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Inflammatory bowel disease (IBD), characterized primarily by gastrointestinal

inflammation, predominantly manifests as Crohn’s disease (CD) and ulcerative

colitis (UC). It is acknowledged that Inflammation plays a significant role in cancer

development and patients with IBD have an increased risk of various cancers. The

progression from inflammation to carcinogenesis in IBD is a result of the interplay

between immune cells, gut microbiota, and carcinogenic signaling pathways in

epithelial cells. Long-term chronic inflammation can lead to the accumulation of

mutations in epithelial cells and the abnormal activation of carcinogenic signaling

pathways. Furthermore, Immune cells play a pivotal role in both the acute and

chronic phases of IBD, contributing to the transformation from inflammation to

tumorigenesis. And patients with IBD frequently exhibit dysbiosis of the intestinal

microbiome. Disruption of the gut microbiota and subsequent immune

dysregulation are central to the pathogenesis of both IBD and colitis

associated colorectal cancer (CAC). The proactive management of

inflammation combined with regular endoscopic and tumor screenings

represents the most direct and effective strategy to prevent the IBD-

associated cancer.
KEYWORDS

inflammatory bowel disease, inflammation associated cancer, cancer risk, immune cells,
cancer prevention
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1338918/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1338918/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1338918/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1338918/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1338918/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1338918/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1338918/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1338918/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1338918&domain=pdf&date_stamp=2024-01-15
mailto:lims661216@163.com
mailto:2010683015@gzhmu.edu.cn
https://doi.org/10.3389/fimmu.2023.1338918
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1338918
https://www.frontiersin.org/journals/immunology


Zhang et al. 10.3389/fimmu.2023.1338918
1 Introduction

Inflammatory bowel disease (IBD) is a chronic inflammatory

disorder of unclear etiology and unknown mechanisms, primarily

involving inflammation of the gastrointestinal tract. The two most

common forms are Crohn’s disease (CD) and ulcerative colitis

(UC) (1). Patients with IBD have an increased risk of developing

gastrointestinal tumors. In addition, some extraintestinal

malignancies are also associated with IBD (2). Key risk factors for

tumor development in IBD patients include early onset of IBD

(younger than 15 years), colonic-type CD, familial history of

colorectal cancer (CRC), and IBD-associated complications, such

as foreshortened colon, strictures, inflammatory pseudopolyps,

and primary sclerosing cholangitis (3). And CRC caused by IBD

often presents with more low-differentiated tumors, which are

more aggressive, leading to a poorer prognosis (4). Persistent

hyperactive and uncontrolled inflammation can lead to severe

complications for IBD patients, notably carcinogenesis. Unlike

sporadic CRC, which originates from adenoma transformation,

IBD-associated cancers undergo a progression from inflammation

to dysplasia and then to tumor formation. In IBD, clonal evolution

begins long before evident tumor formation and may be accelerated

by the repetitive cycle of epithelial damage and repair, which is

characteristic of the colitis associated colorectal cancer (CAC) (5).

The pathogenesis of IBD-associated cancer is believed to be a result

of a combination of environmental, genetic, microbial, and

immunological factors (6). This review will delve into the

incidence, mechanisms, and preventive and therapeutic measures

of various tumors in the context of IBD. In addition, this review

rationalizes the seemingly contradictory dual role of some kinds of

immune cells in inflammatory cancers.
2 The risk of cancer associated
with IBD

2.1 Colorectal and anal cancer

Chronic UC is considered a risk factor for CRC. The risk of

developing CRC from long-standing Crohn’s disease related colitis

is believed to be similar to that of UC (7). A retrospective study

conducted in China between 2000 and 2012 documented 642 cases,

revealing the identification of four cases of CRC associated with UC.

The overall cancer risk in this study was found to be 0.64%. In UC-

related CRC patients, the median duration of UC was 15.5 years

with 75% of them being diagnosed at an advanced stage (8). A meta-

analysis involving 31,287 ulcerative colitis patients reported 293

cases of CRC. Using a pooled prevalence analysis from various

studies, the overall prevalence was 0.85%. The risk of CRC at 10

years was 0.02%, increasing to 4.81% at 20 years, and further to

13.91% at 30 years (9). Another meta-analysis, which included 25

studies comprising 8,034 IBD-CRC patients and 810,526 non-IBD

CRC patients, found that the overall survival (OS) for IBD-CRC
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patients was significantly poorer than that for non-IBD patients,

with a hazard ratio (HR) of 1.33. While the OS for ulcerative colitis-

associated CRC was better than that for Crohn’s disease-associated

CRC (HR=0.79). To summarize, IBD-associated CRC patients had

a lower rate of R0 resection with a odds ratio (OR) of 0.6 compared

to non-IBD-CRC patients (10).

A retrospective study from New Zealand found that patients

with colon-type CD have a significantly increased risk of developing

CRC. The study collected clinical data from 649 CD patients, of

which 436 had ileocolonic or colon-type CD. Among them, 13 were

diagnosed with CRC, resulting in an overall cancer risk of 2.98%.

The median age at diagnosis of CRC was 58.5 years, and the average

duration of CD before the cancer diagnosis was 20.4 years. Patients

with colon CD have a significantly elevated risk of CRC compared

to the general population (11).

Patients diagnosed with IBD, particularly CD frequently,

often experience perianal complications alongside intestinal

inflammation. A recent meta-analysis revealed a higher incidence

of anal cancer in patients with perianal CD compared to the general

patient population. Notably, perianal involvement accounted for

the majority of cases of anal cancer, representing 46% of the cases

(12). Another meta-analysis highlighted an increased risk of anal

cancer in patients diagnosed with both CD and UC.

The summarized incidence rates (IRs) were 6 (3-11) for CD and

3 (2-4) for UC (13).

In summary, CRC arising from IBD exhibits a higher incidence

and poor prognosis when compared to sporadic CRC, while CRC

originating from colon-type CD appears to have a higher incidence

and worse prognosis than that originating from UC.
2.2 Small bowel cancer

In patients with IBD, particularly CD, there is an increased

incidence of small bowel cancer (SBC), with small bowel

adenocarcinoma being the most common type of SBC (14).

It is typically found in the narrowed or inflamed ileal regions. In

a population-based cohort study from both Sweden and Denmark,

among 168,896 IBD patients (CD: 47,370; UC: 97,515; Unclassified

IBD: 17,011), 237 IBD patients were diagnosed with SBC during the

follow-up period (CD: 24.4 per 100,000 person-years; UC: 5.88 per

100,000 person-years). In contrast, out of a control group of

20,399,257 people, 640 were diagnosed (equating to 2.81 per

100,000 person-years and 3.32 per 100,000 person-years,

respectively). The relative risk of SBC-related mortality is

increased in both CD and UC patients (15).

A comprehensive meta-analysis encompassing 26 studies

revealed a significant association between IBD and a 67%

increased risk of combined gastric, small bowel, and CRCs.

Notably, the predominant increase in risk was observed in SBC,

with gastric cancer being the exception. Furthermore, CD notably

increased the risk for both small and large bowel cancers, while UC

primarily raised the risk for CRC alone (16).
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2.3 Gastric cancer

In the general population, H. pylori infection is a significant risk

factor for gastric cancer. However, several studies have reported a

notably lower prevalence of this infection in IBD patients. This

phenomenon may be attributed to the prolonged use of anti-

inflammatory medications in IBD patients (17, 18).

