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esophageal squamous epithelial
cells and constructs models
for predicting patient prognosis
and immunotherapy
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1Department of Cardiothoracic Surgery, The Affiliated Huaian No.1 People’s Hospital of Nanjing
Medical University, Huaian, Jiangsu, China, 2Department of Gastroenterology, The Affiliated Huaian
No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu, China
Background: Esophageal squamous cell carcinoma (ESCC), characterized by its

high invasiveness and malignant potential, has long been a formidable challenge

in terms of treatment.

Methods: A variety of advanced analytical techniques are employed, including

single-cell RNA sequencing (scRNA-seq), cell trajectory inference, transcription

factor regulatory network analysis, GSVA enrichment analysis, mutation profile

construction, and the inference of potential immunotherapeutic drugs. The

purpose is to conduct a more comprehensive exploration of the heterogeneity

among malignant squamous epithelial cell subgroups within the ESCC

microenvironment and establish a model for predicting the prognosis and

immunotherapy outcomes of ESCC patients.

Results: An analysis was conducted through scRNA-seq, and three Cluster of

malignant epithelial cells were identified using the infer CNV method. Cluster 0

was found to exhibit high invasiveness, whereas Cluster 1 displayed prominent

characteristics associated with epithelial-mesenchymal transition. Confirmation

of these findings was provided through cell trajectory analysis, which positioned

Cluster 0 at the initiation stage of development and Cluster 1 at the final

developmental stage. The abundance of Cluster 0-2 groups in TCGA-LUAD

samples was assessed using ssGSEA and subsequently categorized into high and

low-expression groups. Notably, it was observed that Cluster 0-1 had a

significant impact on survival (p<0.05). Furthermore, GSVA enrichment analysis

demonstrated heightened activity in hallmark pathways for Cluster 0, whereas

Cluster 1 exhibited notable enrichment in pathways related to cell proliferation. It

is noteworthy that a prognostic model was established utilizing feature genes

from Cluster 0-1, employing the Lasso and stepwise regression methods. The

results revealed that in TCGA and GSE53624 cohorts, the low-risk group

demonstrated significantly higher overall survival and increased levels of

immune infiltration. An examination of four external immunotherapy cohorts

unveiled that the low-risk group exhibited improved immunotherapeutic
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efficacy. Additionally, more meaningful treatment options were identified for the

low-risk group.

Conclusion: The findings revealed distinct interactions between malignant

epithelial cells of ESCC and subgroups within the tumor microenvironment.

Two cell clusters, strongly linked to survival, were pinpointed, and a signature was

formulated. This signature is expected to play a crucial role in identifying and

advancing precision medicine approaches for the treatment of ESCC.
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1 Introduction

Esophageal cancer(EC), a prevalent malignant neoplasm affecting

populations worldwide, exhibits alarmingly high incidence and

mortality rates. The year 2020 alone witnessed a staggering 604,000

newly diagnosed cases of EC, tragically resulting in 544,000 fatalities

(1). This formidable disease encompasses two predominant

pathological classifications: esophageal adenocarcinoma and

esophageal squamous carcinoma (ESCC), with ESCC representing

the predominant subtype among new patients each year (2). Despite

notable advancements in scientific and technological domains, the

therapeutic armamentarium for EC has expanded considerably.

However, the overall prognosis remains disheartening, as evidenced

by a discouraging 5-year survival rate ranging between a mere 10%

and 30% (3, 4). Furthermore, extensive research has unveiled

substantial variations in surgical and pharmacological responses

among patients sharing the same clinical stage, thus highlighting

pronounced prognostic heterogeneity. This phenomenon primarily

stems from the current reliance on TNM staging, widely employed in

clinical practice, which regrettably neglects the cellular and even

molecular disparities exhibited by these patients (5).

Esophageal Cancer Epithelial Cells Heterogeneity (HECEC)

encompasses the intricate diversity and variability observed

among epithelial cells within the tissue of EC. This heterogeneity

manifests at the molecular level, characterized by disparities in gene

expression and protein profiles. Distinct subpopulations of

epithelial cells exhibit specific gene expression patterns, and

scrutinizing these differences in gene and protein expression

unveils the molecular attributes and potential driving mechanisms

unique to each subpopulation (4, 6). HECEC exerts a profound

impact on the development, metastasis, treatment, and prognosis of

esophageal cancer. Varied subpopulations of cells may demonstrate

disparate sensitivities and resistances to therapeutic agents,

highlighting the significance of tailoring individualized treatment

strategies. Consequently, conducting an in-depth exploration of

epithelial cell heterogeneity in EC becomes paramount, as it unveils

the molecular features and functional properties inherent to distinct

subpopulations. This research serves as a crucial foundation for

providing personalized treatments and improving the prognosis of

individuals afflicted with EC (2, 7).
02
The advent of single-cell RNA sequencing (scRNA-seq) has

revolutionized the field by offering a formidable tool for delving into

the intricacies of tumor heterogeneity. Traditional bulk RNA-seq

technology falls short in capturing the nuanced heterogeneity at the

transcriptional level, limiting our understanding of intratumor

heterogeneity and the intricate tumor microenvironment (TME).

In contrast, the emerging technique of scRNA-seq boasts

remarkable advantages such as high throughput and efficiency.

