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CD24 has emerged as a molecule of significant interest beyond the oncological

arena. Recent studies have unveiled its surprising and diverse roles in various

biological processes and diseases. This review encapsulates the expanding

spectrum of CD24 functions, delving into its involvement in immune

regulation, cancer immune microenvironment, and its potential as a

therapeutic target in autoimmune diseases and beyond. The ‘magic’ of CD24,

once solely attributed to cancer, now inspires a new paradigm in understanding

its multifunctionality in human health and disease, offering exciting prospects for

medical advancements.
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Introduction

CD24 is a glycosylphosphatidylinositol-anchored protein that was first identified in 1978

as a B-cell differentiation antigen (1). It is expressed in a wide range of tissues and cell types,

including hematopoietic stem cells, B and T lymphocytes, epithelial cells, and neural cells

(2–11). CD24 has been found to play a role in a variety of physiological and pathological

processes, including cell adhesion, migration, differentiation, and apoptosis (12).

In recent years, there has been growing interest in phagocytosis checkpoints, especially

CD24, as potential therapeutic targets for cancer treatment (13–15) (see Figure 1). Given

the heterogeneity of in post-translational modifications, CD24 has been implicated in

tumor growth, invasion, and metastasis, and has been suggested as a potential marker for

cancer prognosis and therapy (14, 16–21). More importantly, growing research has

uncovered vital functions of CD24 in a range of pathological states, such as autoimmune

disorders (22–24), sepsis (25) metabolic disorders (26), graft vs host diseases (27).

In this review, we offer an in-depth examination of CD24, encompassing fundamental

principles and pertinent pathways. We also emphasize the significance of CD24 in both

cancer and non-neoplastic conditions. Furthermore, we shed light on the ongoing clinical

progress in targeting CD24 and identify the obstacles and possible remedies within the

realm of cancer immunotherapy and non-neoplastic disorders. Our objective is to not only
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advance our comprehension of the existing CD24 research

landscape but also to delve into the prospects of CD24-based

immunotherapeutic approaches.
Structure of CD24

CD24 is expressed on various cell types, including immune

cells, neural cells, and cancer cells, and it is a glycosyl-

phosphatidylinositol (GPI)-anchored protein with distinct

domains: an intracellular domain, a transmembrane domain, and

a heavily glycosylated extracellular domain (2–11, 28, 29). The

extracellular domain of CD24 has varying numbers of N-linked and

O-linked glycosylation points, playing a role in controlling CD24-

driven cell attachment and signal transmission (30). It has one N-

glycosylation site and multiple O-glycosylation sites that play a role

in its glycosylation. The protein is attached to the cell membrane

using a glycosylphosphatidylinositol (GPI) anchor at its end (C-

terminus) (30). The CD24 crystal structure was defined using X-ray

crystallography, revealing a tight, spherical shape with a b-barrel
configuration made of 4 antiparallel b-strands. A disulfide bond

between Cys53 and Cys73 provides stability to the b-barrel. The
beginning section of the protein showcases a brief a-helix and an

adaptable loop area (31).
CD24 and its receptors

CD24 is a cell surface protein that interacts with a range of cell

surface receptors, such as P-selectin, Siglec-10, and b1 integrin,

and is involved in regulating cell adhesion, migration, cell

differentiation, and apoptosis through its association with the

Notch signaling pathway (15, 32–34).

While CD24 lacks intrinsic enzymatic activity, it interacts with

multiple receptor proteins, such as Siglec-10, Siglec-15, and the
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NKG2D receptor (35, 36). The Siglec family of receptors, found on

immune cells, engage with CD24 in a sialic acid-dependent manner.

Siglec-10 functions as a negative regulator of immune responses and

inhibits dendritic cells and B cells’ activation when interacting with

CD24 (15, 37, 38). Siglec-15, expressed on osteoclasts, interacts with

CD24, influencing osteoclast differentiation and bone resorption

(39–41). The NKG2D receptor, present on natural killer cells and

other immune cells, recognizes stress-induced ligands on tumor and

infected cells. CD24 acts as a ligand for NKG2D, suppressing

NKG2D-mediated immune responses and facilitating tumor

immune evasion (13, 42) (see Figure 2).