A Danish study revealed that IBD patients, particularly those

with CD, had an increased risk of CRC, SBC, and both gastric

(incidence ratios (SIRs) =1.2) and extraintestinal (SIRs=1.3)

malignancies (19). And a study from Japan revealed a

significantly increased risk of CRC (SIRs=5.8) and gastric cancer

at (SIRs=1.86) when compared to the general population (20).

However, another study from Japan indicated no discernible

difference in gastric cancer risk between CD patients and the

general population, while the risk for CRC and leukemia was

considerably elevated compared to the general populace (21). But

patients with gastric cancer and CD may experience significantly

reduced survival rates compared to the general population (22). The

link between gastric cancer and IBD remains unclear. Further

research into its incidence and pathogenesis is essential.
2.4 Extragastrointestinal cancer

Inflammation is a critical mediator in the process of

carcinogenesis. In addition to its effects on the gastrointestinal

t ract , inflammatory bowel disease of ten presents in

extragastrointestinal organs. Recent research has identified

associations between specific immune-mediated disorders and an

increased risk of cancers in distant organs. One particular study

documented an increased risk of extraintestinal cancers in patients

with CD with an Incidence Rate Ratio (IRR) of 1.43 and in those

with UC with an IRR of 1.15 such as skin malignancies,

hepatobiliary cancers, hematologic malignancies and lung cancer.

For instance, one study found that individuals with Crohn’s

disease exhibit a significantly increased risk of liver cancer with a

HR of 4.01, while those with ulcerative colitis demonstrate an

enhanced risk with an HR of 2.59 (23–25).

Primary sclerosing cholangitis is the classic hepatobiliary

manifestation of inflammatory bowel disease, often exhibiting a

chronic and progressive course. It is characterized by a gradual

fibroinflammatory deterioration of the intrahepatic and/or

extrahepatic bile ducts. Notably, patients diagnosed with this

condition exhibit a considerably heightened risk of malignancy

compared to the general population (26). An epidemiological

study found an association between UC and intrahepatic

cholangiocarcinoma, with an OR of 1.87 (27). A Mendelian

randomization study showed that in East Asia, individuals

diagnosed with IBD exhibited a 1.28-fold increase (p = 0.0065) in

the incidence of hepatocellular liver cancer (HLC) compared to the

general populace. Furthermore, patients suffering from UC

presented with a 1.12-fold (p < 0.0001) elevated incidence of

hepatocellular carcinoma (HCC) and a 1.31-fold (p = 0.0027)

heightened incidence of cholangiocarcinoma (CCA) (28).
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Besides, Some evidence from extensive multicenter studies and

meta-analyses robustly indicates an increased risk of prostate cancer

in patients with IBD, particularly in those with UC. And CD is also

notably associated with an increased risk of renal cancer. But there

doesn’t seem to be a significant correlation between IBD and the

incidence of breast cancer (29–32).

Due to the specific nature of IBD, patients commonly exhibit

chronic intestinal inflammation along with multiple organ

involvement and increasing their risk of developing various

cancers. Thus, it is of great significance to explore the

pathogenesis of IBD-associated cancers. Presently, research

mainly focuses on CAC, while research regarding the

pathogenesis of other IBD-associated cancers remains scarce.

Future studies exploring the pathogenesis of the other IBD-

associated cancers will not only enhance our understanding of the

mechanisms underlying IBD-related cancers but will also help to

unravel how IBD involves extraintestinal organs and the mystery of

its pathogenic origin.
3 The mechanisms of cancer
associated with IBD

3.1 Immune cells

Inflammation is the immune system’s response to injury, with

immune cells participating actively in both acute and chronic

inflammatory phases of IBD. These cells are instrumental in the

progression from chronic inflammation to tumorigenesis. The

immune system comprises a diverse array of cell types, each with

specialized functions that work collaboratively to defend against

external threats. This section will elucidate the types of immune

cells involved in the development of inflammation and their

potential role in oncogenic transformation within the context of

IBD (33).
3.2 Macrophages

Macrophages, integral components of the innate immune system,

primarily arise from monocytes. When stimulated by cytokines and

microbial agents, they undergo functional specialization and

polarization. These polarized macrophages can be broadly

categorized into two distinct types: M1 and M2, each assigned

specific functions (34). M1 macrophages exhibit pronounced

proinflammatory and antimicrobial activities, whereas M2

macrophages exhibit robust phagocytic capabilities, which facilitate

the clearance of debris and apoptotic cells and possess anti-

inflammatory properties (35). But during tumorigenesis,

macrophages also play dual roles, both anti-cancer and pro-tumor.

Specifically, M1 macrophages enhance tumor immunity, while M2

macrophages, a principal constituent of tumor-associated

macrophages (TAMs), promote tumorigenesis and metastasis (36).

Considering that inflammatory carcinogenesis is driven by chronic
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inflammation, andmacrophages play dual roles in both inflammation

and cancer, questions have arisen regarding the potentially

contradictory functions of these macrophages in the development

of IBD-associated cancers.

Chronic inflammatory stimulation is a primary contributor to

IBD-associated cancers. Some studies suggest that during the early

stages of CAC development, there is an upregulation of Xanthine

oxidoreductase (XOR). This upregulation may drive the

polarization of M1 macrophage, thereby shaping the tumor

microenvironment to favor CAC progression (37). Low doses of

Diphenyleneiodonium (DPI) mitigate intestinal inflammation by

decreasing macrophage recruitment and suppressing M1

macrophage activation (38). In the early CAC development,

Dihydroartemisinin (DHA) curtails macrophage activation and

infiltration in the colonic mucosa via the TLR4 signaling pathway,

consequently reducing pro-inflammatory cytokine expression. In

contrast, during the advanced stages of CAC, DHA impedes tumor

growth by inducing tumor cell cycle arrest and apoptosis. And

thalidomide treatment impedes M1 polarization within the

inflammatory microenvironment, reduces DSS-induced colonic

inflammation, facilitates mucosal healing, and curtails the

progression of CAC (39).

M2 macrophages play a crucial role in mitigating intestinal

inflammation. Some researchers have developed colon-

accumulated gold nanoclusters that target and augment M2

macrophages, consequently attenuating the progression from IBD

to CAC through an Nrf2-dependent pathway (40). In the CAC

microenvironment, exosomal miR-93-5p secreted by G-MDSC

facilitates the differentiation of M-MDSC into M2 macrophages,

thereby promoting the development of CAC (41). IL-6 promotes

the polarization of macrophages towards the tumor-promoting M2

phenotype, which, in turn, produces the chemokine CCL-20.

Subsequently, CCL-20 enhances CAC progression by selectively

recruiting CCR-6-expressing B-cells and gd T-cells (42).

In summary, M1 and M2 macrophages play distinct yet

antagonistic roles during different stages of CAC. In the early

stages of CAC development, which coincide with the early phase

of IBD, persistent overactivation of M1 macrophage and

continuous pro-inflammatory responses lead to tissue damage

and increased risk of carcinogenesis. In the later stages of CAC

development, although M2 macrophage can alleviate inflammation

by promoting tissue repair, they simultaneously foster a tumor

microenvironment conducive to immune cell functional tolerance,

thereby creating favorable conditions for tumor growth (43).