Leveraging these benefits, scRNA-seq enables the identification of

molecular features within tumors, decoding the intricate landscape

of intratumor heterogeneity, and unearthing novel therapeutic

targets and clinical biomarkers (8, 9).

Our study utilized scRNA-seq and bulk RNA-seq datasets to

dissect the heterogeneity of ESCC epithelial cells. By categorizing

different cancer epithelial clusters, we investigated their crucial roles

within the TME. Ultimately, we constructed a signature using key

cancer epithelial subgroups that can predict the prognosis and

response to immunotherapy for ESCC patients. This provides

valuable insights for the clinical stratification and treatment of

ESCC patients.
2 Methods

2.1 Dataset source

The acquisition of bulk RNA-seq data, mutation data, and clinical

characteristics related to ESCC patients diagnosed was facilitated

through the utilization of The Cancer Genome Atlas (TCGA)

database (https://portal.gdc.cancer.gov). Additionally, a scRNA-seq

dataset (GSE188900) (10), comprising samples from six ESCC

patients, including seven surgically resected tumor tissue specimens

and one healthy tissue specimen, was obtained from the Gene

Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/

geo). Furthermore, four datasets related to immunotherapy were

aggregated from the GEO database, encompassing comprehensive

transcriptomic data and the responses of patients to immunotherapy,

as described below:

GSE91061: Nivolumab therapy was administered to 65 patients

with advanced-stage melanoma (11).
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GSE100797: This dataset consisted of 27 stage IV melanoma

patients who participated in ACT clinical phase I/II trials (12).

GSE126044: Sixteen patients with non-small-cell lung cancer

underwent PD-1 therapy (12).

GSE35640: It included 65 melanoma patients who were enrolled

in a phase II trial involving recombinant MAGE-A3 antigen

combined with an immunological adjuvant (13).

These data resources have been effectively utilized to provide

robust support for our research, enabling a comprehensive

understanding of the molecular characteristics of ESCC patients

and their responses to immunotherapy. To ensure data uniformity

and comparability, the expression data was transformed into the

Transcripts Per Million (TPM) format, and potential batch effects

were mitigated using the “combat” function within the “sva” R

package (14). Furthermore, all data from the TCGA database,

including bulk sequencing data, mutation data, and clinical details

of ESCC patients, were logarithmically transformed to achieve a

standardized data format before the initiation of the analysis.
2.2 The detailed steps of the single-cell
analysis process

In single-cell RNA sequencing analysis, we utilized the Seurat R

package (15, 16) (version 4.2.0) to transform the raw data into a

Seurat object. During the data preprocessing, we implemented

stringent quality control measures. Specifically, we excluded cells

that expressed fewer than 300 genes or more than 5,000 genes, as well

as cells in which the UMIs originating from the mitochondrial

genome accounted for more than 10% of the total UMIs. To

reduce data dimensionality, we performed Principal Component

Analysis (PCA) on the variably expressed genes, selecting the top

20 principal components. Subsequently, we conducted clustering

using the “FindCluster” function with a resolution parameter set to

0.5, and visualized the results using UMAP. To identify marker genes

for distinct cell clusters, we employed Seurat’s “FindAllMarkers”

function, comparing cells within a specific cluster to all other cells.

Through the use of canonical marker genes, we annotated the cell

clusters in the resulting two-dimensional representation with known

biological cell types. It is worth noting that, in the analysis, we chose

not to correct for cell cycle effects, as only a limited number of cells

exhibited positive expression of cell proliferation markers.
2.3 Infer the malignant squamous
epithelial cells

The InferCNV approach (17) was employed to validate copy

number variations (CNVs) and discern between malignant cells and

normal epithelial cells. To construct trajectories, high CNV score

epithelial cells were extracted from squamous epithelial cells and

designated as cancerous epithelial cells. Subsequently, the Monocle2

algorithm was employed (18), using a gene-cell matrix extracted

from a Seurat subset with UMI counts scaled, as input. Default

parameters were applied to infer cellular trajectories.
Frontiers in Immunology 03
2.4 GSVA enrichment analysis

A gene set enrichment analysis was conducted using 50

hallmark pathways from the Molecular Signatures Database

(MSigDB). To assign pathway activity estimates to each cell type,

Gene Set Variation Analysis (GSVA) was performed on each cell,

followed by calculating the average gene expression levels for each

cell subtype, utilizing the standard settings in the GSVA package

(19). Differences between activity scores were used to quantify

differential pathway activity among distinct cell subtypes.
2.5 Cell-cell communication and inference
of transcription factors

We integrated gene expression data using CellChat (20) to

assess differences in hypothesized cell-cell communication modules.