In conclusion, CD24 is a cell surface protein involved in critical

interactions with various receptors, impacting immune regulation,

bone health, and tumor immune evasion. Understanding these

CD24 functions and its interactions with receptors is essential for

developing CD24-targeted therapies for various diseases.
Role of CD24 in cancer

Studies have shown that CD24 is highly expressed in various

tumor cells (21, 43). Recent studies have demonstrated that

increased CD24 levels in the blood might be a new prognostic

indicator and a biomarker for early cancer detection (18, 44–47).

Mechanisms of tumorigenesis promotion by CD24 include cancer

stem cell regulation, metastasis of tumor cell, proliferation of cancer

cells and evasion of immune detection.

Initially, scientists have introduced the idea of cancer stem cells

as the originating precursor cells in the formation of tumors. The

association between CD24 and cancer stem cells has been proved in

various types of cancer, including breast cancer (48), ovarian cancer

(49), pancreatic cancer (50), hepatocellular carcinoma (51), bladder

cancer (52), melanoma (53), colon cancer (54), leukemia (55), and

multiple myeloma (56). CD24 expression was linked to CSC-like

characteristics and the tumorigenic potential of these cells,
FIGURE 1

Discovery of phagocytosis checkpoints.
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suggesting that CD24 could serve as a surface marker for CSCs in

both solid and hematological tumors; however, the cellular

mechanisms of the CD24 - mediated effects are still unclear.

Secondly, CD24 plays a crucial role in promoting tumor cell

metastasis via multiple mechanisms. By attaching to P-selectin, it

diminishes the adhesion of tumor cells, which aids in their

movement along the vascular endothelium and platelets, thus

increasing their ability to migrate and metastasize (57). CD24 also

plays a part in the E-selectin-mediated movement of tumor cells

across the surface of vascular endothelium, and it activates integrin

subunits, enabling tumor cells to bind to extracellular matrix

components and increase their mobility (58). Additionally, CD24

regulates key factors like STAT3 and tissue factor pathway

inhibitor-2 (TFPI-2), influencing tumor metastasis by affecting

their expression and activity (59, 60). Thirdly, CD24 significantly

affects the growth of tumor cells by altering the expression of crucial

signaling molecules. Microarray analysis has shown that CD24

mAb downregulates genes associated with carcinogenesis,

including MAPK, Ras, and Bcl-2 (61). Additionally, CD24 is

capable of initiating ERK and p38MAPK activation, which

stimulates the proliferation of tumor cells in both controlled lab

environments and living beings. CD24 also regulates the epidermal

growth factor receptor (EGFR), a critical player in cell proliferation,

by inhibiting its internalization and degradation, thereby affecting

cell proliferation (62). Furthermore, the anti-CD24 mAb, G7 mAb,

enhances the inhibitory effect of cetuximab on tumor proliferation

in vivo, suggesting that CD24 might promotes the growth of tumor

cells through the regulation of EGFR expression (63). Fourthly,

CD24 plays a critical role in promoting tumor immune evasion

through its interaction with Siglec-10. Siglec-10 binds tightly to

CD24 in a sialic acid-dependent manner, leading to the inhibition of

macrophage signaling cascades and diminished efficiency of
Frontiers in Immunology 03
phagocytosis, ultimately enhancing tumor immune escape (15).

Additionally, elevated expression of Siglec-10 on natural killer

(NK) cells correlates with weakened NK cell activity, further

making tumors evade the immune system (64). CD24 has been

demonstrated to trigger cell death in B cells and precursor B acute

lymphoblastic leukemia cells, potentially impacting cellular

immunity (65). Siglec-10 inhibits T cell activation, and malignant

tumor-derived extracellular vesicles can upregulate Siglec-10

expression in T cells inside tumor microenvironment, decreasing

T cell activation. Moreover, correctly glycosylated CD24 can bind to

Siglec-10, blocking the activation of T cell receptors by suppressing

kinases associated with TCR. These interactions collectively

contribute to tumor immune evasion (66, 67) (see Figure 3).

CD24 plays a pivotal role in promoting tumor growth,

metastasis, and immune evasion. Experimental investigations

involving the deletion of the CD24 gene and therapeutic

interventions have shown significant inhibition of tumor growth

in animal models and improved patient survival (15).