Therefore, there is a dynamic imbalance between M1 and M2

macrophages during the progression of CAC. In the early stages,

M1 macrophages may suppress the function and survival of M2

macrophages through oxidative stress mechanisms. Additionally,

there is competition between them for cytokines and chemokines

(44). However, in the later stages of CAC progression, the

establishment of a tumor immune tolerance microenvironment,

recruitment and activation of Treg cells, and inhibition of M1

macrophages ’ anti-tumor immune responses occur. M2

macrophages can also inhibit the function of M1 macrophages by

affecting the STAT3 and PI3K/AKT pathways (45).
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3.3 T cells

3.3.1 CD4 and CD8 T cells
T cells, a subset of lymphocytes, can be classified based on their

T-cell receptors (TCRs) into either ab or gd subsets. Notably, the

ab T cells constitute the predominant subset of the T cell repertoire

and encompass distinct populations, including CD4 and CD8 T

cells (46). In patients with IBD, activated CD4+ and CD8+ T cells,

present in both the peripheral blood and intestinal mucosa, play a

pivotal role in mediating the inflammatory response (47, 48). It has

been shown that the knockdown of CerS4 in T cells has been

demonstrated to lead to prolonged activation of both T cell

responses and the NF-kB signaling pathway.This, in turn,

contributes to the progression of CAC (49).

CD8 T cells are often considered indispensable in the fight

against tumor growth and are conventionally regarded as the

primary immune effectors for targeting and combating cancer

cells (50), relying on signals from CD4+ T cells (51). Infiltration

and function of CD8 T cells in the tumor microenvironment

determine resistance to tumorigenesis (52). IL-37 has been shown

to increase CAC through CD8 T cell inactivation (53). Dysfunction

in the Atg7 autophagy gene within intestinal epithelial cells (IECs)

results in the significant accumulation of T cells, particularly CD8+

T lymphocytes, in the colonic lamina propria, thereby impeding the

progression of CAC (54). While CD8 T cells typically inhibit tumor

formation, one cannot help but wonder whether there are also

potential drawbacks to the overactivation of CD8 in the specific

context of tumors caused by inflammation in IBD. Interestingly,

studies have indicated that an appendectomy may alleviate

colorectal inflammation in patients with UC by reducing CD8 T

cells infiltration. However, this is concomitantly associated with a

heightened risk of CAC (55).

CD4+ T cells which are closely associated with the development

of IBD-associated inflammation can be further delineated into

regulatory and effector T cells (56). The dysregulated expression

of the tumor suppressor gene p27, may indirectly facilitate the

progression of gastrointestinal epithelial malignancies. This is

postulated to occur through the increased production of

inflammatory mediators from a spontaneously proliferating

subset of CD4+ effector memory T cells (57).

Effector T cells, on the other hand, can be categorized into Th1,

Th2, and Th17 subsets, each secreting pivotal cytokines. Th1 cells

produce cytokines such as TNF-a, IFN-g, and IL-6, which facilitate

the recruitment of macrophages to inflammation sites and are

implicated in the formation of CD granulomas. Th17 cells

produce IL-17, IL-22, and IL-21, and in conjunction with T1

cells, they contribute to the inflammatory cascade in CD,

initiating phenomena like transmural inflammation (58, 59).

Conversely, Th2 cells primarily contribute to UC-associated

inflammatory processes by secreting IL-4, which has implications

in UC’s intestinal mucosal inflammation (60).

In the context of CAC, some studies argue that Th1 and Th2

cells exhibit contrasting roles. While Th1 cells seem to provide

protective effects, Th2 cells are associated with tumor promotion

(61, 62). Some other studies have found that patients with active
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IBD exhibit elevated levels of TNF-a and IFN-g in the inflamed

colon. TNF-a enhances ETS-1 expression and augments Th1-

mediated mucosal inflammation, contributing to the progression

of CAC through the mediation of CIRBP (63).

Regulatory T (Treg) cells are pivotal in sustaining immune

homeostasis and thwarting autoimmunity. In oncology, an

accumulation of Tregs is typically correlated with an unfavorable

prognosis. However, various subpopulations of Tregs exist, each

potentially exerting distinct effects on tumor progression (64).

Foxp3+ Treg cells modulate and inhibit a wide range of both

innate and adaptive immune responses (65). In the CAC model,

the transient depletion of Foxp3+ Treg cells during tumor

progression results in suppressed tumor growth and

dissemination. This phenomenon is associated with an

augmented presence of CD8 T cells producing IFNg and

granzyme B (66). STAT6 can facilitate the progression of CAC by

suppressing the function of Foxp3+ Treg cells (67). However,

during inflammation and early dysplasia, there is a notable

expansion of RORgt+ Treg cells. This expansion in IBD is

associated with the activation of Wnt-b-catenin signaling, leading

to the co-expression of numerous pro-inflammatory cytokines that

foster tumorigenesis (68).

3.3.2 NKT cells
NKT cells have been implicated in the pathogenesis of IBD.

Their maturation relies on the thymus, with a significant proportion

deriving from CD4+CD8+ double-positive (DP) thymocytes (69).

These cells display surface markers characteristic of both T cells

(such as TCR and CD3) and NK cells (including NKG2D and

CD161). Based on TCR variances, they can be classified into NKT

type 1 and NKT type 2 cells.

Observations indicate a diminished presence of NKT type 1

cells in both the intestinal tissue and peripheral blood of IBD

patients. Conversely, a notable accumulation of NKT type 2 cells

has been reported in the intestinal tissues of UC patients (70). NKT

type 2 cells may exacerbate UC through secreting IL-13, a cytokine

known to induce apoptosis in intestinal epithelial cells and

compromise the intestinal mucosal barrier. In the lamina propria

of CD patients, NKT type 1 cells can produce pro-inflammatory

cytokines like TNF-a, IFN-g, and IL-13, further contributing to

mucosal barrier disruption (71, 72). Interestingly, some studies

suggest that NKT type 1 cells may provide protection against

colitis in mouse models by secreting IL-9 (73). In summary, NKT

type 1 cells exhibit both protective and pathogenic tendencies in

IBD, while NKT type 2 cells lean more towards promoting intestinal

inflammation (58).
3.3.3 gdT cells
gdT cells can be primarily classified into two subpopulations:

Vd1 T cells and Vd2 T cells. In healthy tissues, Vd1 T cells

constitute the dominant gdT cell subset. However, in the context

of chronic IBD, there is a significant enrichment of Vd2 T cells.

These cells produce higher levels of cytokines such as IFN-g, TNF-
a, and IL-17 in chronic inflammatory conditions compared to Vd1
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T cells. This observation underscores the potential role of Vd2 T

cells in the pathogenesis of both IBD and CAC (74).
3.4 Neutrophils

During an inflammatory response, neutrophils not only

accumulate but also become activated, leading to the release of

reactive oxygen species (ROS), various cytokines, and other

inflammatory mediators. These components then interact through

specific signaling pathways, orchestrating a cascade of responses

that regulate both anti-inflammatory and pro-inflammatory

mechanisms, maintaining homeostatic balance within the human

body (75).