Following the standard CellChat pipeline, we employed the default

CellChatDB as the ligand-receptor database. Cell type-specific

interactions were inferred by identifying overexpressed ligands or

receptors within a cell group, followed by the identification of

enhanced ligand-receptor interactions when ligands or receptors

were overexpressed. Additionally, the R package Scenic was utilized

to infer the activity of gene regulatory networks.
2.6 Gene regulatory networks

The R software package Scenic is employed to deduce the

functioning of gene regulatory networks. The default settings are

utilized to assess the activity of individual regulators in single cells,

drawing upon the cisTarget databases: hg38_refseq-r80_500bp

_up_and_100bp_down_tss.mc9nr.feather and hg38_refseq-

r80_10kb_up_and_down_tss.mc9nr.feather.
2.7 Building the high-performance
epithelial-associated signature (EAS)
of ESCC

Univariate Cox regression analysis was utilized to evaluate the

influence of these genes on the survival status of ESCC. To

minimize the risk of overlooking significant factors, we set the

cutoff P-value to 0.05. Following this, we applied the LASSO Cox

regression method (21) to reduce the number of candidate genes,

ultimately creating the most optimal survival signature. The model’s

predictive performance was evaluated using receiver operating

characteristic (ROC) curves, with an area under the curve (AUC)

value exceeding 0.65 indicating exceptional performance.
2.8 Mutation landscape

A comprehensive analysis of somatic mutation frequency and

distribution across a range of genes was conducted utilizing the

“maftools” R package (22). Concurrently, TCGA-ESCC patients
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were subjected to a stratification process, resulting in their

classification into four distinct groups based on their median risk

score and median tumor mutational burden (TMB). Subsequently,

a comparative analysis was executed to scrutinize disparities in

survival among these groups, contingent upon their respective

median risk scores and TMB values.
2.9 Differences in the TME and
drug inference

The efficacy of tumor immunotherapy is influenced by the

complex TME (23, 24). Six different immune infiltration algorithms

were employed to rigorously assess the composition of immune

cells within distinct risk groups. Subsequently, to convey the

intricate variances in immune cell infiltration across these risk

groups, heatmaps were utilized as effective visual tools, thus

elucidating subtle differences among immune cell populations.

Additionally, the specialized functionalities of the “estimate” R

package (25) were meticulously utilized to quantify immune

scores, stromal scores, and ESTIMATE scores for patients

diagnosed with ESCC. This strategic deployment enhanced a

comprehensive evaluation of the TME and its potential

implications. In the pursuit of identifying potentially effective

chemotherapeutic agents among different risk groups, the

predictive capabilities provided by the “oncoPredict” R package

(26) were extensively utilized. Through the application of this tool, a

profound prediction of suitable therapeutic interventions was

enabled, contributing to a more informed treatment strategy.
2.10 SubMap validation

The significance of shared characteristics between two groups is

evaluated using the unsupervised method, SubMap, with a

significance threshold denoted by an adjusted p-value below 0.05,

indicating substantial similarity. Subtype consistency between the

validation and discovery cohorts was assessed utilizing the SubMap

approach, and the results were subsequently presented through the

ComplexHeatmap package.
2.11 Collection of clinical samples and cell
lines and ethics

Ethical approval was obtained from the Medical Ethics

Committee at The Affiliated Huaian No.1 People's Hospital of

Nanjing Medical University to collect tissue specimens. These

specimens, which included both tumor (T) and precancerous (N)

tissues from patients with ESCC who had undergone tumor

resection, were carefully stored at -80°C. TE1 and KYSE30,

human esophageal squamous cell carcinoma (ESCC) cell lines,

were obtained from the Cell Resource Center at the Shanghai Life

Sciences Institute. The extraction of total RNA from ESCC tissues
Frontiers in Immunology 04
was performed using the TRIzol reagent from Thermo Fisher

Scientific, headquartered in Waltham, MA, USA. Subsequently,

cDNA synthesis followed the manufacturer’s instructions,

utilizing the RevertAid™ First Strand cDNA Synthesis Kit, also

provided by Thermo Fisher Scientific. The qRT-PCR analysis was

conducted using the StepOne Real-Time PCR system, an

instrument also manufactured by Thermo Fisher Scientific. For

amplification, the SYBR Green PCR kit from Takara Bio in Otsu,

Japan, was utilized. The quantification of relative gene expression

levels was achieved through the 2-△△CT method.
2.12 Colony formation

For colony formation analysis, 1000 cells were transfected and

cultured in 6-well plates for approximately 14 days. After this

period, cell clones were visually examined without magnification.

The cells were then washed, fixed with 4% paraformaldehyde (PFA)

for 15 minutes, stained with crystal violet from Solarbio, China, for

20 minutes, and air-dried at room temperature. The cell count per

well was then determined.
2.13 Statistical analysis

R 4.2.0 software was employed for all data processing, statistical

analysis, and visualization. Subtype-specific overall survival (OS) was

estimated and compared using the Kaplan-Meier method and log-rank

test. Differences in continuous variables between the two groups were

assessed via the Wilcoxon test or t-test. For categorical variables, the

analysis was performed using the chi-squared test or Fisher’s exact test.

The false discovery rate (FDR) method was utilized to correct p-values.

Correlations between variables were assessed through Pearson

correlation analysis. All p-values were calculated with a two-tailed

approach, with statistical significance defined as p < 0.05.
3 Results

Figure 1 shows a flow chart outlining the study.
3.1 The scRNA profiling of LUAD

This study encompassed a total of 8 samples, each exhibiting a

relatively stable cell distribution, suggesting minimal susceptibility

to batch effects. Consequently, these samples served as a robust

foundation for subsequent analyses (Figure 2A). Leveraging the

UMAP algorithm, all cells were meticulously categorized into 12

clusters, providing a detailed classification (Figure 2B). The

comprehensive bubble plots depicted in Figure 2C illustrated the

expression patterns of characterization marker genes associated

with each of the 11 cell clusters. Cell type identification relied on

the marker genes showcased in Figure 2D. To assess the distribution
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proportions of these 11 cell types across the 8 samples, Figure 2E

presented the corresponding proportions. Intriguingly, Figure 2F

unveiled the existence of diverse cell types, including squamous

epithelial cells, T cells, and smooth muscle cells, among others.

