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Prediction of six macrophage
phenotypes and their IL-10
content based on single-cell
morphology using
artificial intelligence
Mischa Selig1, Logan Poehlman1, Nils C. Lang1,2, Marita Völker1,
Bernd Rolauffs1† and Melanie L. Hart1*†

1G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of
Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of
Freiburg, Freiburg im Breisgau, Germany, 2Department of Biosystems Science and Engineering, ETH
Zürich, Basel, Switzerland
Introduction: The last decade has led to rapid developments and increased

usage of computational tools at the single-cell level. However, our knowledge

remains limited in how extracellular cues alter quantitative macrophage

morphology and how such morphological changes can be used to predict

macrophage phenotype as well as cytokine content at the single-cell level.

Methods: Using an artificial intelligence (AI) based approach, this study

determined whether (i) accurate macrophage classification and (ii) prediction

of intracellular IL-10 at the single-cell level was possible, using only

morphological features as predictors for AI. Using a quantitative panel of shape

descriptors, our study assessed image-based original and synthetic single-cell

data in two different datasets in which CD14+ monocyte-derived macrophages

generated from human peripheral blood monocytes were initially primed with

GM-CSF or M-CSF followed by polarization with specific stimuli in the presence/

absence of continuous GM-CSF or M-CSF. Specifically, M0, M1 (GM-CSF-M1,

TNFa/IFNg-M1, GM-CSF/TNFa/IFNg-M1) and M2 (M-CSF-M2, IL-4-M2a, M-CSF/

IL-4-M2a, IL-10-M2c, M-CSF/IL-10-M2c) macrophages were examined.

Results: Phenotypes were confirmed by ELISA and immunostaining of CDmarkers.

Variations of polarization techniques significantly changed multiple macrophage

morphological features, demonstrating that macrophage morphology is a highly

sensitive, dynamic marker of phenotype. Using original and synthetic single-cell

data, cell morphology alone yielded an accuracy of 93% for the classification of 6

different human macrophage phenotypes (with continuous GM-CSF or M-CSF). A

similarly high phenotype classification accuracy of 95% was reached with data

generatedwith different stimuli (discontinuous GM-CSF orM-CSF) andmeasured at

a different time point. These comparably high accuracies clearly validated the here

chosen AI-based approach. Quantitative morphology also allowed prediction of

intracellular IL-10 with 95% accuracy using only original data.

Discussion: Thus, image-based machine learning using morphology-based

features not only (i) classified M0, M1 and M2 macrophages but also (ii)

classified M2a and M2c subtypes and (iii) predicted intracellular IL-10 at the
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single-cell level among six phenotypes. This simple approach can be used as

a general strategy not only for macrophage phenotyping but also for

prediction of IL-10 content of any IL-10 producing cell, which can help

improve our understanding of cytokine biology at the single-cell level.
KEYWORDS

artificial intelligence, single-cell morphology, cell shape, macrophage phenotype,
IL-10, inflammation, macrophage, fingerprint
1 Introduction

Macrophages are heterogeneous populations of cells and, in

response to microenvironmental cues, exhibit a broad spectrum of

polarized phenotypes. Simplified, two extremes of polarized

macrophages include the classically activated pro-inflammatory

M1 macrophages and the alternatively activated anti-

inflammatory M2 macrophages. However, it is now appreciated

that macrophage polarization is more complex and this

oversimplified approach does not adequately describe the broad

phenotype spectrum of macrophages. Depending on the

microenvironmental stimuli and activation state, macrophages

can be further divided into subsets such as M0, M1, M2a, M2b,

M2c, and M2d that reflect functional differences ranging from

homeostatic, anti-/pro-inflammatory to anti-fibrotic/fibrotic and

tissue repair phenotypes (1–5).

Macrophage phenotypic characterization is typically assessed by

standard techniques such as flow cytometry, ELISA, RT-PCR, and

western blot. Another method of investigating macrophage

properties is via quantification of cell morphology (6–11). Several

studies have shown a correlation between cell shape and

macrophage activation (7–11). Once activated, cells in general,

including macrophages, adapt not only phenotypically but also

morphologically to their microenvironment due to changes in

cytoskeletal dynamics, which in turn can affect the shape and the

function of a given cell (6, 8, 12, 13). Thus, morphological profiling

offers a high-throughput, low cost, and high-dimensional method of

biological readouts that can potentially be used to understand

phenotypic responses of macrophages to microenvironmental cues.

As of recent, a few studies have used artificial intelligence (AI)-

based approaches to classify the macrophage activation state and

phenotype at the single-cell level (9, 11, 14–16). Nonetheless, the

majority of AI-based models were assembled using the RAW264.7

murine immortalized macrophage cell line (11, 15, 16), which

considerably differs from human cells in morphology, gene and

protein regulation and expression, immunometabolism and

immunological responses to TLR4 signaling (17–21). Because AI

models are data-driven, it is imperative in human medicine to
02
perform predictive investigations on human cells to not only assess

the accuracy of predictions in human cell-based experiments but

more importantly, for possible application in clinically relevant

situations. Whereas image-based AI using morphological features

for differentiating between M1 vs. M2 macrophages has been

investigated in one study using human peripheral blood

monocytes (9), it was not applied to M2 macrophage subsets.

While often broadly referenced as having an anti-inflammatory

functions, there are prominent functional distinctions between M2a

and M2c subtypes (3, 22). Using morphological assessments to

accurately classify not only M1 vs. M2 but also M2a vs. M2c

activations states could be useful in many settings.

IL-10 is a pleiotropic cytokine that has a fundamental role in

modulating inflammation and maintaining cell and tissue

homeostasis (23). Flow cytometry is typically used to measure the

intracellular expression of IL-10 and studies have indeed used flow

cytometry to investigate the intracellular expression of IL-10 in

monocytes and polarized macrophages as well as other cell types

(24–28). However, automated high-throughput image analysis of

single-cell morphology has not been used for intracellular cytokine

detection or for prediction of intracellular IL-10 at the single-cell

level via AI, e.g. by using morphology as a predictor.

By combining cell imaging with a computational image analysis

pipeline, here we tailor an automated high-throughput approach (13,

29–33) for single-cell morphological profiling of various human

macrophage populations. Specifically, we focus on imaging cell

morphology and intracellular IL-10 to assess the responsiveness and

effector potential of these cells under different polarizing conditions.

Using a novel high throughput approach that combines the use of both

image-based original and synthetic single-cell data, we determined that

cell shape can distinguish M0, M1, M2a, and M2c macrophage

subtypes and accurately classify a cell’s immunogenic profile by

classifying intracellular IL-10 content. Our findings demonstrate a

new image-based macrophage feature classification method on the

single-cell level for the accurate classification of phenotype and IL-10

production, which could be widely used to predict both macrophage

phenotypes and, more generally, the functional response of any IL-10-

producing cell type in response to microenvironmental cues.
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2 Methods

2.1 Isolation of monocytes using CD14

Peripheral blood mononuclear cells (PBMCs) were collected

from three to five (indicated in each figure legend) healthy human

blood donors by venipuncture in EDTA-coated vacutainer tubes

(Sarstedt). Due to the fact that blood was only obtained from the

authors, according to our local ethics committee (University of

Freiburg Ethics Committee), under the relevant national and local

regulations, ethical approval and informed consent was not needed.