A growing body of evidence underscores the dual role of

neutrophils. In addition to their well-known pro-inflammatory

functions, certain neutrophil subpopulations demonstrate anti-

inflammatory properties. These neutrophils can self-limit their

chemotaxis through selective cytokine secretion, facilitate the

clearance of pro-inflammatory cells, and significantly contribute

to tissue repair and regeneration processes (76). Specifically, CD177

+ neutrophils enhance bactericidal activity and produce IL-22,

thereby exerting a protective influence in IBD (77). Neutrophils

undergoing apoptosis can modulate their chemotaxis through the

activation of macrophages and the subsequent release of pertinent

cytokines. This process facilitates their own clearance, culminating

in the attenuation and resolution of inflammation (78).

Besides their contribution to the inflammatory processes in

IBD, research indicates that neutrophils release free radicals and

carcinogenic entities, including N-nitroso compounds. This

secretion heightens the susceptibility to cancer among IBD

patients (79, 80).
3.5 Innate lymphoid cells

Innate lymphoid cells (ILCs) play a pivotal role in modulating

intestinal inflammation and the pathogenesis of IBD. Derived from

common lymphoid progenitors (CLPs), ILCs are classified into

three primary groups: Group 1, which includes NK cells and ILC1;

Group 2, represented by ILC2; and Group 3, encompassing

ILC3 (81).

3.5.1 NK cells
In IBD patients, there is an observed elevation in the number of

NK cells within the lamina propria. These cells may contribute to

the pathogenesis of IBD by secreting interferon gamma, thereby

promoting the differentiation of T1 cells from naïve CD4+ T cells.

Furthermore, the excessive presence of interferon gamma has a

detrimental impact on tight junctions in the intestinal mucosal

barrier (82), which is a crucial event that exacerbates chronic

inflammation in IBD and subsequently triggers the development

of CAC. Contrarily, several studies employing animal models of

colitis have demonstrated a protective role of NK cells against the

development of colitis. This protection is mediated via the
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inhibition of NKG2A receptor and direct cell-cell interactions,

resulting in the attenuation of pro-inflammatory activities

exhibited by neutrophils, including the secretion of cytokine and

ROS (83).

3.5.2 ILC1 cells
ILC1 cells possess the capability to secrete interferon gamma

and express the transcription factor, T-bet. Under the influence of

IL-12, ILC1 cells can differentiate from ILC3 cells, specifically the

RORgt(+) ILC3 subtype. Notably, there is a reported upsurge in the

prevalence of ILC1 cells within the inflamed intestine of Crohn’s

disease patients (84). Similarly, a heightened frequency of ILC1 has

been observed in the dysplastic intestinal tissue of ulcerative colitis

patients. An analysis leveraging publicly available single-cell RNA

sequencing (scRNA-seq) data for CD and CRC revealed a

significant enrichment of CD-inducible genes. This enrichment

was notably observed in ILC1, which are known to promote the

development of CRC through their pro-inflammatory functions.

Furthermore, a significant enrichment of these genes was identified

in IBD-associated tumors (85). Collectively, these findings

underscore a potential role for ILC1 in sustained intestinal

inflammation and carcinogenesis (86).

3.5.3 ILC2 cells
In IBD patients, an increased presence of ILC2 cells has been

observed within diseased tissues (86). These cells are proficient in

secreting IL-13 and IL-5, acting as principal contributors of T2

cytokines (82). ILC2 cells appear to play a crucial role in

maintaining the structural integrity of the intestinal mucosal

barrier. Notably, IL-13, produced by these cells, appears to

facilitate the differentiation of intestinal stem cells into goblet and

Tuft cells, which are essential for rectifying intestinal damage (87).

IL-33, which can be released from compromised epithelial cells,

appears to be significant for ILC2 cells in the pathogenesis of IBD

(88). However, there is a discrepancy in findings across various

studies. One study indicated that a deficiency in IL-33 hindered the

differentiation of ILC2 and Th17 cells, thereby attenuating cytokine

levels, such as IL-6 and IL-1. This, in turn, protected mice from

DSS-induced colitis, with the study also pointing out that external

introduction of IL-33 worsened colitis (89). Conversely, another

research found that IL-33 offered protection against DSS-induced

colitis by bolstering the proliferation of ILC2 and Treg cells (90).

Consequently, the precise mechanistic role of ILC2 cells in the

pathogenesis of IBD requires further elucidation. Given the

suggested involvement of IL-33 in the progression from colorectal

adenomas to CRC, it becomes imperative to investigate the role of

ILC2 cells in the development of CAC (91).
3.5.4 ILC3 cells
ILC3 cells predominantly segregate into two subtypes: NKp44

+ILC3s and NKp44-ILC3. Within the intestinal lamina propria, the

majority of the ILC cell population is comprised of NKp44+ILC3s

cells. Notably, research has indicated a reduced frequency of these

cells in the affected intestinal tissues of IBD patients. Functionally,

these cells can produce IL-22, a cytokine that fortifies the integrity
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of the intestinal mucosal barrier and stimulates the production of

antimicrobial agents (92). However, the enhancement of the STAT3

signaling cascade by IL-22 in epithelial cells augments proliferation,

implicating its potential role in CRC progression. In patients with

CD, NKp44+ICL3 cells in affected intestinal tissues seem to produce

decreased amounts of IL-22 while retaining the capability to

produce IFN-g. By secreting GM-CSF, these cells also amplify the

recruitment of pro-inflammatory monocytes (82, 86). While their

involvement in the pathogenesis of IBD and CAC is evident, the

exact roles of these cells require more comprehensive investigations.

The prevailing view suggests that the tumor microenvironment

should lean towards immune suppression. So how to activate the

immune responses within the tumor is crucial for the efficacy of

immunotherapies. However, since inflammation is also a form of

immune response, the hyperactivation of the immune system often

aids the progression of inflammation-associated cancers. Current

researches indicated that in the early stages of inflammation-to-

cancer transformation, the damage to epithelial cells caused by

inflammation is the primary driving force. But after tumour

formation, it tends to shift the microenvironment towards

immune suppression to evade immune cell attack. This also

clarifies some apparent contradictions in the role of immune cells

with dual functions in the mechanisms of inflammation-associated

tumor development (Figure 1). Therefore, future explorations using

multi-omics technologies to investigate the crosstalk between these

immune cells and to identify key cellular subgroups in IBD-related

t umo r s a s p o t e n t i a l t h e r a p e u t i c t a r g e t s a r e o f

paramount importance.
4 Signaling pathway

Unlike the occurrence of sporadic cancers, the development of

tumors in IBD follows the inflammation-dysplasia-cancer sequence.

The persistent stimulation of epithelial cell proliferation in an

inflammatory environment is considered crucial in the etiology of

tumors in individuals with IBD, This underscores the pivotal

relationship between chronic inflammation and tumorigenesis in

these conditions (93).

Cancers developed against the backdrop of IBD exhibit distinct

molecular characteristics depending on their locations. For

instance, patients with Crohn’s disease face an increased risk of

adenocarcinoma and neuroendocrine tumors in small bowel.

Most patients with IBD-SBC have active moderate to severe IBD.

Unlike IBD-associated colorectal adenocarcinoma, IBD-SBC does

not exhibit evidence of microsatellite instability in tumors,

highlighting the heterogeneity in molecular features of cancers

associated with IBD (94). A connection between IBD and

Hepatocellular Carcinoma (HCC) is also recognized; although

the precise mechanisms remain to be elucidated. Current

understanding suggests associations with molecules such as

CXCL2, MMP9, SPP1, and SRC, underscoring the need for

further investigative studies to clarify these relationships (95).