Moreover, through the application of inferCNV, Figure 2G

elucidated the identification of individual chromosomes, with

squamous epithelial cells demonstrating higher CNVs compared

to endothelial cells in most instances. Notably, significant copy
Frontiers in Immunology 05
number deletions were observed on chromosome 6 in almost all

tumor cells. To explore the distributional disparities in CNV scores

among the eight clusters, Figure 2H highlighted the selection of

cluster 1, cluster 4, and cluster 5-8, characterized by elevated copy

number variations. Moreover, squamous epithelial cells within

these clusters underwent UMAP downscaling, enabling their

classification into three distinct subclusters: Cluster 0, Cluster 1,

and Cluster 2 (Figure 2I).
FIGURE 1

Overall flowchart of all analyses.
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3.2 Trajectory analysis and
cellular communication

In Figure 3A, cellular transcriptional heterogeneity in malignant

squamous epithelial cells was assessed via trajectory analysis using

the “monocle2” R package. Over the pseudotime progression, there

was a gradual reduction in the prevalence of the cluster0 subtype,

concomitant with a progressive augmentation in the proportions of

cluster1 and cluster2 subtypes. Figure 3B showcases the relative
Frontiers in Immunology 06
expression of the three most significantly altered genes, namely

HMGN2, ISG15, and STMN1, represented in pseudo time. This

representation provides insights into the temporal dynamics of gene

expression changes. In Figure 3C, the illustration demonstrates the

quantity and intensity of cellular communication between KRT15+

neoplastic cells (Cluster0), STMN1+ neoplastic cells (Cluster1),

SPRR3+ neoplastic cells (Cluster2), and other cell types within

ESCC tissues. This visualization sheds light on the intricate network

of intercellular interactions. Furthermore, in Figures 3D, E, we
A B C

D

F G

H I

E

FIGURE 2

Explanation of cellular subpopulations. (A) Excluding batch effects between samples. (B) UMAP plot for descending cluster sorting. (C) Bubble plot of
mean expression of marker genes for each cell type. (D) UMAP plot reveals marker gene expression levels across diverse cell types. (E) Proportions
of 11 cell types originated from different tissues. (F) Cellular annotations unveil 11 distinct cell phenotypes. (G) Analysis of copy number loss or
amplification of each chromosome in endothelial and squamous epithelial cells by InferCNV algorithm. (H) Comparison of CNV score for 8 clusters.
(I) UMAP plot for all squamous epithelial cells clustered into four clusters.
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delved into the ligand-receptor interactions existing between

different cell types and the three labeled tumor cells within ESCC

tissues. Notably, we discovered that KRT15+ neoplastic cells

engaged with other cell types through the APP-CD74, MIF-
Frontiers in Immunology 07
(CD74 + CXCR4), and MIF-(CD74 + CD44) receptor-ligand

pairs. Similarly, STMN1+ neoplastic cells also established contacts

with other cells via the MIF-(CD74 + CXCR4) and MIF-(CD74 +

CD44) receptor-ligand pairs. Additionally, fibroblast cells and
A

B

F E

C

D

FIGURE 3

Trajectory analysis and cellular interactions analysis. (A) All squamous epithelial cells’ differentiation trajectories, pseudotime distribution, and cell
clusters on pseudotime and the proportion of each clusters. (B) Relative expression of HMGN2,ISG15 and STMN1 in pseudo-time. (C) Number and
strength of cellular communications between KRT15+ neoplastic, SPRR3+ neoplastic, STMN1+neoplastic and other type cells. (D) KRT15+ neoplastic,
SPRR3+ neoplastic and STMN1+neoplastic acting on different cells ligand-receptor bubble diagram. (E) Ligand-receptor bubble diagram of different
types of cells acting on KRT15+ neoplastic, SPRR3+ neoplastic and STMN1+neoplastic. (F) Enrichment analysis of the three clusters.
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smooth muscle cells exhibited the ability to communicate with

KRT15+ neoplastic cells through several ligand-receptor pairs.