Consequently, targeting CD24 emerges as a promising therapeutic

strategy for cancer treatment. However, it’s noteworthy that the

creation of targeted treatments focusing on CD24 is mainly at the

preclinical research phase, and comprehensive clinical trial data are

currently limited.

To date, there have been two completed clinical trials focused

on testing CD24-blocking drugs in cancer patients. The initial trial

was a combined Phase 1/2 study involving 58 patients suffering

from aggressive B cell lymphoproliferative disorders following bone

marrow or organ transplants (68, 69). The participants in the study

were administered a dual monoclonal antibody regimen,

comprising ALB9 aimed at CD24 and BL13 targeting CD21 (68,

69). Generally, the treatment regimen was well-received, with the

primary side effects being temporary neutropenia of grade 3 or
FIGURE 2

CD24-Siglec-10 pathway as hot targets for tumor immunotherapy. The CD24 antibody has the potential to enhance the immune system’s ability to
eliminate tumors. By inhibiting CD24 molecule present on the surface of tumor stem cells, CD24 antibody can block the CD24-Siglec-g/10 signal
activation, allowing macrophages to recognize and eliminate tumor cells through the immune clearance process.
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higher in 42% of cases, and grade 2 fever in 22% of patients during

the initial infusion (68, 69). Instances of grade 3 sepsis, diarrhea,

vomiting, and thrombocytopenia were each observed in one patient.

The second trial was a phase 1/2 study conducted at a single

institution, involving 36 individuals with primary hepatocellular

carcinoma who had undergone surgical resection (70). The patients

in this study were treated with adjuvant therapy, which included

autologous transfusions of dendritic cells and cytokine-induced T

cells, both loaded with the CD24 peptide (70). This treatment

proved to be safe, with the most frequent side effect being a

transient fever of less than grade 3, occurring in 19% of the

participants. There were no reported adverse events of grade 3 or

higher. After four years, the overall survival rates were 47% and 53%

for patients who received the study treatment two and four times,

respectively (70).

Though significant progress has been achieved in

understanding the functions of CD24 in cancer, research on its

role in neural cancers has been relatively limited. For example, while

CD24 polymorphisms have been studied in experimental

autoimmune encephalomyelitis (EAE) and various cancer types,

their examination within the scope of neural cancers has been

lacking. Gleaning knowledge from findings in various types of

cancer, along with CD24’s complex involvement with cellular

communication networks as previously mentioned, ought to

provide a more profound comprehension of CD24’s function in

the biology of neural tumors. The ability of CD24 on the cell surface

to encourage the spread of cancer is associated with its interaction

with P-selectin, which is found on stimulated platelets and the cells

lining blood vessels (57) (see Figure 4).

CD24 is recognized as a potential indicator for CSCs or cells

initiating brain tumors because it is found on the cell surface and is

linked to the advancement of metastasis. In solid tumor CSCs of

breast cancer, a CD44+/CD24− phenotype has been identified.
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These CD44+/CD24−/low breast CSCs have demonstrated

increased tumorigenic capabilities (48, 71). Additionally, breast

cancer cases exhibiting the CD44+/CD24−/low phenotype display

poor prognosis and limited response to chemotherapy (72).

However, identifying cancer stem cells in this manner has been

met with challenges, including conflicting outcomes and

considerable heterogeneity within and among various cancer

subtypes (73).
CD24 and non-neoplastic disorders

Although CD24 is best known for its involvement in cancer, it

also plays a role in various nonneoplastic diseases. It has been

implicated in inflammatory and autoimmune diseases, infectious

diseases, and neurological disorders. Here, we discuss some of the

key roles of CD24 in these nonneoplastic diseases.
Autoimmune diseases

A decade ago, the initial connection between CD24 and

autoimmune diseases surfaced when it was discovered that mice

lacking CD24 displayed significant resistance to experimental

autoimmune encephalomyelitis (22). CD24 is involved in the

regulation of the immune response and has been implicated in

the pathogenesis of autoimmune diseases. Clinical data provide

substantial support for the association between CD24 and

autoimmune diseases. CD24 polymorphisms are linked to the

progression of autoimmune disorders, including systemic lupus

erythematosus (SLE), multiple sclerosis and rheumatoid arthritis

(22, 24, 74–76). Within the CD24 gene, there exists a single

nucleotide polymorphism (SNP) denoted as P170, which results
FIGURE 3

Schematic of CD24-Siglec-10 signaling in cancer immunotherapy. This diagram depicts the inhibitory receptor Siglec-10 identifying and binding to
its ligand CD24 on ovarian cancer cells, leading to anti-phagocytic signaling pathways. Intervening with CD24 could potentially reinstate immune
cell phagocytosis. OC, ovarian cancer; Siglec, sialic-acid-binding Ig-like lectin.
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in a nonconservative alteration in the C-terminus of the mature

CD24 protein, either as Alanine (A, P170C) or Valine (A, P170T).