Classical signaling pathways, including NF-kB, PI3K/AKT, and
STAT3, are crucially involved in the manifestation of inflammation

and the onset of CAC. Their significance in understanding IBD-
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related oncological developments. The roles of these pathways in

CAC will be discussed in detail below.
4.1 NF-kB

Nuclear Factor-kappa B (NF-kB) is a pivotal transcription factor

involved in numerous physiological processes, including

inflammation, stress response, cellular differentiation, proliferation,

and apoptosis, and is significantly correlated with tumor initiation and

progression. This underlines its substantial impact on cellular and

molecular biology and its critical role in understanding and addressing

various pathological conditions.

NF-kB plays an instrumental role in augmenting the

production of pro-inflammatory cytokines, adhesion molecules,

and chemotactic factors and in modulating the activity and

development of immune cells. It induces the maturation of

dendritic cells and the formation of memory T cells, influences

macrophages to release abundant pro-inflammatory agents and

polarize to M1 phenotype, and directs neutrophils to anti-

apoptotic states and inflammatory sites. These roles highlight the

significant implications of NF-kB in immunological responses,

inflammatory processes, and potential therapeutic interventions

for inflammatory diseases (96, 97).

Pro-inflammatory agents, such as TNF-a, IL-1, and IL-6, which
are encoded by the NF-kB signaling pathway, play a crucial role in

both the pathogenesis of inflammation-induced tissue damage and

the promotion of tumorigenesis. Specifically, TNF-a can induce

cellular transformation by stimulating the generation of reactive

oxygen species and facilitating DNA damage, These findings
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illuminate the pathway’s significant implications in tumorogenesis

and inflammatory conditions (98). In patients with IBD and CRC,

there is an upregulation of PIK3R3 in intestinal epithelial cells. This

heightened PIK3R3 expression triggers the activation of the NF-kB
pathway, resulting in a subsequent decrease in ZO-1 expression,

Consequently, this molecular cascade increases the susceptibility of

IBD patients to cancer development (99). Mice lacking RNF138

exhibit a marked increase in NF-kB signaling and demonstrate a

heightened susceptibility to the transition from colitis to invasive

malignant tumors (100). The interplay between the gut microbiota

and intestinal epithelial cells play a crucial role in carcinogenesis

associated with IBD. Fusobacterium nucleatum activates the Toll-

like receptor 4 signaling pathway leading to MYD88, resulting in the

activation of NF-kB and increased expression of miR21. This

elevates the risk of CAC onset in patients and is linked to a less

favorabler prognosis (101). Besides its the expression of the NF-kB
pathway in epithelial cells, its role in macrophages is also significant

in CAC. MiR-148a directly targets several established upstream

regulators of NF-kB and STAT3 signaling pathways, including

GP130, IKKa, IKKb, IL1R1, and TNFR2. This modulates the

activation of NF-kB and STAT3 in macrophages and colonic

tissues, thereby influencing the onset of colitis and colitis-

associated tumorigenesis (102).
4.2 PI3K/AKT

PI3K, a phosphoinositide kinase, is involved in various cellular

signaling pathways. Serine/threonine-protein kinase B (AKT) is a

member of the AGC kinase family and is regulated by growth
FIGURE 1

In the early stages of tumorigenesis, there is an increase in pro-inflammatory cells, including M1 macrophages, CD8 T cells, Th1, Th17, neutrophils,
Vd2 T cells, and RORgt+ Treg cells. Concurrently, there is a decrease in suppressive cells, such as M2 macrophages, Th2 and Foxp3+ Treg. This
imbalance results in excessive pro-inflammatory cytokine secretion, heightened inflammation, damage to epithelial cells, and the subsequent
mutation of normal epithelial cells, ultimately leading to dysplasia and inflammation-associated carcinogenesis. Conversely, after the establishment
of the tumor microenvironment, immunosuppressive cells, namely M2 macrophages, Foxp3+ Treg, and Th2, become dominant, facilitating tumor
immune evasion and progression to advanced stages
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factors. The product of PI3K activation interacts with the pleckstrin

homology domain of AKT, leading to its translocation to the plasma

membrane and subsequent activation through phosphorylation by

upstream kinases such as PDK1. AKT plays a role in numerous

cellular functions, including survival, proliferation, growth,

glucose metabolism, apoptosis, angiogenesis, transcription, and

migration (103).

The activation of the PI3K/AKT signaling cascade augments the

synthesis and secretion of the pro-inflammatory cytokine TNF-a,
inducing a cytokine disequilibrium and manifesting as

inflammatory responses via a series of molecular interactions

(104). Studies indicate that the PI3K/AKT signaling pathway

synergizes with the Wnt pathway to amplify b-catenin signaling

during inflammatory responses. In the progression from UC to

CAC, the PI3K-induced and AKT-mediated b-catenin signaling is

pivotal for the activation of progenitor cells. These elements can be

identified as biomarkers for aberrant colon developmental

transitions. Notably, not only in the colon epithelial cells, but also

the activation of the Wnt/b-Catenin pathway in T-effector cells,

particularly T17 and Treg cells, contributes to CAC development as

well (105). Reducing PI3K/AKT signaling pathways can lead to a

decrease in colonic immune cell infiltration, significantly inhibiting

the occurrence of colitis and intestinal tumors (106).
4.3 STAT3

STAT3 serves as a pivotal transcription factor involved in

inflammation and cellular growth, with a crucial role in

modulating cell apoptosis. In patients with CAC, there is a

significant increase in the activation levels of STAT3. With the

activation of STAT3, anti-apoptotic genes including BCL2 and

BCL-XL are activated. This means tumor invasion, metastasis,

and poor prognosis in CAC (107).

Key inflammatory mediators, encoded by NF-kB target genes

and prominently exemplified by IL-6 and IL-22, which have a

central position in orchestrating diverse immune responses

throughout IBD pathogenesis (108). And Located in the

cytoplasm, STAT3 responds to inflammatory cytokines,

particularly IL-6 and IL-22 (109). A wealth of studies underscores

the indispensability of IL-6 and STAT3 for intestinal epithelial cell

viability and CAC progression. Upon IL-22 and IL-6 stimulation in

epithelial cells, the activation of the STAT3 pathway not only

enhances cell viability but also suppresses suppressing apoptosis,

underscoring its significance in the transition from IBD to cancer

(110, 111). Their inhibition curtails tumor emergence in CAC (112,

113). The Notch pathway is considered a downstream effector of the

IL-6/STAT3 axis. It is pivotal in regulating the self-renewal and

differentiation of normal cells across various tissues, also guides the

self-renewal and tumorigenic potentials of human cancer stem

cells (114).

The signaling pathways leading to CAC predominantly target

the NF-kB, PI3K/AKT, and STAT3 pathways, which are critically

associated with both inflammation and cancer. Therefore,

therapeutic agents targeting these pathways merit clinical
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validation for their efficacy in CAC treatment. Given the

challenges in acquiring clinical samples of CAC, current

mechanistic studies are largely confined to cellular and animal

models. In the future, collecting samples from CAC patients at

various stages, from inflammation to dysplasia and then to cancer,

and conducting single-cell sequencing will be crucial to elucidate

the molecular mechanisms that distinguish development of CAC

from that of sporadic CRC. This approach could potentially

uncover novel signaling pathways and cellular roles in the

inflammation-to-cancer transition.
5 Microbiota

The human and animal gut microbiome encompasses a diverse

array of microorganisms, including bacteria, archaea, fungi, viruses,

and multicellular parasites (115). The intestinal bacteria is

predominantly composed of four bacterial phyla: Firmicutes,

Bacteroidetes, Proteobacteria, and Actinobacteria (116). The

human gut microbiome is increasingly recognized for its role in

IBD, It is primarily characterized by an increase in pathogenic

bacteria coupled with a decrease in beneficial bacterial populations

(Figure 2) (117, 118).