Moreover, in Figure 3F, we conducted an analysis to assess the

enrichment of the three identified cell clusters. Cluster 0 displayed

enrichment across nearly all channels, indicating its prominence

across multiple biological processes. Conversely, Cluster 1 showed

enrichment primarily in spermatogenesis-related channels, while

Cluster 2 exhibited enrichment specifically in the down-regulated

KRAS signaling pathway.
3.3 Regulon prediction

Figure 4A presents the top 10 gene regulatory regulars that

exhibit high expression levels as well as the top 10 gene regulatory

regulars with low expression levels for each cell cluster. This analysis

offers insights into the differential gene expression patterns within

each cluster. Subsequently, Figure 4B showcases the expression of

five selected gene regulatory regulars within each cluster, with their

locations indicated on the UMAP plots. Furthermore,

Supplementary Figure 1 provides a comprehensive view of the

gene expression profiles within each cluster, displaying the

expression patterns of specific genes. To further elucidate the

differential gene expression patterns, Figures 4C, D present

heatmaps illustrating the differential expression of the top 10 gene

regulatory elements across all cells within each of the three cell

clusters. These heatmaps provide a visual representation of the

variations in gene expression, highlighting the distinctive

expression patterns specific to each cluster.
3.4 Aggressive and EMT score

In Figure 5A, the transcription factors displaying the highest

specificity for Cluster 0-2 epithelial cell subgroups were integrated

into the pseudotime inference analysis. Notably, MAFF, NFE2L2,

and FOXA1 were observed to be upregulated in Cluster 0, while

NEUROD1, NFYB, and OTX2 exhibited upregulation in Cluster 1,

and IKZF2, GRHL1, and SPI1 showed elevated expression in

Cluster 2. Moving to Figures 5B, C, our analysis demonstrated

that the Cluster 1 subpopulation displayed a notably higher

Aggressive score compared to other cell subpopulations. This

observation suggests an enhanced invasive ability of ESCC cells

within the Cluster 1 subpopulation. Furthermore, as illustrated in

Figures 5D, E, a substantial difference in the Epithelial-

Mesenchymal Transition (EMT) score between Cluster 0 and

Cluster 1/Cluster 2 was identified. Specifically, the EMT score of

Cluster 0 was significantly higher than that of Cluster 1 and Cluster

2. This disparity implies that the esophageal cancer epithelial cells

within the Cluster 0 subpopulation exhibit a more pronounced

migratory ability, potentially associated with an increased

propensity for metastasis.
Frontiers in Immunology 08
3.5 Model developing and evaluating

Based on the marker genes associated with Cluster 0-1, we

utilized the ssgsea algorithm to assess their abundance in TCGA

samples. We compared the survival outcomes between high and low

abundances and found that a high abundance of Cluster 0 is

indicative of better survival, whereas a high abundance of Cluster

1 is associated with poorer survival (Figures 6A, B). In Figure 6C, by

intersecting cluster-identified genes in TCGA, GEO and cluster0-1,

we identified a total of 1024 mark genes associated with the

grouping of epithelial cell subpopulations in ESCC. A model was

constructed using the training set of TCGA, and 38 prognostic

genes were identified by univariate COX analysis (P<0.01). The

results were presented using a forest plot to visualize the 21

protective factors and 17 risk factors (Figure 6D). Subsequently,

the EAS was developed using LASSO and multifactorial Cox

regression analyses, incorporating a total of 20 genes (Figures 6E-

H). In Figure 6I, we observed a significant batch effect in the TCGA

and GSE53624 independent cohorts, which were de-batched to

obtain eligible cohorts for subsequent analysis (Figure 6J). Survival

analysis showed that the prognosis of the high-EAS group in TCGA

was significantly worse than that of the low-EAS group, a finding

that was well validated in the GSE53624 cohort. Meanwhile, ROC

curves were evaluated for the model, and it was found that the

model had good predictive performance for the prognosis of

esophageal cancer patients (Figures 6K, L).
3.6 Immune infiltration analysis

The heat map depicted in Figure 7A employed five distinct

methodologies to evaluate the extent of immune cell infiltration in

both high- and low-EAS group. The findings indicated that immune

cell infiltration was more pronounced in the low-EAS group.

Figure 7B conducted an assessment of the association between

CD44, HHLA2, PDCD1, and TNFRSF18 with the risk score, as well

as with several modeled genes. The results demonstrated a

significant correlation between HHLA2 and the risk score, as well

as with some of the modeled genes. Furthermore, the risk score

exhibited a negative correlation with HHLA2, PDCD1, and

TNFRSF18. The “ESTIMATE” R software package was employed

to gauge the level of immune infiltration, and subsequent

correlation analysis revealed a noteworthy negative correlation

between the risk score and the immune score. Conversely, a

positive correlation was observed between the risk score and

tumor purity (Figure 7C). To assess discrepancies in immune cell

infiltration and immune-related pathways between the high- and

low-EAS group, the ssGSEA method was utilized. The outcomes

unveiled that the low-EAS group exhibited heightened levels of

immune cell infiltration, encompassing NK cells, aDCs, and

macrophages. Additionally, the low-EAS group manifested greater

activity in numerous immune-related pathways, such as CCR,

cytolytic activity, type I IFN response, among others (Figure 7D).
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3.7 TMB and immunotherapy cohort