Zhou et al. initially reported that the CD24V/V genotype was

associated with an increased risk and progression of multiple sclerosis.

They noted that the expression of CD24 on peripheral blood T cells

was higher in CD24V/V patients compared to those with the CD24A/

A genotype. This association was subsequently validated in a Spanish

cohort, although contradictory data were reported by another group

from two cohorts (77, 78). In the case of SLE, Sanchez et al. conducted a

study involving three Caucasian cohorts from Spain, Germany, and

Sweden. They discovered that the prevalence of the CD24V/V

genotype was elevated in SLE patients in the Spanish cohort, though

this trend was not observed in the German or Swedish cohorts 24). For

rheumatoid arthritis, the CD24V/V genotype was found to be more

common among patients when a large screening of over a thousand

rheumatoid arthritis patients and eight hundred healthy individuals

was conducted (76). A similar association was observed in giant cell

arthritis (79).

Additionally, there are three other polymorphisms located in

the CD24 mRNA long UTR, namely P1056, P1527, and P1626.

Among these, the dinucleotide deletion of P1527 has the capacity to

destabilize CD24 mRNA and, significantly, this deletion offers

protection against both multiple sclerosis and SLE (80).

Multiple sclerosis stands as the most prevalent autoimmune

disorder within the central nervous system, characterized by

persistent inflammation and extensive damage involving the loss

of myelin and axons. The initial onset of MS involves the infiltration

of the CNS by self-targeting immune cells, specifically T cells. The

incidence of MS has been associated with both environmental and

genetic factors (81, 82). CD24, which is under developmental

regulation in T cells (7), serves as a co-stimulatory molecule that

enhances T cell activation (83). In the experimental model for

MS, experimental autoimmune encephalomyelitis (EAE), CD24

is essential for autoreactive T cells as well as resident CNS

lymphocytes (22, 75).
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The precise mechanism through which CD24 influences

autoimmune diseases remains to be fully understood. In addition

to its role as a costimulatory factor, CD24 serves as a genetic

checkpoint in the context of T-cell homeostatic proliferation,

especially in lymphogenic hosts. Lymphopenia, a common

occurrence in autoimmune diseases, triggers T-cell homeostatic

proliferation. It has been established that CD24 expressed on T cells

plays a crucial role in this process (84, 85). Additionally, considering

that CD24 influences the efficiency of clonal deletion, it is plausible

that mice carrying a specific mutation in CD24 could exhibit a

decreased presence of high-affinity autoreactive T cells (86).
Inflammation diseases

Inflammation is a natural immune response to infections and

tissue damage. It is triggered by various agents, which can be

categorized into two main groups. The primary and most

influential category includes molecular patterns related to

pathogens, known as PAMPs, while the secondary category,

which is of lesser importance, contains molecular patterns

associated with damage, known as DAMPs (87, 88).

In the context of inflammatory diseases, CD24 has a

multifaceted role, acting as both a facilitator and regulator of

inflammation. Its function is highly dependent on the context of

the disease and the type of immune cells involved. In initial

research, it was observed that the interaction between CD24 and

Siglec G/10 plays a role in controlling the inflammatory response to

DAMPs but not PAMPs. Subsequently, more and more evidence

confirmed the relationship between CD24 and several DAMPs,

including heat-shock proteins (HSP), high mobility group box

protein 1 (HMGB-1) and nucleolins (89, 90). CD24 interacts with

SiglecG in mice and Siglec10 in humans to specifically suppress the

host’s reaction to tissue injury. Notably, this mechanism does not

interfere with the host’s response to PAMPs (91). As a result, the
FIGURE 4

CD24 enhances tumor metastasis by either binding to selectin molecules or activating pre-existing integrin subunits.
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CD24-SiglecG pathway is suggested to have the ability to

differentiate between DAMPs and PAMPs (91) (see Figure 5).