PBMCs were separated from other blood components by Ficoll-

Plaque (GE Healthcare Life Sciences) density gradient centrifugation

and resuspended in MACs buffer containing anti-CD14 microbeads

(Miltenyi Biotec). The isolation was performed via positive selection

using the MS MACs Column (Miltenyi Biotec) and the MiniMACs

magnet (Miltenyi Biotec) according to the manufacturer’s protocol.

The CD14+ monocytes were counted and seeded at a density of

50,000 cells/ml in RPMI-1640 cell medium (Sigma Aldrich)

containing 10% FBS (Bio Chrome) and PenStrep (Life

Technologies Corporation). The CD14+ monocytes were treated

with maturation factors GM-CSF (10 ng/mL, Peprotech) or M-CSF

(25 ng/mL, Peprotech) to induce M1 or M2 macrophages, while M0

macrophages were left untreated. The cell suspensions were placed in

T25 flasks (Greiner Bio-One) for two days.
2.2 CD14 staining for FACS purity and
vitality assessment

After MACs isolation, a portion of the monocyte suspension

was used for FACS assessment. Monocytes were pelleted and

resuspended in the cold (4°C) FACS buffer, PBS (Sigma Aldrich)

containing 0.5% BSA (Sigma Aldrich), and 0.1% Sodium Azide

(Sigma Aldrich). To assess the purity of CD14-positive cells, 100 ml
of the cell suspension was stained with 5 ml APC-Cy7 mouse anti-

human CD14 (BD Pharmingen). For cell vitality, 1 ml of Ghost Dye
Blue 516 (Tonbo) was added to the cell suspension. The cell

suspension was then incubated in the dark at 4°C for 30 minutes.

After incubation, the cell suspension was centrifuged at 400 g for 5

minutes and washed with 500 ml of FACs buffer. This was repeated
three times before being resuspended in 200mL of FACS Buffer,

transferred to FACs tubes, and kept on ice. FACS samples were

analyzed using the BD LSR Fortessa (BD Biosciences) flow

cytometer. APC-Cy7 was excited at 650 nm and emission

measured at 785 nm, Blue 516 was excited at 488 nm with

emission measured at 516 nm. Compensation was unnecessary

because the chosen staining APC-Cy7 and Ghost dye blue had

minimal spectra overlap. Data was processed using FlowJo 9.9.6

(FlowJo, LLC, Ashland, OR).
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2.3 Monocyte activation for macrophage
phenotype differentiation

Established cytokines were used to generate distinct phenotypic

macrophage states to mimic different in vivo situations (3, 5, 34–

37). CD14+ monocytes were maintained in media to serve as a non-

treatment M0 control group, whereas the other cells were first

matured in either GM-CSF or M-CSF and then polarized with

specific polarizing agents in the presence of continuous GM-CSF or

M-CSF (Dataset 1) or absence of continuous GM-CSF or M-CSF

(Dataset 2). Figure 1 gives an overview of the differences in stimuli

and time points between Datasets 1 and 2. Thus, for Dataset 1, the

following groups were assessed at day 4: M0, GM-CSF-M1, GM-

CSF/TNFa/IFNg-M1, M-CSF-M2, M-CSF/IL-4-M2a, and M-CSF/

IL-10-M2c. For Dataset 2, which was used for validation of the here

used AI approach, the following groups were assessed at day 7: M0,

GM-CSF-M1, TNFa/IFNg-M1, M-CSF-M2, IL-4-M2a, and IL-

10-M2c.

In detail, the CD14+ monocytes were seeded at 1x106 cells/mL

cell density in a 96-well plate (Greiner Bio One). M0 cells were

maintained in media containing RPMI-1640 cell medium (Sigma

Aldrich) containing 10% FBS (Bio Chrome) and PenStrep (Life

Technologies Corporation), which served as a control in both

datasets. After maturation with either GM-CSF (10 ng/ml,

Peprotech) or M-CSF (25 ng/ml, Peprotech), cells were polarized

into M1 or M2 phenotypes using the same concentrations of GM-

CSF or M-CSF (referred to GM-CSF-M1 or M-CSF-M2, in both

datasets). Media was then supplemented with standard cytokines to

prompt activation into divergent macrophage phenotypes.

Act iva ted M1 macrophages were generated through

supplementing RPMI media with 10 ng/mL TNF-a (R&D) and

10 ng/mL IFN-g (Peprotech) in the presence of continuous GM-

CSF (GM-CSF/TNFa/IFNg-M1, Dataset 1) or discontinuous GM-

CSF (TNFa/IFNg-M1, Dataset 2) to obtain pro-inflammatory M1

macrophage populations. Distinct M2 subtypes were generated

through the addition of IL-4 (10 ng/mL, Peprotech) for M2a

macrophages or IL-10 (10 ng/ml, Peprotech) for M2c cells in the

presence of continuous M-CSF (M-CSF/IL-4-M2a; M-CSF/IL-10-

M2c; Dataset 1) or discontinuous M-CSF (IL-4-M2a; IL-10-M2c;

Dataset 2).
2.4 ELISA for IL-6, IL-10 and TNF-a
protein quantification

ELISA for targets human IL-6, IL-10, and TNF-a (R&D

Systems Europe Ltd) was performed according to the

manufacturer’s protocol using 100 µl medium supernatant.

Optical density was measured at 450 nm with a NANOstar

Spectrometer (Thermo Fisher Scientific).
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2.5 Cell staining and microscopy

Cells were first fixed using 4% paraformaldehyde (PFA). This

was followed by a wash and permeabilization step using 1% Triton

X-100 (Carl Roth) for 30 min at room temperature. Possible

unspecific antibody binding sites were blocked using 2% BSA

(Sigma Aldrich). CD163 and CD80 staining was used to validate

the macrophage polarized phenotypes. For CD163, CD80, and IL-

10 staining, the cells were incubated with specific primary

antibodies (rabbit anti-human CD163 mAb, Abcam ab182422;

mouse anti-human CD80 mAb, Invitrogen, 16080985; and rabbit

anti-human IL-10 mAb, Abcam ab215975) overnight at 4°C. The

following day, the wells were washed and a staining solution, which

included secondary antibodies (goat anti-mouse IgG (H+L) cross-

adsorbed secondary antibody AlexaFluor 568 (A-11004, 1:1000,

Thermo Fisher) for CD80; goat-anti rabbit IgG (H+L) cross-

adsorbed secondary antibody AlexaFluor 488 (A-11008, 1:500,

Thermo Fisher) for CD163, phalloidin (to visualize F-actin; A-

30105, 1:400), and DAPI (0.1 µg/ml, D8417-5mg, Sigma-Aldrich)

was applied in DPBS for two hours. Then, fresh DPBS was supplied,

and microscopical images, captured from random fields of view
Frontiers in Immunology 04
within each well, with a 10x magnification were taken with the Axio

Observer Z1 microscope (Zeiss Oberkochen, Germany).
2.6 High-throughput quantitative
measurements of single-cell macrophage
morphology, CD163, CD80 and IL-10
protein expression

Single macrophage analysis was performed using a Fiji-based

(38) single-cell shape analysis algorithm that we previously used to

phenotype differentiated mesenchymal stromal cells (MSCs) (6, 30–

33) and healthy vs. inflamed and degenerating chondrocytes (13,

29–33). The fluorescent staining with DAPI and phalloidin

visualized the cell’s nucleus and body (F-actin). After staining, the

image analysis algorithm segmented and separated individual cells

from the image background by assigning pixels in the image to

either the cell or the image background based on their intensity

values and calculated watershed distance maps based on the

distance between cell nuclei. The segmentation created binary

image maps, with the cells represented in white and the image
FIGURE 1

Macrophage phenotype differentiation protocols for dataset 1 and dataset 2. CD14+ monocytes were isolated using MACs and maintained in media
to serve as a non-treatment M0 control group, whereas the other cells were polarized in the presence of specific polarizing agents in the presence
of either continuous GM-CSF or M-CSF (Dataset 1) or, with the exception of M0, absence of GM-CSF or M-CSF (Dataset 2; validation of RF machine
learning model).
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background in black. Upon successful segmentation and cell

separation, the algorithm proceeded to identify and detect single

cells within these binary image maps and, from that, calculate

individual shape descriptor values.

