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Ocular abnormalities have been reported in association with viral infections,

including Long COVID, a debilitating illness caused by the Severe Acute

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This report presents a

case of a female patient diagnosed with Acute Macular Neuroretinopathy

(AMN) following an Influenza A virus infection during Long COVID who

experienced severe inflammation symptoms and ocular complications. We

hypothesize that the rare occurrence of AMN in this patient could be

associated with the immune storm secondary to the viral infection during

Long COVID.
KEYWORDS
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Highlights
• A case of AMN secondary to Influenza A during Long COVID is reported.

• Influenza A infection was confirmed by antibody detect ion of a

nasopharyngeal swab.

• The initial optical coherence tomography image of the fundus examination showed

macular edema in the AMN patient.
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Introduction

Acute Macular Neuroretinopathy (AMN) is a rare condition

that was first described by Bos and Deutman, and it is characterized

(1) by subacute paracentral scotoma and damage to the outer retinal

layers. It is widely agreed among scholars that AMN has been

associated with various vascular factors (2), viral infections (3), and

the use of oral contraceptives (1). With the outbreak of Coronavirus

Disease 2019 (COVID-19), an increasing number of patients have

experienced diverse symptoms (4) as adverse outcomes following

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)

infection (5). Interestingly, the incidence (6) of AMN has

significantly risen following the COVID-19 outbreak. Although

the precise mechanism of retinal diseases caused by SARS-CoV-2

remains unknown, several scholars have proposed hypotheses for

infection pathogenesis. These hypotheses suggest that SARS-CoV-2

targets cells, enhances binding to the Angiotensin-Converting

Enzyme 2 (ACE2) receptor, triggers the release of pro-

inflammatory factors, causes vascular endothelial dysfunction (7),

and eventually leads to a systemic cellular immune storm (8–10).

Notably, ACE2 receptors are expressed in retinal structures (6).

Influenza virus infection is a common cause of respiratory tract

diseases in humans. Moreover, severe Influenza A Viruses (IAVs)

infection can lead to the production of a large number of

chemokines and inflammatory factors, resulting in a severe

immune storm (11). Additionally, unusual cases of secondary

infections with violent immune inflammation caused by influenza

viruses post SARS-CoV-2 infection warrant further attention.
Case description

A 49-year-old Chinese woman was admitted to our hospital,

presenting with a 3-day history of paracentral scotoma in both eyes.
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An Influenza A virus infection was confirmed through antibody

detection from a nasopharyngeal swab. She reported experiencing a

viral prodrome 1 week prior to the onset of visual symptoms, which

included hyperpyrexia. Laboratory examinations revealed elevated

levels of white blood cells, neutrophil percentage, hypersensitive C-

reactive protein, and procalcitonin, indicating severe systemic

inflammation. The patient had completed a full course of the

COVID-19 vaccine and had not received the influenza vaccine.

She had been suffering from fatigue and memory loss since she

contracted SARS-CoV-2 3 months prior. Before seeking medical

attention, she had taken oral oseltamivir for 5 days. The best-

corrected visual acuities in both eyes were 20/50, with slit-lamp

examinations revealing no abnormalities. China CDC has reported

that all the random gene samples collected in China between

December 2022 and January 2023 were identified as Omicron

strains. Optical coherence tomography (OCT) conducted at a

local hospital revealed macular edema (ME) in both eyes

(Figure 1A). Classic wedge-like lesions were detected in infrared

reflectance (IR) and fundus photography at our hospital

(Figures 2A, B), but weak reflex lesions were unremarkable in

Autofluorescence (AF) (Figure 2D). Spectral-domain optical

coherence tomography (SD-OCT) indicated hyperreflectivity at

the retinal outer layer (Figure 1B), which is consistent with

paracentral acute middle maculopathy (PAMM) (Figure 2C).

Further examinations using fundus fluorescein angiography

(FFA) and optical coherence tomography angiography (OCTA)

were conducted. FFA results showed preretinal arteriolar

obstruction in both eyes, with perivascular fluorescence shielded

in the early angiography, and perivascular fluorescence leakage and

mild telangiectasia in the later stage, corresponding to the lesions in

the IR image (Figures 2E, F). OCTA revealed an incomplete

macular arch ring structure and hypoperfusion in both the

superficial capillary plexus (SCP) and the deep capillary plexus

(DCP) (Figure 2G). The patient was diagnosed with AMN
B
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FIGURE 1