A study from Canada used 16S sequencing to compare the gut

microbiota among individuals with CD (n=20), UC (n=19), and

healthy controls (n=23). It was observed that microbial diversity in

patients with IBD was significantly reduced compared to that in the

healthy control group. And the microbial abundance of

Actinobacillus, Eggerthella, Clostridium III, Calcitonella faecalis,

and Streptococcus was significantly elevated, whereas the

abundance of Gemmiger, Lachnospira, and Sporobacterium was

significant decrease in all disease groups (119). A systematic

review which included 48 studies in the analysis revealed elevated

levels of Actinomyces, Veillonella, and Escherichia coli in patients

and a diminished abundance of beneficial microbiota such as

Eubacterium rectale and Akkermansia (120).

Perturbations in the gut microbiota, along with concomitant

immune dysregulation, play a central role in the pathogenesis of

both IBD and CAC (121). In the initial stages of colitis-associated

cancers, the gut microbiota employs lipopolysaccharide (LPS) to

modulate monocyte-like macrophage (MLM) accumulation via a

chemokine-dependent pathway. This process subsequently fosters a

precancerous inflammatory environment by the pro- inflammatory

immune cells activation that facilitates tumorigenesis (122).

Notably, Akkermansia can alleviate colitis and curtail both IBD

and CAC, potentially through the diminution of macrophages and

CD8+ cytotoxic T lymphocyte (CTL) infiltration in the colon (123).

A study recruited 144 age and gender-matched controls along with

41 patients with ulcerative colitis for gut microbiota testing from the

Faroe Islands which have the highest incidence of IBD globally. In

both groups, the Akkermansia genus was absent, shedding

additional light on the potential susceptibility to inflammatory

diseases in this high-risk population (124).

Short-chain fatty acids (SCFAs), especially butyrates, negatively

regulate the inflammatory signaling pathway mediated by NLRP3
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to inhibit the activation of macrophages and the secretion of pro-

inflammatory mediators such as IL-18 and IL-1b, reducing

intestinal inflammation levels and limiting CAC development.

The abundance of beneficial bacteria, including B. fragilis,

Clostridium butyricum, Faecalibacterium, Christensenellaceae,

Methanobrevibacter, and Oscillospira which promotes the

secretion of SCFAs significantly exhibited a significant decrease in

the intestine of IBD patients during the CAC development process

(125–130).

Considering these findings, the future development of therapies

targeting opportunistic pathogenic or pro-inflammatory intestinal

bacteria, or increasing the number of beneficial bacteria and

metabolites like butyrates, represents a promising strategy for

managing IBD. Such approaches could effectively alleviate colitis

symptoms and prevent CAC in IBD patients.
6 Prevention of cancer associated
with IBD

In contrast to sporadic CRC, tumors associated with IBD

typically evolve from inflammation to dysplasia, eventually leading

to carcinoma. This progression is driven by continuous inflammatory

stimuli (131). Consequently, the primary treatment strategies involve

inflammation control and routine colonoscopic monitoring (132,

133). Current pharmacological interventions for IBD-associated

cancer include traditional medications such as 5-aminosalicylic acid

(5-ASA) and thiopurines, biopharmaceuticals, small molecule

inhibitors, and some novel therapeutic approaches (Figure 3).
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6.1 Conventional treatment

6.1.1 5-ASA
5-ASA compounds, such as mesalazine, are frequently

employed in managing inflammation in patients with IBD.

Beyond its anti-inflammatory efficacy, 5-ASA has its potential in

oncogenesis inhibition, particularly as it seems to decrease

colorectal cancer incidence among long-term users (134).

Microsatellite instability (MSI) is an early occurrence in the

development of CAC and can be detected in chronically inflamed

mucosa. Inhibiting MSI within the UC environment may aid in

preventing CAC (135). The observed effect can be attributed to 5-

ASA reducing IL-6-induced MSI, which contributes to its antitumor

activity (136). This finding aligns with previous research on 5-ASA

both in vitro and in vivo (137, 138). A meta-analysis that compiled 9

studies showed a protective association in UC patients between the

use of 5-aminosalicylic acid and CRC (OR=0.51) (139). Intrestingly,

patients with UC experience more substantial benefits from 5-ASA

compared to those with CD (140). 5-ASA does not provide a

protective effect against small bowel adenocarcinoma in Crohn’s

disease (141). 5-ASA may exhibit antitumor properties against

colorectal tumors in IBD patients, but their protective efficacy

against the progression to CRC in individuals with low-grade

dysplasia appears to be constrained (57). Consistent with this

study, another study indicates that the use of 5-ASA in IBD

patients in the two years prior to a diagnosis of CAC does not

have a preventive effect on CAC which suggests that the use of 5-

ASA may not offer significant protection once dysplastic growth has

already occurred in the later stages of the disease (142). In

conclusion, current evidence suggests that the use of mesalazine
FIGURE 2

Patients with IBD experience a decrease in gut microbiota diversity accompanied by a reduction in probiotics and an increase in pathogenic bacteria,
which contributes to the onset and progression of colitis-associated cancer.
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as a chemopreventive treatment to reduce the risk of CAC in

patients with UC is feasible and generally associated with

relatively minor side effects. Furthermore, due to its mechanism

of action, which involves inhibiting the synthesis of inflammatory

mediators, reducing leukocyte activity, and enhancing the mucosal

barrier, the effectiveness of this intervention appears to be enhanced

when applied in the earlier stages of inflammation (143, 144).
6.1.2 Thiopurines
Rapid induction and ensuring the maintenance of remission are

fundamental to IBD treatment. In cases where remission is difficult

to maintain with monotherapy of 5-ASA, it may be necessary to

use immunomodulators (IMs) such as thiopurines for long-

term remission (145). Moreover, thiopurines also have a

chemopreventive effect on CAC. It works by inhibiting the

activity of leukocytes (particularly T-cells) in the immune system,

thereby slowing down the inflammatory response. Their primary

mechanism of action involves inhibiting DNA synthesis and cell

division, which effectively suppresses the proliferation and activity

of immune cells (146). Local administration of thiopurine can

alleviate colitis and enhance autophagy, reducing dysplasia and

CAC induced by AOM/DSS in wild-type mice (147). And the

present meta-analysis indicates that thiopurines have a

chemopreventive effect on colorectal tumors in IBD patients,

displaying a tendency towards diminishing the progression of

these tumors (148). In patients with IBD, particularly those with

an extended disease duration (>8 years), the use of thiopurine is

correlated with a decreased risk of colorectal tumors, advanced

neoplasia, and CRC (149). Medications such as IMs are pivotal for

controlling inflammation in IBD, but they also potentially increase

the risk of cancer (150). A study revealed a slightly increased risk of

nonmelanoma skin cancers in IBD patients undergoing thiopurine

treatment (151). In a long-term follow-up study of 19,486 IBD
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patients in France, those treated with thiopurines had a reduced risk