Single-cell morphology was assessed by calculating the

following panel of shape descriptors: area of the single cells

(mm2), length (major axis [mm]), width (minor axis [mm]),

circularity (4*p(area/perimeter2), aspect ratio (ratio of major to

the minor axis, used an indicator of cell elongation), roundness

(4*area/(p*major axis length2) and solidity (are/convex area(cell)).

To clarify, length is different from aspect ratio, which is the ratio

between the length and width of a cell. It increases if the length

continuously increases while the width decreases or remains

stagnant. The descriptors circularity and roundness are relatively

insensitive to irregular boundaries, unlike solidity, which is

quantified as the ratio of the cell area to the area of a convex hull

of the cell. A solidity value of 1 indicates a solid cell, and less than 1

indicates a cell with an irregular boundary or containing holes.

Single-cell protein expression was measured as the cellular raw

integrated intensity of background-subtracted images, which is the

pixel sum of the values of the detected fluorescent intensity. To

allow for different exposure times during image acquisition, the

intensity values for single-cell CD163, CD80, and IL-10 were

normalized to fluorescent bead intensity standard curves (linear

calibration curves) that were calculated from the emission of

fluorescent beads at specific exposure times.
2.7 Synthetic dataset generation with the
‘SuperTiles’ algorithm

We recently introduced the ‘SuperTiles’ algorithm to generate

synthetic data from image tile data (39). Here, we used the

algorithm to generate a synthetic data set on morphology and

protein-based cell features with the goal of improving the

classification accuracy of macrophage phenotypes through

increased data set size. The algorithm was implemented in

Python 3.9 and iteratively selected random data subsets (entire

data rows) from the same macrophage class. Each of the parameters

of the selected subsets was averaged (aggregated) into a single

synthetic data point and the newly calculated synthetic data

points together built a new synthetic data row. In more simple

terms, the algorithm randomly selected single cells and their

features and averaged these selected single cells into one

aggregated SuperTile. This means the number of generated

synthetic cells increased with the randomly selected number of

cells and their sample time per iteration of the SuperTiles algorithm

to enhance the synthetic dataset. The algorithm used two key

parameters: the amount of sampled data rows (t) of each

individual cell and its attributed features (i.e, all metrics (image-

based features) for all cells), whereas the sample time (s) described

how often a given number of random data rows was sampled. In

this study, ‘t’ was set from 2 to 40 (for morphology and protein

features) and from 2 to 100 (for morphology features alone). A

value for ‘s’ >1 indicated dataset bootstrapping with data

replacement. During bootstrapping, selected data points were
Frontiers in Immunology 05
aggregated. Here, ‘s’ was set from 5 to 40. Balanced synthetic

datasets were generated using the formula nSuperTiles=nclass_size

(minority class) ∗ s/t. Therefore, the size of the synthetic dataset

generated was dependent on the original dataset (i.e., original

total cell number). For example, in the present study, there were

less M0 cells vs. M1 control cells. Hence, the algorithm created more

synthetic M0 cell data to balance the final numbers of all classes in

the final dataset used for training the random forest algorithm. The

newly calculated synthetic dataset was then split into training and

test sets (70/30) for predictive modeling, as described below.
2.8 Random forest classification of
macrophage phenotype

We used a random forest (RF) algorithm (40) as described in

our prior study (41) to classify macrophage phenotype (class) using

cell morphology alone vs. cell morphology and protein intensity

levels as predictor variables. RF model training and testing were

implemented in Python 3.9 via the “pycaret” (42) package. The data

was normalized for algorithm training, and all parameters were

considered equally weighted model features. Each RF model was

trained with 10-fold cross-validation, for which the dataset was split

into training and test subsets (70/30).

We used the following RF modelling performance indicators: (i)

accuracy, which indicates the number of correct predictions/total

number of predictions; (ii) AUC (Area Under the Curve), which

measures the area underneath the ROC (Receiver Operating

Characteristics) curve of TPR (true positive rate) against FPR

(false positive rate (sensitivity)) with an AUC=1 indicating the

correct classification of all samples; (iii) recall, which equals TPR;

(iv) precision=TP (True Positive)/(TP + FP (False Positive)); (v) F1

score, which is the harmonic mean of precision and recall (TPR)

with F1=(precision ∗ recall)/(precision + recall); (vi) the kappa

score for quantifying model prediction with a lower score indicating

better model performance (score = (probability of agreement – the

probability of random agreement)/(1 – the probability of random

agreement); (vii) the Matthews Correlation Coefficient (MCC),

which quantifies the quality of binary or multiclass classification

by calculating the correlation between true and predicted values,

and which we used in a prior study (41).
2.9 Statistical analysis

The data was analyzed using SigmaPlot v.14.0 (Systat, Chicago)

and Microsoft Excel (v. 2020). First, the normality of the data was

tested (Kolmogorov-Smirnov-test). For comparing two groups,

normally distributed data was subjected to the Student’s t-test and

non-normal distributed data was analyzed using the Mann-

Whitney-Rank-Sum-test. An ANOVA on Ranks test was

performed to compare more than two statistical groups with non-

normal distributed data. If the ANOVA revealed significant

differences between the groups, a post-hoc test (Dunn’s Method)

was used for multiple comparisons between two groups because the

Dunn’s test allowed comparing groups with unequal sample size.
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Correlation analyses were performed using the “R” (43) packages

“Hmisc” (44) and “corrplot” (45). The Spearman Rank Order

correlation method was used if one or more variables were

categorical. The Pearson product moment correlation test was

used when variables were numerical. For correlation analyses, the

M0 class was coded as 0, the M1 control as 1, the M1 Stim as 2, the

M2 control as 3, the M2a class as 4, and the M2c type as 5. To

visualize data covariance between macrophage morphology and

protein expression, a clustered image map (CIM) was generated.

This map visualizes scaled and centered data with a color code

whose key indicates the standard deviations away from the mean of

each feature, whereas dendrograms indicate Euclidian distance-

based hierarchical clustering. We performed multivariate

projection-based modeling (PLS) on the dataset, specifically PLS-

DA, which is an adaptation developed to classify categorical data.

The CIM and PLS-DA analyses were performed with the

“mixOmics” (46) package in “R”. Statistical differences were

considered significant for p<0.05.
3 Results

An overview of the methods, which allowed classification of the

macrophage phenotypes and their IL-10-producing potential, based

on single-cell morphology using machine learning, is provided

in Figure 2.
Frontiers in Immunology 06
3.1 Isolation of pure CD14+ positive cells
from human PBMCs

As a first step, human CD14+ blood-derived monocytes isolated

from PBMCs were assessed by flow cytometry for purity and cell

vitality. Staining with ghost dye confirmed a vital cell population.