The waterfall plot presented in Figure 8A, which compared

representative gene variants in the high- and low-EAS group,

unveiled that TP53, TTN, MUC16, CSMD3, and RYR2 were the

five genes exhibiting the highest frequency of variants. Notably,

there was no discernible visual distinction in tumor mutational
Frontiers in Immunology 09
burden (TMB) between the two groups, as observed in the heat

map. However, when patients were stratified based on TMB levels,

it was revealed that the high-TMB group exhibited a poorer

prognosis compared to the low-TMB group. Further stratification

of patients according to both the risk score and TMB yielded

intriguing findings in Figure 8B. Specifically, it was observed that

the low-TMB and high-EAS group experienced the most
A B

C

D

FIGURE 4

Identification of differently expressed gene regulatory elements. (A) The first 10 highly expressed genes and the first 10 lowly expressed genes in
each cluster. (B) The expression of five genes in each cluster were showed in Violin plot and UMAP plot. (C, D) Heatmap presenting the distribution
of gene regulatory elements in different clusters.
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unfavorable prognosis. In the cohorts receiving immunotherapy,

namely GSE91061, GSE100797, GSE126044, and GSE35640, a

comparative analysis demonstrated that the majority of patients

in the low-EAS group exhibited a significantly higher proportion of

treatment responders when compared to the high-EAS group. The

statistical significance of these differences was assessed using

various methods, including the Bonferroni adjusted value, the

FDR adjusted value, and the Nominal p value, with the majority

of the disparities found to be statistically significant (Figure 8C).
Frontiers in Immunology 10
3.8 Enrichment analysis and
immunization checkpoints

A comprehensive correlation analysis was undertaken between

the risk score and hallmark gene sets, as well as the cancer immunity

cycle, revealing a clear negative association between the risk score

and most components of the cancer immunity cycle. Notably, in the

hallmark-related analysis, a positive correlation was observed

between the risk score and specific pro-oncogenic pathways,
A

B C

D E

FIGURE 5

Invasion and EMT Features. (A) The cell trajectory analysis of different regulons. (B, C) Aggressive levels of three clusters were showed in UMAP plot
and Violin plot. (D, E) EMT levels of three clusters were showed in UMAP plot and Violin plot. ***P < 0.001; ns, P < 0.05.
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including DNA repair, E2F targets, and G2M checkpoint

(Figure 9A). Signaling pathway differences in different risk groups

were assessed using marker gene sets. Figure 9B illustrates that

enrichment in signaling pathways such as Notch signaling, TGF

beta signaling, angiogenesis, and G2M checkpoint was primarily
Frontiers in Immunology 11
observed in the high-EAS group. Conversely, the low-EAS group

demonstrated enrichment in KRAS signaling, the reactive oxygen

species pathway, and fatty acid metabolism. To further explore

these findings, GO and KEGG enrichment analyses were conducted

using the GSEA method. KEGG enrichment analysis indicated
A B C

D E F

I K

J L

H G

FIGURE 6

Model developing and evaluating. (A, B) The effect of cluster0 and 1 abundance on survival. (C) Venn diagram showing intersection genes of
Epicluster0_1 with GEO and TCGA cohorts. (D) Forest plot shows the results of univariate COX analysis. (E) Volcano plot showing up- and down-
regulated differential genes in the cohort. (F, G) LASSO regression screening for important prognosis-related genes. (H) Distribution of coefficient
values of model genes. (I, J) Discernible batch effect detected in TCGA and GSE53624 cohorts, ensuring harmonized data integration by mitigating
batch effects. (K, L) Differences in survival between the high and low risk groups in the TCGA and GSE53624 cohorts are presented separately, along
with their ROC curves.
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significant enrichment in pathways associated with ECM receptor

interaction and focal adhesion for the high-EAS group. In contrast,

enrichment in pathways related to arachidonic acid metabolism,

linoleic acid metabolism, KRAS signaling, the reactive oxygen

species pathway, and fatty acid metabolism was observed in the

low-EAS group. Additionally, GO enrichment analysis

highlighted significant enrichment in pathways related
Frontiers in Immunology 12
to embryonic forelimb morphogenesis, embryonic skeletal

system morphogenesis, sprouting angiogenesis, and collagen for

the high-EAS group. Notably, substantial enrichment was observed

in sprouting angiogenesis and collagen fibril organization

pathways (Figure 9C). Potential effective chemotherapeutic agents

for different risk groups were explored using the “oncopredict”

R package . The results ident ified six drugs , namely
A B

C D

FIGURE 7

Assessment of immune infiltration. (A) Heat map showing the differences in immune cell infiltration between two risk groups assessed using five
algorithms. (B) Bubble plots demonstrating the correlation between riskScore and part of model genes and immune checkpoint expression.
(C) Scatter plot elucidates the correlation between risk score and stromal score, immune score, ESTIMATE score, and tumor purity, revealing
intricate interconnections within the tumor microenvironment. (D) SsGSEA enrichment analysis shows high and low risk groups in terms of immune
cell infiltration and enrichment of immune-related pathways.
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Tozasertib, PRT062607, IRAK4_4710, Carmustine, AT13148, and

Dactinomycin, which may hold greater efficacy as potential

antitumor agents for low-EAS patients (Figure 9D).
3.9 Vitro experimental validation