(HR=0.28) of CRC in IBD patients compared to those who had

never been treated with thiopurines. However, the risk of

lymphoproliferative malignancies increased (HR=52.5) (152). In

summary, thiopurines play a crucial role in the maintenance of

remission and reduction of colorectal cancer risk in the treatment of

IBD. However, they may also elevate the risk of certain specific

cancer types, necessitating careful consideration and vigilant

monitoring in clinical practice.
6.2 Biopharmaceuticals

The emergence of biologics, targeting mechanisms like

leukocyte trafficking inhibition (anti-integrin antibodies) or

inflammatory cytokine blockade (anti-tumor necrosis factor, anti-

interleukin 12/23), has revolutionized our capacity to attain clinical

remission and endoscopic healing, consequently reducing the onset

of IBD-associated complications (153). A study utilizing a multi-

center database in the United States (Explorys), encompassing

225,090 patients with Crohn’s Disease and 188,420 patients with

Ulcerative Colitis, indicated that those treated with anti-TNF

medications had a lower risk of developing CAC. The ORs for

CD and UC were 0.69 and 0.78, respectively (154).

The activation of NF-kB pathway is crucial for the progression

of CAC. The specific factors that directly induce NF-kB activation

during the progression of CAC remain unclear. One potential

mediator in the epithelial cells of patients with IBD is TNF-a,
which is significantly elevated in the inflamed intestinal

environment (155). And TNFR2 signaling in intestinal epithelial

cells may directly contribute to the development of persistent CAC.

This suggests that maintenance therapy with anti-TNF-a
monoclonal antibodies can not only effectively control
FIGURE 3

Traditional drugs for controlling IBD inflammation are believed to also prevent IBD from developing into CAC. However, the use of these drugs also
carries the potential risk of causing other malignant tumors. Consequently, reasonable use of these drugs, combined with regular colonoscopy
tumor screenings, is the most effective prevention measure.
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inflammation but also potentially halt the progression of CAC in

long-term IBD (156). Under normal conditions, TNF-a plays a

crucial role in immune system development and host defense

against infectious agents. However, its role under pathological

conditions is markedly different. In addition to causing

dysregulation of the immune response, TNF-a can also

contribute to inflammation or carcinogenesis, thus presenting a

dual aspect to its function and its relation to NF-kB (157). The

activation of the classical IKK-b/NF-kB pathway leads to increased

transcription of genes including inflammatory mediators (COX-2,

iNOS, TNF, and IL-6), proteases, and apoptosis inhibitors (BCL-

XL, cIAPs, GADD45b, BFL1, and SOD2) (158–160). Studies have

confirmed the involvement of these molecules in colitis-associated

carcinogenesis. Infliximab’s mechanism in cancer prevention may

be through the reduction of inflammatory mediators or the

induction of apoptosis (161). Chronically elevated levels of TNF-

a in tissues can also promote cancer growth, invasion, and

metastasis (162).

In addition to cytokines, various growth and angiogenic factors,

as well as matrix-degrading proteases like matrix metalloproteinases

(MMP)-2, MMP-3, and MMP-9, play significant roles in

tumorigenesis, invasion, and metastasis (163). Matrix

metalloproteinases, which can be released by pro-inflammatory

cytokines such as TNF-a and IL-1b, are crucial in tissue

remodeling and destruction. Notably, MMP-9 is the most highly

expressed protease in colonic inflammatory tissues (164). In

experiments, involving mice treated with infliximab, there was a

significant reduction in the expression and activity of MMP-9 and

MMP-11, as well as b-catenin. This reduction led to decreased

tumor occurrence in the AOM/DSS animal model (165).

Considering the therapeutic efficacy and drug resistance, a

combination therapy approach is proposed. Combining

Infliximab with immunosuppressants (such as thiopurine or

methotrexate) can improve the pharmacokinetics of Infliximab.

Although combination therapy represents a compromise treatment

strategy, which can improve the pharmacokinetics, it still carries

some risk of cancer development. A meta-analysis that included

four observational studies, involving a total of 261,689 patients,

showcased an increased risk of lymphoma in IBD patients

administered with anti-TNFa agents, either as monotherapy or in

conjunction with thiopurines (166). Additionally, the combination

of Infliximab and azathioprine increases the risk of infections and

malignant tumors. New biologics, such as Vedolizumab and

Adalimumab, also elevate the risk of skin cancer when used

together (167).

But some studies present alternative perspectives, several

studies suggest that anti-TNFa therapy does not correlate with an

increased malignancy risk in IBD patients. It is important to note

that these studies do not provide information on malignancy risk

beyond a treatment duration of one year, leaving potential long-

term risks undetermined (168). For all cases of malignancies 'during

treatment, it is essential to adopt a multidisciplinary approach

involving gastroenterologists, dermatologists or oncology

specialists, for direct and open communication about balancing

IBD treatment with malignancy management (169).
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6.3 Small molecule drugs

The JAK/STAT pathway has been demonstrated to be involved in

the pathogenesis of IBD. Blocking this pathway can inhibit various

pro-inflammatory cytokines, reducing intestinal inflammation.

Tofacitinib, an orally administered small molecule drug, primarily

inhibits JAK1 and JAK3. Clinical studies have confirmed that

tofacitinib can induce and maintain remission in UC (170).

Studies have shown that polymorphonuclear cells (PMN)-

derived reactive oxygen species (ROS) from oxidative bursts play

a crucial role in inducing MSI in colorectal cells. Furthermore,

PMN-derived cytokines, including IL-8, IL-6, and TNF-a,
contribute to mucosal frameshift mutations (171). while JAK

inhibitors can reduce mutations in intestinal epithelial cells by

decreasing the release of cytokines from these cells (172).

Therefore, both the removal of ROS and inhibition of cytokine

signaling pathways by JAK inhibitors may prevent cancer

progression in UC. PMNs not only produce ROS but also secrete

a range of cytokines (e.g., IL-8, IL-6, and TNF-a), chemokines, and

growth factors (173). These cytokines are elevated in both active UC

and Crohn’s disease. In patients with CAC, IL-6 can alter DNA

methylation through DNMT1-induced hypermethylation of the

SOCS3 promoter, leading to subsequent STAT3 hyperactivation

(174, 175). The use of JAK inhibitors may inhibit these mutations

and thereby reduce the risk of CAC.

The JAK inhibitor tofacitinib eliminates Microsatellite

instability (MSI) induced by IL-6 or neutrophils, potentially

delaying or preventing the progression of cancer in cases of colitis

(171). Tofacitinib, while capable of inhibiting the development of

CAC, also presents certain risks. In a clinical study, 598 patients

received tofacitinib induction therapy for 8 weeks, while 541

patients were administered a placebo.The results indicates

tofacitinib increased the overall rate of infections, the incidence of

herpes zoster, and the occurrence of non-melanoma skin cancer in

IBD patients (176). In another meta-analysis that included 82

studies and 66,159 patients who were treated with JAK inhibitors,

researchers found that the risk of herpes zoster infection increased

in patients with immune-mediated diseases treated with JAK

inhibitors. However, there was no increase in the risk of

malignant tumors and other complications (177). There is a need

for large-scale, long-term cohort studies to adequately assess the

impact of these medications on the risk of CAC.
6.4 Probiotics

The role of probiotics in preventing the inflammation-to-cancer

transition in IBD is a significant area of study. Probiotics have been

shown to influence the growth of beneficial gut bacteria that can

modulate immune responses against cancerous growth. Thus, the

application of probiotics opens new possibilities for therapeutic

strategies in cancer prevention (178).