Nevertheless, the response of the host to infectious pathogens can be

affected by this interaction, since most infections lead to cell death and

could provoke inflammatory reactions via DAMPs. Additionally,

numerous pathogens have been discovered to interrupt the CD24-

Siglec G/10 connection, either by diminishing the expression of Siglec

G/10 or by removing sialic acids from CD24 (25, 92). CD24 has been

found to be upregulated in response to viral and bacterial infections, and

CD24-deficient mice have been shown to be more susceptible to

infection (93–97). Preclinical studies have demonstrated that CD24Fc

was effective in protecting non-human primates from acquired

immunodeficiency syndrome (AIDS) caused by the simian

immunodeficiency virus (98, 99). Human CD24-Fc has been effectively

created and experimented with, particularly in rhesus monkeys afflicted

with chronic immune issues and inflammation resulting from HIV-1/

SIV infection. The treatment was well-received in these tests, suggesting it

might help slow the progression to AIDS in SIV-infected primates.

CD24-Fc shows potential as an innovative approach to

manage the immune response in diseases marked by persistent

immune activation and systemic inflammation. Its effectiveness is

currently being further explored in various clinical trials for

immune-related conditions such as graft-vs-host disease and

other similar disorders. It has been implicated in the regulation

of immune responses to infections, including the production of

cytokines and chemokines and the recruitment of immune cells to

the site of infection (25, 100–103).

CD24 could be proposed to discriminate between DAMPs and

PAMPs and deeper understanding CD24-Siglec10 interaction

pathways may lead to the development of targeted therapies for

managing inflammatory conditions.
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Covid-19

Based on the positive results in non-human primates, as well

as the safety and clinical performance of CD24Fc in healthy

volunteers and patients undergoing bone marrow transplantation,

OncoImmune, Inc. initiated a phase 3 clinical trial at nine medical

centers in the United States. This study is designed to evaluate the

safety and clinical effectiveness of CD24Fc in hospitalized COVID-

19 patients requiring oxygen support. The main goal is to measure

the duration until clinical improvement, which is marked by the

patient’s shift from needing oxygen support to breathing without it

over a 28-day observation period 154,.

The data from this clinical trial indicates that CD24Fc is well-

received and markedly hastens the rate of clinical recovery by over

60% in hospitalized patients with COVID-19 who require oxygen

support. Biomarker studies have revealed that CD24Fc consistently

suppresses the inflammatory response in COVID-19 patients.

Overall, these results indicate that focusing on inflammation due

to tissue damage might provide a treatment possibility for COVID-

19 patients in the hospital (100).

In line with the clinical outcomes of CD24Fc, it was observed

that HMGB1 (High Mobility Group Box 1) is elevated in the plasma

of COVID-19 patients (104, 105). Furthermore, RNA sequencing

analysis of lung tissue from both healthy individuals and severe

COVID-19 patients showed a selective reduction in SIGLEC10

mRNA expression without affecting the expression of other

SIGLECS (92). More recently, a non-randomized study by

Shapira et al. suggested that Exo-CD24, which includes CD24-

containing exosomes, appeared to reduce inflammatory markers

and cytokines/chemokines while expediting the recovery of

hospitalized COVID-19 patients (106).
FIGURE 5

The interaction between CD24 and Siglec 10/G specifically inhibits the inflammatory reaction to tissue damage. CD24 binds with Siglec-10 to
suppress inflammatory responses triggered by danger-associated molecular patterns (DAMPs), while it does not affect those elicited by pathogen-
associated molecular patterns (PAMPs). Toll-like receptors (TLRs) are involved in this process.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1334922
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1334922
Neurological disorders

CD24 has been found to promote axonal growth and

myelination, and CD24-deficient mice have been shown to have

impaired neural development (32, 107, 108). Like numerous other

surface antigens present on neural cells, CD24 holds significance in

cellular communication and function, particularly in processes such

as neural migration, the extension of neurites, and neurogenesis

(109). Studies indicate dynamic expression of CD24 during the neural

development of rodents, and at least one study has suggested

transient expression of CD24 during human development (110–

112). These findings also emphasize that CD24 could undergo

transcriptional activation in postmitotic neurons during the

migration phase but is typically lost once a more mature

cytoarchitectural context is established. Calaora and colleagues

showed that the expression of mCD24 is maintained in certain

areas of adult mice that are involved in the secondary formation of

neurons (110). Notably, CD24 expression endures into adulthood

within the rostral migratory stream, the pathway used by newly

formed neurons toward the olfactory bulb, as well as in the dentate

gyrus of the hippocampus. These results support the notion that

CD24 is present during stages of neuronal migration and the

formation of neuronal connections. The observations are consistent

with the idea that CD24 functions as a glycoprotein that plays a role

in directing neuronal migration and the formation of synapses.