Monocyte population purity was over 95% (Figure 3), consistent

with data in the literature using similar MACs techniques (9, 47).
3.2 Protein expression profiles following
polarization of monocyte-
derived macrophages

First, we performed ELISA to quantify the extracellular protein

production of IL-10, IL-6, and TNF-a to validate the phenotypic

profile of the cells after polarization. After 4 days of maturation and

polarization, the culture supernatant was used for quantification of

IL-6, TNF-a and IL-10 (Figures 4A–C) and the cells were

fluorescently stained to analyze their CD163, CD80, and IL-10

intracellular protein expression (Figures 4D–F). The profiles of the

different types of macrophages confirmed that cells were polarized

into the correspondingmacrophage states. As expected, GM-CSF-M1

and GM-CSF/TNFa/IFNg-M1 polarized cells resulted in a M1‐like

pro‐inflammatory phenotype with increased secretion of TNF-a and

IL‐6 and increased CD80 expression. Stimulation with IL‐10 resulted
FIGURE 2

Illustration of the workflow for prediction of macrophage phenotypes and intracellular IL-10 based on single-cell morphology alone or in
combination with protein intensities using artificial intelligence. This approach is applicable for profiling monocyte/macrophage phenotypes under
other conditions and, in the case of IL-10, may be applied to other IL-10 producing cell types.
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in an M2c‐like phenotype with increased anti-inflammatory CD163

expression and the highest IL-10 secretion compared to all other

groups. This data is consistent with the secretion (47–49) and flow

cytometry CD marker expression profiles (47, 50–53) from other

studies using similar polarization protocols.

Since we aimed to determine if cell morphology could predict

macrophage phenotypes and intracellular IL-10, we additionally

quantified intracellular IL-10 intensities. M0 and GM-CSF/TNFa/
IFNg-M1 cells expressed the highest intracellular IL-10 protein

intensities, followed by M-CSF/IL-10-M2c macrophages.

Conversely, M-CSF/IL-4-M2a macrophages exhibited the lowest

IL-10 intensity (Figure 4F). When comparing secreted IL-10

(Figure 4C) vs. intracellular IL-10 expression (Figure 4F),

differences were noted, suggesting that the cells with the highest

intracellular IL-10 protein expression were not the cells that

secreted the most IL-10.
3.3 Morphological differences between
polarized macrophages

To determine if there were quantitative significant differences

in shape descriptors (area, length, width, circularity, aspect ratio,
Frontiers in Immunology 07
roundness, and solidity), single-cell macrophage analysis

was performed using a Fiji-based analysis algorithm (13, 29).

When comparing different groups of macrophages, the violin

box plots (Figure 5) revealed that the GM-CSF/TNFa/IFNg-M1

(largest) and GM-CSF-M1 macrophages were larger in cell

area than the other groups. The M0 control group had the

smallest cell area, followed by M-CSF-M2, M-CSF/IL-4-M2a,

and M-CSF/IL-10-M2c. The M1 (both GM-CSF/TNFa/IFNg-
M1 and GM-CSF-M1) macrophages were similar in shape,

except for their cell width and aspect ratio. The M2

macrophages had a similar area and length, with M-CSF/IL-4-

M2a’s being wider, more circular, elongated, rounder, and solid

than M-CSF-M2 and M-CSF/IL-10-M2c cells. The M-CSF/IL-10-

M2c cells were similar in shape to the M-CSF-M2 macrophages.

These cell morphometric results are in line with previous studies

showing that M1 macrophages are larger and more round

and M2 macrophages are more elongated (7, 10). Overall, these

results demonstrated that macrophage phenotypes differed in

morphology, suggesting that a quantitative analysis of single

macrophage morphology via high-throughput and automated

image analysis algorithms may be a useful method for

identifying shape differences between the different phenotype

classes of macrophages.
BA

FIGURE 3

FACS results show highly pure and vital CD14+ cells isolated from human PBMCs. (A) Dot plot shows the dispersion of measurements of CD14
staining intensity, and the histogram showing of CD14 staining intensity, indicating a high purity of CD14 positive cells. (B) Dot plot shows the
dispersion of measurements of Ghost dye staining intensity, and the histogram shows Ghost dye intensity, indicating highly viable cells. Data
representative of n=3 different donors.
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3.4 A clustered image map showing
individual response patterns of
macrophage subtypes in cell morphology
descriptors and protein intensities

To explore co-variation among macrophage morphology and

protein intensities related to the induced macrophage classes, we

created CIMs on the single-cell level showing the individual cell’s

response patterns in cell morphology descriptors and CD163

intensity (Figure 6A) and in cell morphology and CD80 and IL-

10 intensities (Figure 6B) and another CIM with feature averages

calculated for each macrophage class (Figure 6C). The single-cell

CIM indicated the size of the generated data set was very large and

was not helpful for identifying specific patterns or clusters relative

to the induced macrophage classes. This was important because it

revealed the complexity of the data set (Figures 6A, B), which we, in

turn, used as motivation for the subsequent use of AI for

classification. The horizontal dendrogram of the CIM depicting

average values for each macrophage class (Figure 6C) revealed a

clear hierarchical clustering for the feature averages: the two

induced M1 classes (GM-CSF-M1 and GM-CSF/TNFa/IFNg-M1)

clustered together, as did the M0 and the M2a (M-CSF/IL-4-M2a)

classes and also the M-CSF-M2 and M-CSF/IL-10-M2c classes.

Moreover, the two induced M1 classes were clustered into one class
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and the M0, M2, M2a, and M2c classes were clustered into a second

class. These hierarchical clustering results indicate how the feature

values of macrophage classes contributed to overall similarities and

dissimilarities between classes. Thus, the average value CIM

demonstrated feature response patterns for the macrophage

classes and a clear hierarchical clustering for the feature averages

but not on the single-cell level, which motivated us to use AI for

subsequent classification.
3.5 RF classification of macrophage classes
solely based on cell morphology vs. cell
morphology combined with
protein intensities

To discriminate macrophage classes based on image-based cell

features, we employed RF machine learning classification. Here, we

utilized RF modeling with cell morphology features alone or

combined with protein intensities as predictors to classify

macrophage class (phenotypes) as shown in Figure 7A, for which

the original data set was split into training and test sets. To test the

resulting RF model accuracy as a function of data set size, we also

used synthetic data that we generated from the original data

(Dataset 1) with our ‘SuperTiles’ algorithm (39).
B C

D E F

A

FIGURE 4

Cytokine secretion and protein expression profiles of the different monocyte-derived macrophages. (A) TNF‐a, (B) IL-6, and (C) IL-10 secretion, and
(D) CD163, (E) CD80, and (F) IL-10 intensity in the presence of continuous GM-CSF or M-CSF. (A–C) n=5 per group from 5 different donors on day
4 after maturation and polarization. Data is representative of the mean protein secretion +/- SEM. (D–F) expression profiles (protein intensity) of
surface receptor proteins CD80, CD163, and intracellular IL-10 were quantified using fluorescent microscopy image-based analysis; data is based on
n = 353 (M0), 3078 (GM-CSF-M1 control), 1891 (GM-CSF/TNFa/IFNg-M1), 1321 (M-CSF-M2 Control), 1077 (M-CSF/IL-4-M2a), and 1584 (M-CSF/IL-
10-M2c) individual cells analyzed of n = 3 experiments per group, using 3 different donors. Boxplots: the boxes define the 25th and 75th percentiles,
the central line indicates the median, and error bars define the 10th and 90th percentiles. *p<0.05. Red-green tables indicate significant differences
calculated with ANOVA on Ranks tests and post-hoc pairwise comparisons (Dunn’s Method).
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Using only macrophage morphological features of the original

