potential novel therapeutic targets are available.

Despite the fact that there are growing everyday clinical

experiences with the off-label use of IVIG in idiopathic

inflammatory myopathies (IIMs), the results of its effect in

dermatomyositis (DM) patients in a phase 3 trial only came out

recently (48). Here, the every 4 week use of IVIG at a 2 g/kg dose

was compared to placebo for 16 weeks, followed by an open-label

extension phase for another 24 weeks (48). While IVIG was

superior to placebo according to the Total Improvement Score,

the therapy caused more thromboembolic events (48).

Apremilast is a selective inhibitor of the phosphodiesterase-4

(PDE-4) enzyme. In a phase 2a clinical trial, apremilast was tested

as an add-on treatment in eight dermatomyositis patients (49). In

this study, apremilast was well-tolerated, and there were no severe

adverse events, while the overall response rate (ORR) was 87.5%,

and the decrease of the cutaneous disease activity severity index

(CDASI) score was significant after 3 months of treatment (49).

These results raise the possibility that investigating the potential

therapeutic benefit of apremilast in an extended clinical study

is reasonable.

Increased heat shock protein (HSP) production as a response to

toxic cellular changes is often not sufficient in patients with

inclusion body myositis (IBM). In recent years, the “heat shock

response” amplifier, arimoclomol, was the candidate drug of two

phase 2 clinical trials. In the first clinical trial, a slower decline was

observed in almost all physical function and muscle strength

parameters in the arimoclomol group (50). However, in the

second study, arimoclomol did not show beneficial effects

compared to placebo (144). Despite these controversial results,

the effect of arimoclomol is being tested in patients with IBM in a

phase 3 trial (ClinicalTrials.gov Identifier: NCT04049097).

In a recently published case report, anti-CD19 CAR T cell

therapy was used in a patient with refractory antisynthetase

syndrome (145). After the treatment, transient myalgia appeared,

and an increased creatinine kinase level was detected; however,

shortly after, an improvement was observed in the physical function

parameters (145). In parallel with this, the activity of the disease-

associated interstitial lung disease also greatly declined with a

massive drop in the serum anti-Jo-1 titer (145). (It is important
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to emphasize that since CAR T cell therapy showed efficacy on a

small group of patients with SLE, one SSc patient, and one IIM

patient; a phase 1 clinical trial was recently started with increased

numbers of SLE, SSc, pSS, and IIM patients (ClinicalTrials.gov

Identifier: NCT06056921).

A number of phase 2 or 3 clinical trials with IIM patients are

currently ongoing, for example, with tofacitinib (ClinicalTrials.gov

Identifier: NCT05400889), baricitinib (ClinicalTrials.gov

Identifiers: NCT04972760 and NCT04208464), abatacept

(ClinicalTrials.gov Identifier: NCT03215927), or rituximab (146).

In the latter study, rituximab was not superior to cyclophosphamide

in the treatment of ILD, while both therapies increased FVC by

week 24; however, rituximab caused fewer adverse events (146).
Discussion and concluding remarks

Despite several available therapies, some systemic autoimmune

diseases are still difficult to treat in general (e.g., Sjögren’s

syndrome, systemic sclerosis) or have a significant proportion of

patients, where refractory conditions can be considered (e.g.,

rheumatoid arthritis and SLE). With the help of significant basic,

translational, and clinical research, more and more information

became available on the pathogenesis of systemic autoimmune

diseases. As a consequence, during the last few years, some new

therapies have been approved by the FDA and/or by the EMA.

These include filgotinib for RA, anifrolumab and voclosporin for

SLE, or avacopan for GPA and microscopic polyangiitis (MPA).

Meanwhile, intensive research also contributed to the development

and testing of several promising new candidates, which may cause

smaller or bigger revolutions in the management of these diseases. It

is important to note that study design is crucial to gain relevant

information out of clinical trials; it is especially true for

autoimmune connective tissue diseases (e.g., SLE), where some

off-label therapies (e.g., rituximab) seem to work in selected cases

in the everyday clinical routine but failed to show significant

differences over placebo in clinical trials (56). Another important

issue is safety: several drugs in clinical studies have massive

immunosuppressive effects; in addition to showing beneficial

features in the treatment, some therapies may have harmful side

effects that need to be closely followed.

Despite the fact that there are many differences in the

pathogenesis of systemic autoimmune diseases, many aspects are

similar, leading to common molecular targets, like type I IFN/IFN

receptor, IL-17, GM-CSF receptor, BAFF, CD40/40L, or JAK/STAT

(Table 2). If only a quarter of the reviewed drugs targeting these

molecules appear on the market and can be used in the therapy of

systemic autoimmune diseases, a better new era will be guaranteed.

The appearance of novel therapeutic options will surely cause

several comparison studies and will lead to newer treatment

recommendation guidelines. Well-working and approved novel

therapeutic agents may also help to identify new disease subtypes
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and might potentiate the development of more drugs with similar

modes of action (causing a positive feedback loop in drug

development in this field). However, we should not forget that

optimism cannot substitute carefulness, and the new therapies

should be handled with care.
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