Furthermore, CD24 expression was observed in non-neuronal

ependymal cells that possess cilia and line the ventricles (113). The

precise degree to which CD24’s glycans may distinctively guide

the movement of neurons and the creation of connections during

this stage of development is still a matter to be determined

through research.

CD24 has also been implicated in the pathogenesis of

neurological disorders, including neuronal injury, etc. CD24 can

enhance neuronal regeneration in experimental subarachnoid

hemorrhages (114). Astrocytes have the potential to alleviate

neuronal damage by utilizing CD24 to inhibit NF-kB binding

activity, thereby reducing the secretion of inflammatory factors

subsequent to the HMGB1 challenge (see Figure 5). CD24 appears

to enable T cells to evade clonal deletion, a process that deactivates

self-reactive cells before maturation, but it does not influence the

entry of self-reactive T cells into the CNS (86, 115). The expression

of CD24 on resident CNS lymphocytes exacerbates the severity of

EAE by boosting the activation of autoreactive T cells (75), crucial

for their local multiplication (115). This interaction does not

seem to involve a like-to-like trans interaction between CD24

molecules (116). Overall, the cumulative evidence suggests that

CD24 expression encourages the development of EAE, and

potentially MS, following initiation by various other contributing

factors (117).
Metabolic disorder

Metabolic disorders such as obesity, dyslipidemia, diabetes,

nonalcoholic fatty liver disease, and nonalcoholic steatohepatitis
Frontiers in Immunology 07
have significantly emerged as a major global health concern (118).

Metaflammation, characterized as a persistent low-grade

inflammatory state in metabolic tissues, stands as a significant

hallmark of metabolic disease (119). This chronic state of tissue

inflammation involves the infiltration and activation of immune

cells along with elevated levels of inflammatory cytokines, resulting

in impaired insulin signaling and disruption of systemic metabolic

balance (120). Several inflammatory signaling pathways like JNK

and IKK, alongside inflammatory cytokines such as TNF-a and

IL-1b, have been implicated in the development of metabolic

diseases (121–124) Despite compelling evidence linking chronic

inflammation to obesity, the mechanisms underlying the initiation

and control of metaflammation during obesity remain

inadequately understood.

Yang L et al. identified that the disruption of the CD24-Siglec-E

interaction exacerbates metabolic disorders associated with obesity,

while therapy involving CD24Fc shows improvement (26). The

recognition of CD24 by Siglec-E through sialoside-based

interactions negatively regulates metaflammation and offers

protection against metabolic syndrome. Clinical studies on

CD24Fc confirm the significance of this pathway in human lipid

processing and inflammatory responses. These discoveries highlight

the pivotal inhibitory function of the CD24-Siglec-E axis in

metabolic dysfunctions and metaflammation, offering a potential

immunotherapeutic approach for conditions like obesity,

dyslipidemia, insulin resistance, and nonalcoholic steatohepatitis.

They also evaluated the role of CD24-Siglec pathway in the

development of metabolic syndrome and demonstrated that

CD24 deficiency aggravates metabolic disorder in mice. To

pinpoint the CD24 receptor involved in metabolic regulation,

researchers employed a genetic strategy to ascertain if mutations

in any Siglec gene could replicate the metabolic characteristics

observed when CD24 is removed. They finally found that

Siglec-E signaling is required for CD24-mediated protection

against metabolic disorder and CD24-Siglec-E axis represses

metaflammation to ameliorate metabolic disorder. Given that

CD24Fc is undergoing clinical development for several human

diseases, the recent study offers a promising therapeutic strategy

for treating metabolic diseases by strengthening sialoside-based

pattern recognition (see Figure 6).
Conclusion

CD24 has emerged as a promising therapeutic target in cancer

due to its significant role in the disease. Researchers have

extensively investigated the use of antibodies that target CD24 for

cancer treatment. While preclinical studies exploring CD24

antibody-based therapies have been conducted and reviewed

previously (Table 1) (125), it’s worth noting that as of now, there

have been no clinical trials targeting CD24 in cancer treatment.