data (Dataset 1), RF classified the M1 (GM-CSF-M1) vs. M2 (M-

CSF-M2) control classes with 92% accuracy (Table 1). Using only

macrophage morphological features from the original data (Dataset

1) for classifying the M-CSF/IL-4-M2a vs. M-CSF/IL-10-M2c

phenotype led to 63% accuracy; adding the CD80 and CD163

intensities increased the accuracy to 72% (Table 1). However, at

this point of the study, when using only the original data (Dataset

1), we achieved for the classification of all six macrophage

phenotypes low accuracies of 30% with only morphology features

as predictors and 37% with morphology and protein intensity

features as predictors (Figures 7B, C). A summary of all RF

model classification accuracies and performance indicators is

given in Table 1.

As a next step, we created synthetic data using our SuperTiles

algorithm to increase the training dataset size. This allowed testing

whether the increase in dataset size would increase classification

accuracy. This step was important because an increase of dataset-

size dependent accuracy would indicate in turn that the original

dataset used for generating the synthetic dataset was phenotype

class-specific but simply not large enough. Alternatively, if an

increase in dataset size would not result in increased accuracy,
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this would indicate that the original dataset used for generating the

synthetic dataset was not phenotype class-specific, and, in brief, not

good enough. Interestingly, the increase in training data size

resulted in a significant increase in RF classification accuracy:

with only morphology features as predictors, we achieved with

synthetic data a classification accuracy of 93% for classifying all 6

macrophage phenotypes (Figure 7B), which was a pronounced

improvement of the 30% classification accuracy that was achieved

by using the original data (Dataset 1) on morphology features.

Thus, the original dataset (Dataset 1) used for generating the

synthetic dataset was phenotype class-specific but simply not

large enough, and increasing dataset size via generating synthetic

data improved the classification accuracy of six phenotype classes

by 63% to 93%. Importantly, this was achieved by training with

synthetic data for classifying original data. The increase in

classification accuracy of synthetic data with increased synthetic

dataset size was significant when we compared the accuracies at 2

vs. 40 tiles in synthetic data (p<0.05). Overall, this is the first study

to show that six macrophage phenotypes including M2

macrophages, particularly M-CSF-M2, M-CSF/IL-4-M2a, and M-

CSF/IL-10-M2c subtypes, can accurately be distinguished from one

another by their morphology.
B

C D E

F G

A

FIGURE 5

Single-cell macrophage morphology differs significantly between macrophage phenotypes. Cell morphometric measurements of (A) area, (B) length,
(C) width, (D) circularity, (E) aspect ratio, (F) roundness, and (G) solidity of n=3 different donors with n = 353 (M0), 3078 (GM-CSF-M1), 1891 (GM-
CSF/TNFa/IFNg-M1), 1321 (M-CSF-M2), 1077 (M-CSF/IL-4-M2a), and 1583 (M-CSF/IL-10-M2c) individual cells measured. Violin plots visualize data
distribution. Outliers are visualized as black dots above the 95th or below the 5th percentiles. *p<0.05. Boxplots within the violin plots: the boxes
define the 25th and 75th percentiles, the central line indicates the median, and error bars define the 10th and 90th percentiles. *p<0.05. Red-green
tables indicate significant differences calculated with ANOVA on Ranks tests and post-hoc pairwise comparisons (Dunn’s Method).
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3.6 Validation of the RF approach to
classify macrophage classes based on cell
morphology alone

To validate the RF classification approach, we used a second,

independent dataset (Dataset 2), which we generated using different
Frontiers in Immunology 10
stimulation conditions that were assessed on different days as

opposed to the protocol of the first dataset (Figure 1).

Macrophages were polarized in this second dataset in the absence

of GM-CSF or M-CSF. Figure 8 shows the resulting cell morphology

of the different macrophage subtypes compared to the above-

reported first dataset. Specifically, this change in stimulation
B

C

A

FIGURE 6

Clustered image maps (CIMs) for visualizing data co-variation of morphology and protein intensities as a function of macrophage class. (A, B) Two
CIMs were calculated on the single-cell level, which differed in the depicted protein features because our setup allowed determining 4 microscope
channels in parallel. The top CIM depicts cell morphological features calculated with phalloidin and DAPI channels as well as channels for CD80 and
CD163, whereas the lower CIM depicts IL-10 and CD80 in addition to cell morphological features (phalloidin, DAPI). The two CIMs on the individual
cell level revealed the complexity of the data set and demonstrated that the cell features depicted no easily recognizable response pattern relative to
the induced macrophage classes. This was in contrast to the average value CIM (C), which demonstrated distinct macrophage feature clustering
according to the induced phenotype: M0, GM-CSF-M1, GM-CSF/TNFa/IFNg-M1, M-CSF-M2, M-CSF/IL-4-M2a, and M-CSF/IL-10-M2c. A CIM
visualizes scaled and centered data with a color code indicates the standard deviations away from the mean of each feature, whereas the
dendrograms indicate clustering. The level of the parameters of a given category and their intensity of the red color denotes the number of standard
deviations above the overall mean across all samples, and the intensity of the blue color denotes the number of standard deviations below the
overall mean.
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protocol led to significant differences in the morphological features,

including area, length, width, circularity, and solidity, whereas the

cell aspect ratio and roundness remained constant, except for M-

CSF-M2 cells. Notably, the morphology of M2a macrophages was

mostly unchanged, except for their circularity. These data confirm

that slight changes in the maturation or polarization conditions

significantly changed macrophage morphological features, which

indicated, in turn, that macrophage morphology is highly sensitive

to both phenotype and stimulation protocol.
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Next, this second original dataset was used to validate the