(A) OCT image of the patient with the paracentral scotoma with oral 3-day oseltamivir, showing the macular edema (red arrowhead) and the
hyperreflectivity at the retinal outer layer (yellow arrowhead). (B) the AMN lesions in the outer retinal layer can be found easily (yellow arrowhead)
with 1 week of oral oseltamivir. (C) some repair of the microcapsule cavity (red arrowhead) in the retina and the structure of the outer retinal layer 2
weeks of treatment (yellow arrowhead). (D) the retinal structure was obviously repaired at the 1-month follow-up appointment (yellow arrowhead).
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secondary to Influenza A. Following treatments of oral Oseltamivir,

glucocorticoid anti-inflammatories, and traditional Chinese

medicine, the patient reported a slight persistent scotoma. A 1-

month follow-up showed the presence of a microcapsule cavity in

the retina of both eyes (Figure 1C) and significant repair of the

retinal structure (Figure 1D).
Discussion

Numerous studies have demonstrated that female patients (12–

14) are more susceptible to complications associated with Long
Frontiers in Immunology 03
COVID (LC). This susceptibility could potentially be attributed to

factors such as active centromeric features (15), variations in sex

hormone levels (16), persistent deficiencies in dendritic cells, and

dysbiosis (12). However, further investigation is required to

ascertain the significance of these differences. Recent research has

further uncovered that residual SARS-CoV-2 can persist in various

organ systems (17–20), thereby increasing oxidative stress response

(21) and cytotoxic effects (7), which may contribute to LC

development. The prevalence of LC is estimated to exceed 10%

(22, 23), with some reports suggesting that it could impact 50–70%

(24, 25) of hospitalized patients. Neurological manifestations (26) of

LC encompass fatigue (27, 28) and memory (29) impairment.
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FIGURE 2

(A) the wedge-like AMN lesion is classic (yellow arrowhead) and some perivascular cotton plaques (blue arrowhead) in the fundus photograph.
(B) IR image showing a wedge-like AMN lesion (yellow arrowhead) and radial weak reflex lesions (blue arrowhead). (C) the SD-OCT image shows the
hyperreflectivity at the retinal outer layer (yellow arrowhead) with PAMM lesion in inner retinal layers (orange arrowhead). (D) the AMN lesion is an
unremarkable weak reflex lesion (yellow arrowhead), and there is a perivascular weak reflex lesion not detectable (blue arrowhead) in the AF image.
(E, F) FFA showed the unremarkable weak reflex lesions (yellow arrowhead) and the perivascular occluded fluorescence (blue arrowhead) at the early
stage, then the weak reflex lesion in macula (yellow arrowhead), and the strong perivascular fluorescence at the later stage (blue arrowhead). (G) the
OCTA image showed the decreased density of SCP and DCP.
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Studies have also disclosed long-term alterations in the rigidity of

blood cells and vessels (30), potentially affecting oxygen transport

and reducing blood flow density in LC patients during follow-up

appointments (26). Additionally, as COVID-19 prevention and

control measures are relaxed (31), the incidence of influenza

infection has rebounded to pre-pandemic levels (32). Influenza

virus infection may cause a delayed innate immune response (33).

This, in turn, may disrupt the biphasic immune response, triggering

virus-independent mechanisms (34, 35) following immune escape.

These mechanisms, including immune dysregulation and vascular

inflammation, could potentially exacerbate LC symptoms.

Intriguingly, research has indicated that both SARS-CoV-2 and

all three subtypes (36) of IAVs can activate the Retinoic Acid-

Inducible Gene I (RIG-I) pathway (37, 38), leading to the formation

of Neutrophil Extracellular Traps (NETs) (39). This suggests a

potential similarity between the two viruses. RIG-I receptors, found

in various cells such as dendritic cells (40), retinal Müller cells (41),

and endothelial cells (42), play a pivotal role in retinal inflammation

and the production of Type I Interferon (IFN) immune responses

by retinal pigment epithelium (RPE) (43). Notably, several studies

have identified a potential link between IAVs and eye disorders (44–

46). Moreover, IAVs have been found to replicate in RPE cells (45,

46). Furthermore, it has been observed that LC can potentially

impair the function and structure of dendritic cells (47), leading to

adaptive immune response disorders that exacerbate immune

disorders and microcirculatory vascular dysfunction (48). Some

researchers propose that SARS-CoV-2 infection can disrupt the

peripheral immune system, leading to the release of cytokines and

resulting in long-term chronic low-grade inflammation (14),

oxidative stress (49), and tissue damage (39). Studies on primary

care patients (50) with COVID-19 have found that neutrophil

levels, which are chronically affected by LC, participate in the

cytokine storm through activated inflammatory vesicles (51). The

persistence of NETs in LC suggests a potential risk of long-term

imbalance of the innate immune response and low levels of the

prothrombotic state (39, 52). The activation of neutrophils indicates

their involvement in immune thrombosis, while NETs play a crucial

role in the mechanism of thrombosis (53).

In the context of the innate immune response, the RIG-I

receptor, a Pattern Recognition Receptor (PRR), plays a crucial

role in recognizing viral infections (54). RIG-I is responsible for the

recognition of viral RNA through the ubiquitination (55) of long

non-coding RNAs (lncRNAs), aerobic glycolysis , and

phosphorylation. This recognition triggers a cascade reaction

between RIG-I/Melanoma Differentiation-Associated Protein 5

(MDA5) and Mitochondrial Antiviral Signaling Protein (MAVS),

promoting the production of IFN and coordinating the antiviral

immune response (56–58). Additionally, RIG-I is responsible for

the secretion of inflammatory factors and cytokines such as

Interleukin-6 (IL-6), Interleukin-8 (IL-8), and Vascular

Endothelial Growth Factor (VEGF) (59). However, the regulation

of the immune response by RIG-I is not stable, necessitating further

studies to clarify the mechanisms involved.