In TCGA, the expression levels of APLP2, CDCA4, PTMA and

VIM were significantly different between normal and tumor samples

with HR>1, while the other model genes showed no significant

difference or small HR (Supplementary Figure 2B). To further
Frontiers in Immunology 13
validate these four model genes, qRT-PCR was performed using

surgically resected tumor tissues and normal esophageal tissues, and

it was found that the expression of APLP2, CDCA4, and VIM genes

was significantly up-regulated in the tumor tissues, whereas the

expression of the PTMA gene was also up-regulated but not

statistically different (Figures 10A-D). Furthermore, we used siRNA

to inhibit the expression of APLP2 in KYSE30 and TE1 cells. CCK-8

and colony formation assays revealed that the inhibition of APLP2

significantly suppressed the proliferation capacity of ESCC cells

(Figures 11A, B). Supplementary Figure 2A showed that immune

checkpoint genes such as CD44, HHLA2, PDCD1 and TNFRSF18
A B

C

FIGURE 8

Mutation landscape analysis. (A) Waterfall plots depicting differences in frequently mutated genes for esophageal cancer in high and low risk groups.
The left panel shows mutation rates, with genes sorted by mutation frequency. (B) Survival curves showing the difference between survival among
different subgroups. (C) Subgraph analysis of the GEO dataset to assess the association between EAS and response to immunotherapy.
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were significantly different in both high- and low-EAS group, with

CD44 showing high expression in the high-EAS group, whereas

HHLA2, PDCD1 and TNFRSF18 were more highly expressed in the

low-EAS group, suggesting that the effect of immunotherapy in the

low-EAS group may be better.
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4 Discussion

Esophageal cancer (EC), ranking 8th in incidence and 6th in

mortality globally, poses a severe risk. With the current incidence

rates, an estimated 957,000 new cases of EC are projected by 2040
A

B C

D

FIGURE 9

Enrichment analysis and immunotherapy analysis. (A) The relationship between risk scores and the steps of tumor immune cycle and hallmark gene
sets. (B) GSVA enrichment analysis demonstrates the enrichment of hallmark gene sets between high- and low-risk groups. (C) GSEA enrichment
analysis showed the enrichment of different genes in the GO and KEGG pathways between different risk groups. (D) Box plots comparing the
sensitivity of high- and low-risk groups to six chemotherapeutic agents.
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(1, 27, 28). Unfortunately, many patients are diagnosed at advanced

stages, leading to dismal 5-year survival rates (2). Immunotherapy

has emerged as a promising option for various cancers, including

EC (29–31). This innovative approach leverages the immune system

to combat malignant cells, inhibiting tumor progression. However,
Frontiers in Immunology 15
individual responses vary, and complications may arise. Precise

molecular characterization is urgently needed for targeted anti-

tumor therapies (3).

In this study, all esophageal cancer squamous epithelial cells were

classified into three clusters using the UMAP dimensionality reduction
A

B

C

D

FIGURE 10

Experimental validation of model gene. (A) Box plots showing differential expression of APLP2 in tumor and normal tissues in TCGA-ESCC;10 relative
expression of APLP2 gene in pairs of cancer and paracancer samples. (B) Box plots showing differential expression of CDCA4 in tumor and normal
tissues in TCGA-ESCC; 10 relative expression of CDCA4 gene in pairs of cancer and paracancer samples. (C) Box plots showing differential
expression of PTMA in tumor and normal tissues in TCGA-ESCC;10 relative expression of PTMA gene in pairs of cancer and paracancer samples.
(D) Box plots showing differential expression of VIM in tumor and normal tissues in TCGA-ESCC;10 relative expression of VIM gene in pairs of cancer
and paracancer samples. **P < 0.01; ns, P > 0.05.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1322147
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1322147
algorithm, and then 20 model genes related to ESCC prognosis were

obtained by COX regression and Lasso regression analysis of cluster

mark genes, and EAS were constructed based on them. Based on the

EAS, patients were divided into high- and low-EAS group, and the

survival analysis found that the prognosis of the high-EAS group was

significantly worse. ROC curve analysis was performed on the training

and test groups and found that the AUC values of the TCGA cohort

and the GEO53624 validation cohort were above 0.7, showing good

discriminatory ability. The model was applied to four immunotherapy

cohorts (GSE91061, GSE100797, GSE126044, GSE35640) and found

that patients in the low-EAS group had better immunotherapy

outcomes. The results of drug sensitivity tests showed that

Tozasertib, PRT062607, IRAK4_4710, Carmustine, AT13148 and

Dactinomycin could be potential agents for esophageal cancer

treatment. In addition, we performed qRT-PCR in vitro validation

and found that APLP2,CDCA4 and VIM genes were significantly

overexpressed in tumor tissues, and the expression of PTMA gene was

also upregul XCated, but the difference lacked statistical significance.

APLP2, located on chromosome 16, is a gene that encodes the

APLP2 protein. The APLP2 protein is a type I transmembrane protein

involved in crucial cellular processes such as migration, adhesion,

proliferation, and signaling. Previous research has highlighted the

dysregulation of APLP2 in various cancer types, including colorectal,

lung, breast, and pancreatic cancers (32–35). Its involvement in

abnormal growth, invasion, and metastasis has been observed.

However, there is inconsistency regarding the expression pattern

(increase or decrease) of APLP2 in different tumors, and the precise

underlying reasons and resulting effects remain unknown (36).