chosen AI approach by generating synthetic data from this

second original dataset. Subsequent RF modeling led to an

accuracy of 95% for classifying all 6 macrophage phenotypes

(Figure 7C, Table 1), which clearly demonstrated that the here

chosen approach to classify macrophage phenotype, namely, using

a large synthetic data set generated from experimentally measured

cell morphological features as predictors, was able to reliably deliver

high accuracy.
B C

A

FIGURE 7

Quantitative single macrophage phenotyping. (A) Quantitative image analysis of macrophages was performed to quantify single macrophage
morphology descriptors, as well as CD80 and IL-10 protein intensities. These features were used to train a RF prediction model for classifying the
macrophage subtype. The original RF result was generated using 9304 cells in total consisting of n = 353 (M0), 3078 (GM-CSF-M1), 1891 (GM-CSF/
TNFa/IFNg-M1), 1321 (M-CSF-M2), 1077 (M-CSF/IL-4-M2a), and 1584 (M-CSF/IL-10-M2c) individual cells analyzed of n = 3 experiments per group,
using 3 different donors. (B) Synthetic data was created to increase the original training set and test the resulting accuracy. For the first dataset
(Dataset 1), this approach led to a final accuracy of 93%. This synthetic dataset consisted of 936221 SuperTiles in total with n = 155950 (M0), 155985
(GM-CSF-M1), 156020 (GM-CSF/TNFa/IFNg-M1), 156055 (M-CSF-M2), 156090 (M-CSF/IL-4-M2a), and 156121 (M-CSF/IL-10-M2c) SuperTiles.
(C) The approach to classify phenotype class with macrophage morphology features alone and in conjunction with synthetic data was validated with
a second dataset (Dataset 2) that was generated using different stimuli and time points. This dataset yielded a 95% final accuracy, which indicated
validation. The second synthetic dataset consisted of 1174248 SuperTiles in total with n = 195373 (M0), 195507 (GM-CSF-M1), 195641 (GM-CSF/
TNFa/IFNg-M1), 195775 (M-CSF-M2), 195909 (M-CSF/IL-4-M2a), and 196043 (M-CSF/IL-10-M2c) SuperTiles. *p<0.05, indicating a signifcant increase
in classification accuracy with increased synthetic dataset size (i.e., 2 vs. 40 tiles).
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3.7 Assessment of the immunogenic
potential of macrophages by predicting
their intracellular IL-10 expression from
morphology alone or from combined
morphology and CD80 protein intensity

IL-10 is a strong anti-inflammatory cytokine [26]. Here,

intracellular IL-10 was expressed in all macrophage phenotypes to

a greater or lesser extent, with high expression in M0, GM-CSF/

TNFa/IFNg-M1 and M-CSF/IL-10-M2c macrophages (Figures 4F,

6). Because we achieved high macrophage phenotype classification

accuracies based on macrophage morphological features (above),

we further investigated the predictability of the IL-10 protein

intensity (intracellular content) and, thus, the immunogenic

potential of individual macrophages as a function of their

phenotype class in a RF regression model; importantly, this has

not been demonstrated before. In a first RF regression model, using

single-cell shape descriptors combined with CD80 intensity data,

we predicted the IL-10 intensity of all 6 macrophage phenotypes

with a high R2 value of 94% (Figure 9A, Table 2). Further RF

regression analyses of the individual stimulated classes revealed R2

values of 95% (M-CSF/IL-10-M2c), 93% (M-CSF-M2), 92% (M-

CSF/IL-4-M2a), 85% (M0), 63% (GM-CSF/TNFa/IFNg-M1), and

62% (GM-CSF-M1) classes, respectively.

After obtaining these excellent prediction results for IL-10

protein intensity using single-cell morphology and CD80 features,

we investigated whether morphology alone could predict the

macrophage IL-10 content. Importantly, the RF regression model

predicted the IL-10 protein content of individual macrophages as a
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function of their six phenotype classes with a R2 value of 95%

(Figure 9B). This was interesting because (i) here no synthetic data

for increasing data set size was needed, and (ii) the IL-10 content

prediction based only on morphology descriptors performed better

than when CD80 co-staining data was included. The SHAP analysis,

which informs the model user on the relative contribution of each

feature to the overall model performance (i.e., indicates feature

importance), demonstrated that cell area, length, and aspect ratio

had the biggest impact. A further regression analysis of only the

stimulated macrophage classes revealed R2 values of 95% for all 6

macrophage phenotypes, 98% (M-CSF/IL-10-M2c, Figure 9C), 95%

(M-CSF/IL-4-M2a), 88% (M-CSF-M2), 86% (M0), 78% for GM-

CSF/TNFa/IFNg-M1, and 79% GM-CSF-M1 respectively.

Therefore, these data show for the first time that by using only

macrophage morphological features as predictors, successful

prediction of single-cell intracellular IL-10 protein content with

high R2 values is possible.
4 Discussion

Our study assessed the automatic classification of six distinct

macrophage phenotypes, using image-based single-cell macrophage

morphological features in two different datasets and both original

and synthetic data. The datasets contained different phenotype

morphologies induced by different stimuli. The first dataset was

measured at day 4 and contained continuous presence of GM-CSF

or M-CSF in combination with specific M1, M2a, and M2c

polarizing stimuli. Validation was performed with data obtained
TABLE 1 Summary of RF classification model performance to classify macrophage phenotypes using original and synthetic datasets.

Original data (Dataset 1)

RF Classification Predictors Accuracy AUC Recall Precision F1 Kappa MCC

All macrophage phenotypes

Morphology + CD80 + IL-
10 intensities

0.3725 0.7143 0.3725 0.4042 0.3816 0.2241 0.2258

GM-CSF-M1 vs. M-CSF-M2 0.9219 0.9676 0.8839 0.9514 0.9164 0.8433 0.8453

M-CSF-M2 vs. M-CSF/IL-4-M2a vs. M-
CSF/IL-10-M2c

0.4611 0.6546 0.4611 0.4608 0.4599 0.1876 0.1888

GM-CSF-M1 vs. GM-CSF/TNFa/IFNg-M1 0.6211 0.6619 0.5608 0.5016 0.5296 0.214 0.2149

M-CSF/IL-4-M2a vs. M-CSF/IL-10-M2c 0.7184 0.794 0.7269 0.7846 0.7546 0.4254 0.4271

All macrophage phenotypes

Morphology alone

0.2951 0.6468 0.2951 0.3306 0.3078 0.1294 0.1305

M-CSF-M2 vs. M2a vs. M-CSF/IL-10-M2c 0.4067 0.5887 0.4067 0.4152 0.4092 0.1077 0.1082

GM-CSF-M1 vs. GM-CSF/TNFa/IFNg-M1 0.5667 0.5673 0.4815 0.4368 0.4581 0.0986 0.0989

M-CSF/IL-4-M2a vs. M-CSF/IL-10-M2c 0.6333 0.6861 0.6282 0.7205 0.6712 0.2611 0.2642

Synthetic data (from original Dataset 1)

All macrophage phenotypes
(validation dataset)

Morphology alone 0.9313 0.9451 0.9313 0.9276 0.9288 0.6772 0.6774

Synthetic data for validation (from original Dataset 2)

All macrophage phenotypes
(original dataset)

Morphology alone 0.9585 0.9541 0.9785 0.9565 0.9572 0.7103 0.7104
fronti
Predictors are indicated in bold. This data highlights that quantitative single-cell morphology alone can predict 6 different human macrophage phenotypes with a high accuracy in two different
datasets (as shown in bold, Dataset 1: 93% accuracy; Dataset 2: 96% accuracy), generated with different stimuli and assessed at a different time point.
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on a different day (day 7) and using different conditions (polarizing

stimuli alone without continuous M-CSF or GM-CSF) to test the

model’s performance where conditions and, thus, resulting cell

shapes and phenotypes can vary, as we proved by quantifying the

differences in cell morphology. In both cases, high accuracies of 93%

and 95% were achieved with synthetic training data for classifying
Frontiers in Immunology 13
macrophage phenotype original data. This confirmed that

macrophage morphology is a highly sensitive dynamic marker

that we used here for accurately classifying phenotype among six

different phenotypes. Notably, single-cell morphometric features

were also usable for accurately predicting intracellular IL-10

expression (R2 = 0.95) and this was achieved without synthetic
B
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FIGURE 8