As the most common probiotic, Lactobacillus plays a pivotal

role in maintaining the ecological balance of the intestinal flora and

exerts a beneficial anti-inflammatory effect in IBD and CAC. Acting
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symbiotically with the host, it helps maintain the immune

microenvironment of the intestinal mucosa, limiting the over-

activation of inflammatory signals and aiding patients in

managing the inflammatory response in the gut. Anti-tumor

effects were observed with Lactobacillus bulgaricus ; its

administration in an AOM/DSS-induced CAC mouse model

suppressed mean tumor size and total tumor volume, significantly

reducing pro-inflammatory cytokines, including IL-6, TNF-a, IL-
1b, IL-17, and IL-23 (179). Similarly, a specific polysaccharide-

peptidoglycan complex (PSPG) from Lactobacillus casei Shirota was

shown to limit tumor growth by inhibiting the IL-6/STAT3

signaling pathway (180). The antiproliferative effect of

Lactobacillus helveticus NS8 on colon cells was more pronounced

in the early stages of CAC, indicating its significant role in

preventing tumorigenesis (181). Moreover, the fecal microbiota

transplantation of B. fragilis has been proven effective in

improving protection of intestinal epithelial damage caused by

chronic inflammation and in preventing the development of

colon tumors (125).

Due to the unique characteristics of different subspecies,

the anti-inflammatory principles and functional components

vary among them. Therefore, combining different strains of

Lactobacillus to develop more effective probiotics, or using

Lactobacillus in conjunction with other probiotics, could be a

potent adjunctive therapeutic strategy for patients with IBD and

related diseases. Recent research in this area has been extensive,

yielding promising results. For instance, a probiotic combination of

Lactobacillus acidophilus , Bifidobacterium bifidum , and

Lactobacillus rhamnosus demonstrated potential chemopreventive

effects by inhibiting tumor growth in AOM/DSS-induced CAC

mice (182).

In addition to probiotics, the study of synbiotics, which

combine probiotics and prebiotics or include the addition of

vitamins and trace elements, has also garnered significant interest.

Synbiotics enhance the physiological bacterial activity of probiotics

and selectively and rapidly increase their population, making the

function of probiotics more significant and long-lasting (183). A

synbiotic comprising Lactobacillus 505 and Cudrania tricuspidata

leaf extract has been reported to inhibit CAC development and

reduce the incidence of colon tumors while significantly down-

regulating pro-inflammatory cytokines, up-regulating tight

junctions (TJs), and increasing pro-apoptotic factors such as p53,

p21, and Bax in damaged colonic mucosa, thus demonstrating its

therapeutic value in CAC (184).

Although probiotics has shown numerous anti-inflammatory

effects in mice, its clinical efficacy is still limited by challenges such

as low viability and bioavailability during gastrointestinal transit.

Research on Ligilactobacillus salivarius has led to the development

of a new probiotic encapsulation method using layer-by-layer (LbL)

approach, significantly enhancing its potential to alleviate colitis

(185). Advanced gas shear technology and ion diffusion have been

used to prepare colon-targeted core-shell hydrogel microspheres,

extending the local residence time of the drug and potentially

enhancing the bioavailability of probiotics (186). Therefore,

developing effective methods for probiotics packaging is

equally important.
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6.5 Other approachs

Beyond traditional medications, in recent years, exosomes

derived from plants have been discovered to possess the

capability to deliver drugs specifically to the intestinal tract,

offering substantial potential in treating intestinal diseases. These

exosomes boast numerous advantages, including excellent

biocompatibility, non-toxicity, low immunogenicity, targeted

delivery, an extended duration of drug action, high production

capacity, and the ability to cross the blood-brain barrier (187).

Studies indicate that for conditions like IBD and CAC, a variety of

chemical and nucleic acid drugs can be efficiently transported to the

site of intestinal inflammation via plant-sourced exosomes, helping

to reduce inflammation or inhibit gene expression (188, 189). Such

as nanoparticles derived from edible ginger, GDNPs 2, which

reduce acute colitis, enhance intestinal repair, and prevent

chronic colitis and CAC (190). In experiments, the nonsteroidal

antiinflammatory drugs (NSAIDs) aspirin can also exert its

protective effect against CAC through the immunomodulatory

actions on macrophages and CD8+ T cells (191). Apart from

drug-related treatments, regular and repeated colonoscopy with

biopsies is considered the most effective method, with annual

monitoring recommended for high-risk patients. Specifically,

these high-risk individuals include those with extensive colitis

with severe active inflammation, first-degree relatives diagnosed

with CRC before the age of 50, those with concomitant Primary

Sclerosing Cholangitis, and patients found with dysplasia within the

past 5 years (192).

To summarize, optimized inflammation management, coupled

with regular endoscopic monitoring and neoplastic screening are

effective in preventing IBD-associated malignancies. But academic

discussions still lack a definitive consensus regarding the potential

cancer risks associated with the prolonged usage of these drugs. It is

encouraging to note that, in addition to traditional therapies, there

are now emerging novel drugs and treatment approaches that have

shown promising efficacy in the prevention of CAC. And

delineating and balancing their role in preventing IBD-associated

malignancies is a critical matter that demands immediate attention.

There is a urgent call for broader prospective and experimental

research in this field.
7 Conclusion

Chronic inflammation resulting from IBD increases the annual

incidence of various tumors in patients, encompassing both

gastrointestinal and extragastrointestinal malignancies. The

transformation from inflammation induced by IBD to

carcinogenesis results from interplay among immune cells, gut

microecology, and signaling pathways. Notably, various immune

cells, exhibit dual roles during the various stages of inflammation

and tumor development. In the initial inflammatory stage, these

cells such as M1 macrophages, Th1 cells, and CD8 cells, exacerbate

inflammation, which is counteracted by the anti-inflammatory

actions of M2 macrophages,Th2 and Foxp3+ Treg cells. However,
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once the tumor microenvironment is established, these pro-

inflammatory cells that initially promoted inflammation now act

to suppress tumor cell viability by enhancing tumor immunity.

Conversely, the anti-inflammatory cells then facilitate tumor

immune evasion and progression. In addition, during the

interactions among immune cells, changes in the gut microbiota

of IBD patients, along with the activation of certain cancer signaling

pathways in intestinal epithelial cells, also have been pivotal in the

development of IBD-associated cancers. The protective effect of 5-

ASA against CAC appears well-proved, though its early use during

the initial stages of inflammation is crucial. The impact of other

drugs, including IMs and anti-TNFa, as well as other novel drugs,
needs better assessment of their impact on decreasing CAC risk and

side-effects in long-term use through large prospective cohort

studies. Furthermore, future research should focus on a deeper

understanding of the key pathogenic pathways and molecular

mechanisms of inflammatory-cancer transformation in IBD

patients to facilitate the development of new treatment methods

and targets.
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135. Gené M, Cuatrecasas M, Amat I, Veiga JA, Fernández Aceñero MJ, Fusté
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