Notably, a study by Tao et al. focused on hepatocellular liver cancer

and constructed a predictive model based on four disulfide apoptotic

differential genes, including APLP2. This model demonstrated high

predictive performance in multiple cohorts, revealing that APLP2

influences the oncogenic processes of hepatocellular liver cancer by

regulating apoptosis and the cell cycle (37). Gao et al. investigated renal

cell carcinoma and found that APLP2 expression serves as an

independent predictor of survival prognosis (P=0.026), indicating its

significance in patient survival and prognosis (38). Additionally,

Poelaert et al. identified increased APLP2 expression in pancreatic
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cancer epithelium compared to pancreatic intraepithelial neoplasia

epithelial cells. This finding was further validated in a KPC mouse

model, suggesting that APLP2 could be a potential therapeutic target

for pancreatic cancer (39). In the present study, the expression of

APLP2 in esophageal cancer tissues was found to be significantly

higher than in normal tissues, and this observation was confirmed by

qPCR analysis.

CDCA4 is a gene that encodes a protein with crucial functions in

regulating the cell cycle, controlling E2F-dependent transcriptional

activation, and governing cell proliferation. Its role in cell division is of

significant importance (40). Previous studies conducted using cellular

and animal models have demonstrated the association of CDCA4 with

various malignant tumors. In breast cancer, non-small cell lung cancer,

osteosarcoma, and squamous cell carcinoma of the head and neck,

CDCA4 has been found to be up-regulated (41–44). In the realm of

nephroblastoma, Li et al. discovered that CDCA4 exhibited high

expression levels and played a role in promoting cell proliferation

while inhibiting apoptosis. This effect was mediated through the

activation of the AKT/mTOR signaling pathway (45). Furthermore,

Zheng et al. constructed a prognosticmap for esophageal cancer, utilizing

eight genes, including CDCA4, UBE2Z, AMTN, AK1, TLE1, FXN,

ZBTB6, and APLN. This columnar map holds promise in providing

valuable insights for precise clinical management of the disease (46).

The PTMA gene encodes a small acidic protein that is widely

distributed throughout the body and possesses notable pro-

tumorigenic characteristics. This protein exerts inhibitory effects on

apoptosis while promoting tumor cell proliferation. High expression

of PTMA has been associated with a poorer prognosis in several

tumor types, including esophageal, bladder, melanoma,

hepatocellular, and gallbladder cancers (47–51). In addition to its

intracellular functions, PTMA can also be secreted extracellularly and

act as a damage-associated molecular pattern (DAMP) during

cellular stress and infection. Under such circumstances, PTMA

exhibits diverse immunomodulatory functions, including its role in

anti-tumor immunity (52). Shao et al. conducted a study utilizing

weighted gene co-expression network analysis (WGCNA) to identify

differentially expressed genes and key modules contributing to the

development and progression of ESCC. Their findings suggest that
A B

FIGURE 11

In vitro Experiment (A, B) CCK-8 detection and colony formation assays show that inhibition of APLP2 expression significantly suppressed the
proliferation of ESCC cells. **P < 0.01; ***P < 0.001.
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the PTMA gene may serve as a potential prognostic marker for ESCC

(53). Another investigation by Chen et al. found that PTMA

expression is significantly elevated in ESCC compared to normal

tissues. Inhibition of PTMA expression was shown to substantially

reduce the activity of ESCC cells while promoting apoptosis.

Furthermore, PTMA was found to bind to HMGB1, influencing

mitochondrial oxidative phosphorylation and impacting the

malignant progression of ESCC (54). In our present study, we

observed overexpression of the PTMA gene in esophageal cancer

tissues, which was further validated through in vitro experiments.

These findings underscore the potential of PTMA as a target for

immunotherapy in the treatment of EC.

The VIM gene encodes an intermediate filament protein that

belongs to the family of cytoskeletal proteins. This protein plays a

crucial role in providing structural support and regulating various

cellular functions. Overexpression of VIM has been consistently

associated with key features of tumor progression, including

invasion, metastasis, and resistance of tumor cells. Consequently,

elevated VIM expression is considered one of the hallmarks of tumor

development and prognosis (55, 56). In the context of gliomas, Liu

et al. made an intriguing discovery linking high expression of VIM

with negative patient survival outcomes. They also observed a positive

correlation between VIM expression and immune infiltration as well

as tumor progression. These findings suggest that VIM could

potentially serve as a target for immunotherapy in the treatment of

gliomas (57). In a study by Lien et al. focused on invasive low-stage

endometrial carcinoma, they found that lower expression of epithelial

waveform protein and VIM gene correlated with poorer recurrence-

free survival. The loss or low expression of VIM was identified as a

potent FIGO stage I recurrence marker, emphasizing its prognostic

significance in this particular cancer type (58). In summary, the

aforementioned four genes play vital roles in the development of

ESCC and warrant further investigation.

Two specific subgroups that markedly influence the prognosis of

ESCC patients have been identified through an investigation into the

heterogeneity within malignant epithelial cell subgroups of

esophageal cancer. A prognostic prediction model for ESCC has

been constructed using 20 distinctive genes within these subgroups,

showcasing a high degree of stability and accuracy, as validated in an

external dataset. This model is positioned as a robust tool for the

clinical treatment of ESCC, offering personalized treatment options

tailored to individual circumstances of patients.
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The expression of four regulons in each cluster were showed in Violin plot
and UMAP plot.

SUPPLEMENTARY FIGURE 2

(A) Box plots showing differential expression of 4 immunization checkpoint

genes in tumor and normal tissues in TCGA-ESCC. (B) Box plots showing
differential expression of 16 model genes in tumor and normal tissues in

TCGA-ESCC.
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