While the role of CD24 in cancer has garnered significant attention,

its importance extends to various other physiological and

pathological processes, including autoimmune diseases, infectious

disorders, Covid-19, neurological disorders, metabolic disorders
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FIGURE 6

Disruption of the CD24-Siglec-E axis worsens, whereas CD24Fc treatment improves, metabolic disorders associated with obesity. Sialylated CD24
triggers the recruitment of SHP-1 to Siglec-E, thereby reducing metaflammation. In the initial phase I clinical trial conducted on humans, a sole
administration of CD24Fc proved safe and well-received among healthy individuals.
TABLE 1 Clinical trials with agents targeting CD24.

Trial
Identifier

Inclusion Agent Phase Status Primary Outcome Enrollment Institute

NCT03960541
HIV Infections
Dyslipidemias

Efprezimod
alfa

II Terminated
Decrease LDL

and Inflammation
8

University of
Maryland Baltimore

NCT04747574 SARS-CoV-2 EXO-CD24 I unknown N/A 35 Tel Aviv Medical Center

NCT04060407 Metastatic Melanoma CD24Fc Ib/II withdrawn N/A 0
Huntsman

Cancer Institute

NCT04552704
Advanced Malignant

Solid Neoplasm
CD24Fc I/II Terminated N/A 3

University of
California Davis

NCT02663622
GVHD
Leukemia

Efprezimod
alfa

II Completed
Strong protection
against GVHD

44
Indiana University

School of Medicine etc

NCT04907422

Carcinoma Ex
Pleomorphic Adenoma of

Salivary Glands
Pleomorphic Adenoma of

Salivary Glands

CD24-
Gold

Nanocomposite
II Completed N/A 60 October 6 University

NCT04317040
Coronavirus Disease
2019 (COVID-19)

Efprezimod
alfa

III completed
clinical improvement was

accelerated in the
CD24Fc group

234
Baptist Health Research

Institute etc.

NCT04902183
Coronavirus Disease
2019 (COVID-19)

exosomes
overexpressing

CD24
II recruiting N/A 90

General Hospital of
Athens Attikon

University Hospital

NCT01214512 Colorectal Cancer
Micromedic

CD24
I completed N/A 229

Bat Yamon
Gastroentrology

Clinic etc.

NCT04095858
GVHD
AML

CD24Fc III Terminated N/A 11 City of Hope etc.
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and more. Further research into CD24 functions in these areas may

reveal new insights and potential therapeutic applications

beyond cancer.

To enhance patient outcomes, it is imperative to tackle the issue

of drug resistance mediated by CD24 and prolong patient survival.

Nevertheless, the exact mechanisms through which CD24

contributes to drug resistance in tumor cells remain incompletely

elucidated, involving a complex interplay of diverse pathways.

Clinically, it requires additional assessment to determine how to

integrate phagocytosis checkpoint inhibitors and/or activators into

the existing framework of immunotherapy. In addition,

investigating the potential for combining CD24-targeted

immunotherapy with other treatments, such as checkpoint

inhibitors or chemotherapy, is a critical area of research.

Determining the synergistic effects and potential toxicities of

combination therapies is essential. Furthermore, designing well-

controlled clinical trials with appropriate endpoints and patient

cohorts is essential for robustly evaluating the efficacy of CD24-

targeted immunotherapy. Also, Assessing the safety profile of

CD24-targeted immunotherapy is crucial. Understanding

potential side effects and their management is essential to ensure

that the treatment does not cause significant harm to patients.

Moreover, identifying predictive biomarkers that can help select

patients who are most likely to respond to CD24-targeted

immunotherapy is an important consideration. This will help in

patient stratification and personalized treatment approaches.

In summary, while CD24-targeted immunotherapy holds

promise in the treatment of cancer and non-neoplastic diseases,

numerous questions related to its clinical application, efficacy,

safety, and combination strategies still need to be addressed

through rigorous research and clinical trials.
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