Single-cell macrophage morphology differs significantly between stimulation protocols/time points. Cell morphometric measurements of (A) area,
(B) length, (C) width, (D) circularity, (E) aspect ratio, (F) roundness, and (G) solidity. The box plots present the shape descriptors of individually
analyzed macrophages as a function of (i) the macrophage class and (ii) the stimulation protocol that was used. For each macrophage class, the left
box plots are from Dataset 1 data, whereas the right box plots are from Dataset 2 data. Overall, the results confirmed that changes in the stimulation
protocol significantly changed a range of single macrophage morphological features. *p<0.05. Boxplots: the boxes define the 25th and 75th
percentiles, the central line indicates the median, and error bars define the 10th and 90th percentiles. *p<0.05. Dataset 1 consisted of 9304 cells in
total, with n = 353 (M0), 3078 (GM-CSF-M1 control), 1891 (GM-CSF/TNFa/IFNg-M1), 1321 (M-CSF-M2 Control), 1077 (M-CSF/IL-4-M2a), and 1584
(M-CSF/IL-10-M2c) individual cells analyzed of n=3 experiments per group, using 3 different donors. Dataset 2 consisted of 6072 cells in total with n
= 279 (M0), 1768 (GM-CSF-M1 control), 1771 (GM-CSF/TNFa/IFNg-M1), 903 (M-CSF-M2 Control), 922 (M-CSF/IL-4-M2a), and 399 (M-CSF/IL-10-
M2c) individual cells analyzed of n = 3 experiments per group, using 3 different donors.
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training data, indicating that macrophage morphological features

are IL-10 content-specific, enabling successful prediction. Overall,

this approach could potentially be used to discriminate, classify, and

predict many more macrophage-related characteristics or

expression profiles of any IL-10 producing cell.

The use of image-based machine learning using morphology-

based features to accurately classify M0, M1, and M2 macrophages

is in agreement with a previous study that showed a 90% accuracy

using RF models to classify M0, M1, and M2 macrophages (9).

However, our study extends this work and showed, for the first

time, that image-based machine learning using morphology-based

features could not only (i) classify M0, M1, and M2 macrophages

but, more importantly, can additionally be used to (ii) classify M2a

and M2c subtypes among six different phenotypes and (iii)

additionally predict intracellular IL-10 at the single-cell level.

That study (9) used a range of descriptors, measuring some of the
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same descriptors used in our study but also others. Here, we focused

on seven cell-related cell shape descriptors without the need to

include additional nucleus shape-related descriptors. In the present

study, higher accuracies were achieved by increasing the dataset size

through using synthetic data that was generated from the originally

quantified data. This in turn suggested that the original dataset used

to create the synthetic dataset was phenotype class-specific and, in

short, “good enough”, otherwise the accuracy would not have

increased despite increasing dataset size.

The panel of morphological descriptors that we used here was

successfully used by our group to phenotype differentiated human

mesenchymal stromal cells (MSCs) (30–33) and healthy vs.

inflamed and degenerating diseased human chondrocytes (13).

Moreover, using this panel as a phenotypic marker, combined

with multivariate data analysis, we showed that the cell

morphology and phenotype, i.e., the “biological fingerprint” of
B

C

A

FIGURE 9

RF prediction of intracellular IL-10 protein expression of macrophages. (A) RF regression model based on morphology and CD80 protein intensity
for predicting IL-10 protein intensity in all macrophage classes. (B) A second RF regression model using only morphology features as training input
showed that cell morphology alone (without CD80 protein intensity) was able to predict IL-10 protein intensity in all macrophage classes with a high
accuracy (C) RF regression model showing that the intracellular IL-10 content in M-CSF/IL-10-M2c macrophages can be predicted with a 98%
accuracy using quantitative single-cell morphology features and AI.
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those inflamed and degenerated diseased human cells could be

reverted to a healthier cell shape via therapeutic modulation and

their healthier cell shape correlated with positive changes in major

fibrosis- and inflammatory-regulating genes (29). Thus, our method

provides a simple and cost-effective means of capturing cellular

responses by quantitating cell morphology. In the present study, we

used our recently introduced “SuperTiles” algorithm (39) to

calculate synthetic data, including class-specific (aggregated)

averages and (data enhancing) standard deviations with preserved

inter-parameter correlations from randomly sampled and original

datasets. The present study demonstrated that using this algorithm

and the resulting synthetic training data increased the classification

accuracy by 63% from 30% to 93%, which makes using synthetic

training data for classifying original (measured) data a highly

promising approach. Yet, even more encouraging was the

successful use of a RF regression model to predict the

intracellular levels of the anti-inflammatory cytokine IL-10 with

original data only. Thus, we clearly demonstrated that a panel of cell

shape descriptors was successfully used to reliably predict IL-10

content at a single-cell level (R2: 94%). In fact, the regression

models trained on combined cell shape and CD80 expression

were able to consistently predict IL-10 intensity with R2 values >

90%, but the inclusion of CD80 intensity data decreased the model

performance, which was surprising. This could be due to marker

variability, which is highlighted by the SHAP values for the

M1 prediction model, whereby CD80 intensity contributed to

both the model ’s over-prediction and under-prediction.

Importantly, the regression model produced and tested showed a

strong potential to determine a macrophage’s inflammatory

characteristics at the single-cell level based on cell shape alone.
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This might suggest a link between a cell’s morphology and some of

its immunological functions.

Our study used standard conditions commonly used to generate

distinct phenotypic macrophage states as they mimic different in

vivo situations. In our first dataset, CD14+ monocyte-derived

macrophages generated from peripheral blood monocytes were

initially primed with GM-CSF (M1) or M-CSF (M2) followed by

GM-CSF/TNF-a/IFN-g (M1 macrophages), M-CSF/IL-4 (M2a

macrophages) or M-CSF/IL-10 (M2c macrophages). These

conditions were chosen for the following reasons. GM-CSF is

produced under inflammatory conditions by a variety of

leukocytes and other cells due to infection or injury and induces

M1-like cells (34). GM-CSF alone can also induce differentiation of

into dendritic cells (54, 55), which has not been examined here.

Classically activated pro-inflammatory M1 macrophages have been

known for some time to be induced by IFN-g alone or in

combination with TNF-a and GM-CSF (3, 5, 37). M-CSF is a

homeostatic cytokine that is constitutively produced under

homeostatic conditions and has been reported to induce M2-like

properties (35, 36). But it is important to note that treatment with

M-CSF alone may induce cells that stay at the monocyte stage if not

additionally challenged with e.g., IL-4 or IL-10. In fact, an

independent recent study using scRNAseq revealed that murine

bone marrow monocytes cultured with M-CSF alone for five days

remained at the monocyte stage with no or low expression of

macrophage markers such as CD71 and F4/80 (56). Whereas our

CIM results (Figure 6) showed that M-CSF-M2 cells are related and

shared morphological features with M-CSF/IL-10 cells (M2c

macrophages), suggesting M2-like properties, morphological

assessment showed that the M-CSF-M2 cells were overall smaller,
frontiersin.or
TABLE 2 Summary of RF regression model performance to predict the single-cell IL-10 content (intensity).