The RIG-I pathway of the innate immune system primarily

initiates the signaling cascade during the early stage of viral

infection (60). However, severe infections and hyperthermia can
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cause a rapid depletion of retinol and a reduction in retinoic acid

levels (61, 62). Consequently, the RIG-I pathway becomes blunted

and eventually collapses due to this depletion (63). This disruption

(62) in the production of Type I IFN results in the immune defense

mechanism transitioning into adaptive immunity, leading to the

activation of a large number of centrocytes. This activation triggers

the generation of cytokine storms through the over-discharge

pathway of the nuclear factor kappa B (NF-k B) (64), causing a

condition known as “Retinoic Acid Depletion Syndrome” (RADS)

(64). RADS leads to vascular dysfunction, tissue damage, and the

generation of reactive oxygen species (ROS) (65). Therefore, we

hypothesize that the low-grade inflammatory state induced by LC,

coupled with the hyperthermia caused by acute IAV infection, led to

RADS and the activation of NETs. This activation, in turn,

stimulated the release of proinflammatory factors, leading to

retinal vascular endothelial dysfunction. This ultimately resulted

in hyperreflectivity and severe ME in the outer structures of the

retina. However, further studies are needed to confirm the link

between the relevant pathological mechanisms and the severe AMN

and ME in this patient.

Given the limited research on AMN, our study may be the first

to report a case of AMN secondary to IAV during LC. Notably, our

research differs from previous reports (44, 66–68) as we observed

early signs of binocular macular edema and disorganization of the

retinal layer following the resolution of ME. The etiology of AMN is

complex and remains to be fully established. Turbeville et al. (3)

have postulated that vascular factors may unify infection,

inflammation, and ischemia in the pathogenesis of this condition.

Our reported case may be associated with the microvascular

mechanism of AMN. A study (69) conducted by Marc et al.

revealed that infections can trigger innate immune responses,

which in turn can cause cytotoxicity, dysfunctional angiogenesis,

and ME. Furthermore, research (70) on ME secondary to other

retinal diseases has indicated that swelling of Müller cells and

activated neuroglia can lead to a decrease in Platelet-Derived

Growth Factor (PGDF) and the release of pro-inflammatory

cytokines such as VEGF through leukocyte-mediated processes.

This occurs when the human body is in a state of ischemia or

inflammation, and can induce impaired blood-retinal barrier,

increased vascular permeability, dysfunctional angiogenesis,

accumulation of subretinal fluid, and formation of retinal edema.

In fact, similar to Gomel et al. (71), we strongly believe that the

possible mechanisms for the ME of the patient may include

systemic immune storm such as hyperpyrexia and an increasing

index of inflammation. In our case, the patient who had a history of

SARS-CoV-2 infection accompanied by long-term fatigue and

memory loss. Combined with the positive influenza A test, we

suspect that the patient’s AMN with PAMMwas likely secondary to

IAV infection during LC.

PAMM refers to banded hyperreflective lesions (72) in the inner

layer of the retina that manifest clinically. Several reports have

suggested that PAMM may occur earlier than lesions such as in the

Foveal Avascular Zone (FAZ) (73), and it could be an early

manifestation of retinal vascular diseases. Multiple studies have

revealed that the occurrence of PAMM indicates ischemia (72) of

the deep retinal capillaries and impairment of the deep capillary
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complex, which is likely the main site of progression of retinal

ischemia. Influenza virus can cause disturbances in redox and

impairments such as anoxia (74, 75), which may explain why the

patient experienced retinal inner layer injury, PAMM, and

decreased density of SCP and DCP. Additionally, the occurrence

of retinal ischemia and PAMM may have prompted the retinal

inner layer to develop tiny gaps, which could have been caused by

increased levels of extracellular glutamate and inflammation in the

retina due to swelling Müller cells (76). Finally, the tiny gaps

subsided as the inflammation disappeared and the patient’s

systemic symptoms improved.

In conclusion, the occurrence of AMN in a patient who had

taken oral oseltamivir during the early stages of an Influenza A

infection could potentially be attributed to the excessive viral load in

the body and the ensuing severe inflammatory reaction. Following a

short-term oral corticosteroid treatment, the patient’s symptoms

were alleviated and the retinal structure restored. However, due to

the absence of follow-up in the later stages of this patient’s

treatment, there is a relative lack of observation of the disease’s

prognosis. Furthermore, the sample size of this study is small,

indicating the need for more data to analyze the clinical impact and

mechanism of AMN caused by influenza virus infection during LC.
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