RF Regression Predictors R2 MAE MSE RMSE RMSLE MAPE

All macrophage phenotypes

Morphology + CD80 intensity

0.9357 0.0057 0.0001 0.0106 0.008 1.0044

GM-CSF-M1 0.6367 0.0052 0.0001 0.008 0.0077 0.3955

GM-CSF/TNFa/IFNg-M1 0.6187 0.0053 0.0001 0.008 0.0077 0.3994

M-CSF/IL-4-M2a 0.9164 0.0066 0.0001 0.0119 0.0107 0.2663

M-CSF/IL-10-M2c 0.9464 0.0075 0.0002 0.0128 0.0113 0.1981

M0 0.8543 0.006275 0.0001 0.0108 0.009 0.46705

M-CSF-M2 0.9314 0.00705 0.0001 0.0123 0.011 0.2322

All macrophage phenotypes

Morphology alone

0.9461 0.004 0.0001 0.0097 0.005 0.9537

GM-CSF-M1 0.7882 0.004 0.0001 0.0083 0.006 0.188

GM-CSF/TNFa/IFNg-M1 0.7762 0.004 0.0001 0.0062 0.005 0.5269

M-CSF/IL-4-M2a 0.9462 0.006 0.0001 0.0096 0.009 0.3272

M-CSF/IL-10-M2c 0.9785 0.006 0.0001 0.0081 0.007 0.187

M0 0.8611 0.004 0.0001 0.0079 0.005 0.7403

M-CSF-M2 0.8824 0.004 0.0001 0.0083 0.006 0.63703
Note that the R2 values indicate the accuracy of regression.
Predictors are indicated in bold. This data highlights that quantitative single-cell morphology alone can predict intracellular IL-10 content in human monocytes (M0 cells) and five different
macrophage phenotypes with a high accuracy (95% accuracy as indicated in bold).
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shorter, and rounder. Combining morphological assessment with

immunological and/or biochemical validation could help clarify

whether human peripheral blood-derived monocytes treated solely

with M-CSF are more monocyte-like or partially or fully

differentiated macrophages. Conversely, the alternative M2a

macrophages, which have anti-inflammatory, wound healing, and

pro-fibrotic properties, are induced by exposure to IL-4, whereas

M2c macrophages, which have anti-inflammatory and tissue

remodeling properties, are induced by exposure to IL-10 (M-CSF/

IL-10-M2c) (3, 5, 37). The CIM plot revealed the complexity of data

from these different phenotypes. Due to the size of the single-cell

generated data, it was extremely difficult to identify specific patterns

or clusters relative to the macrophage classes using single-cell data

alone, which is why CIM with feature averages for each of the

macrophage classes were additionally generated. This data revealed

some interesting points, which have never been shown. For

example, it clearly showed, based on hierarchical clustering, that

both M1 macrophages, namely GM-CSF/TNFa/IFNg-M1 and GM-

CSF-M1 macrophages are related in both cell morphology and

marker expression. This was supported by basic statistical analyses,

which demonstrated that, for example, the M1 (both GM-CSF/

TNFa/IFNg-M1 and GM-CSF-M1) macrophages were similar in

shape, except for their cell width and aspect ratio. The CIM results

also showed that M-CSF-M2 andM-CSF/IL-10 (M2c macrophages)

are related and share morphological features. Thus, the CIM with

feature averages and, specifically, the associated hierarchical

clustering revealed why AI was able to successfully and reliably

classify six phenotypes with high accuracy, namely, because related

macrophage classes, e.g. both M1 macrophages (GM-CSF/TNFa/
IFNg-M1, GM-CSF-M1), are related in their cell morphology.

Importantly, functional cytokine release of IL-6, TNF-a, and
IL-10 into the culture supernatant (ELISA data) in combination

with marker staining confirmed that the desired phenotypes were

obtained and were similar to data reported in other studies (47–53,

57). However, when comparing secreted IL-10 vs. intracellular IL-

10 expression, differences were noted. Results from our study

showed that both intracellular IL-10 and secreted IL-10 were

induced in M-CSF/IL-10-M2c macrophages in parallel with

decreased TNFa production and increased CD163 expression.

This is in agreement with other studies that have measured

CD163 by other methods (i.e., flow cytometry) and protein

secretion by ELISA (47–49, 57) in M2c macrophages. However,

when intracellular IL-10 staining data (protein content) was

assessed, significant levels of expression were also found in M1

polarized macrophages (GM-CSF/TNFa/IFNg-M1) along with

high CD80 expression as expected (47, 50–52) but, unexpectedly,

these cells had secreted very little IL-10. While this initially appears

contradictory to the expected results, M1 macrophages are known

to stimulate IL-10 production in the presence of TNF-a (58, 59).

Similar effects are seen in monocytes exposed to the bacterial

endotoxin LPS (28, 58, 60, 61). This effect is specific to TNF-a
and LPS and not induced by GM-CSF or other cytokines such as

IFN, IL-1a, IL-1b, or IL-6 (58). This is in line with our results

showing that the GM-CSF/TNFa/IFNg-M1 macrophages but not
Frontiers in Immunology 16
GM-CSF-M1 macrophages expressed high intracellular IL-10. The

results also showed that M0 cells (monocytes) also expressed

relatively high intracellular IL-10, which is in agreement with

flow cytometry studies measuring intracellular IL-10 or the gene

expression of IL-10 in these cells (60, 61). Whereas the M-CSF/IL-

10-M2c cells secreted high levels of IL-10, the M0 and GM-CSF/

TNFa/IFNg-M1 macrophages secreted extremely low levels of IL-

10. This suggests that either we may have missed detection in M0

and GM-CSF/TNFa/IFNg-M1 macrophages due to the timing

when we measured IL-10 secretion, which was potentially too late

since it was measured 2 days after polarization (half-life of IL-10:

less than 1h (58)) or that the IL-10 protein reservoir was available

but not yet secreted in these cells. Supporting the latter, it is

important to note that the M1 macrophages used in our study

were treated with IFN-g, which was previously shown to suppress

IL-10-induced secretion of IL-10 in RAW264.7 cells and bone

marrow-derived macrophages (62), similar to what we observed

in CD14+ monocyte-derived macrophages generated from

peripheral blood monocytes.

Much of our understanding of how microenvironmental cues

drive IL-10 production is based on ELISA or flow cytometry studies

(24–28, 57) and very little has been reported on transcription to

translation in relation to cell morphology. Whereas flow cytometry

has been used to characterize intracellular IL-10 (24–28, 57), this is

the first study to show that quantification of intracellular IL-10 can

also be used to characterize polarized macrophages at the single-cell

level and that morphological features can be used in turn to predict

intracellular IL-10 protein content on the single-cell level. This new

tactic may give rise to a novel way of assessing IL-10. Overall, this

study adds to our understanding of morphology-related

intracellular IL-10 expression in monocytes and macrophages and

can help improve our understanding of cytokine biology at the

single-cell level. Besides monocytes and macrophages, IL-10 is

produced by almost all activated immune cells, including multiple

T cell subsets, B cells, granulocytes (e.g., neutrophils, basophils,

eosinophils), mast cells, dendritic cells as well as infiltrating and

tissue-resident macrophages during disease or infection (23, 63, 64).

Future studies will determine if this can be applied to these cells and

possibly in more complex situations, such as in tissues and/or

human disease.

In conclusion, our findings demonstrate a new image-based

single macrophage classification method for macrophage

phenotyping and characterizing intracellular IL-10, using solely

cell shape as model input. Based on this simplicity, when paired

with large enough datasets, this approach could become relevant for

cell profiling in the context of in vitro studies or diseases known to

involve macrophages and, in the case of IL-10, cell profiling of other

cell types under inflammatory conditions or disease.
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