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Primary colorectal cancer (CRC) often leads to liver metastasis, possibly due to

the formation of pre-metastatic niche (PMN) in liver. Thus, unravelling the key

modulator in metastasis is important for the development of clinical therapies.

Gut microbiota dysregulation is a key event during CRC progression and

metastasis. Numerous studies have elucidated the correlation between specific

gut bacteria strains (e.g., pks+ E. coli and Bacteroides fragilis) and CRC initiation,

and gut bacteria translocation is commonly witnessed during CRC progression.

Gut microbiota shapes tumor microenvironment (TME) through direct contact

with immune cells or through its functional metabolites. However, how gut

microbiota facilitates CRC metastasis remains controversial. Meanwhile, recent

studies identify the dissemination of bacteria from gut lumen to liver, suggesting

the role of gut microbiota in shaping tumor PMN. A pro-tumoral PMN is

characterized by the infiltration of immunosuppressive cells and increased

pro-inflammatory immune responses. Notably, neutrophils form web-like

structures known as neutrophil extracellular traps (NETs) both in primary TME

and metastatic sites, NETs are involved in cancer progression and metastasis. In

this review, we focus on the role of gut microbiota in CRC progression and

metastasis, highlight themultiple functions of different immune cell types in TME,

especially neutrophils and NETs, discuss the possible mechanisms of gut

microbiota in shaping PMN formation, and provide therapeutical indications

in clinic.
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1 Introduction

Colorectal cancer (CRC) is one of the commonest cancers

worldwide, with increased CRC incidence in individuals < 50

years of ages, also called young-onset CRC (1). Early stages of

CRC patients often receive surgery, although the pre-metastatic

niche (PMN) could have already been formed in distal sites, such as

liver, lung and lymph nodes. Nearly 25%-30% patients occur liver

metastases (2), which is the main cause of death in CRC patients.

Moreover, people with inflammatory bowel diseases (IBD) have a

strong correlation with tumorigenesis, suggesting that chronic

inflammatory environment is a key driving force of CRC (3). Due

to the characteristics of gut ecosystem, more and more studies have

demonstrated that gut microbiota, including bacteria, fungi, viruses

and Archaea are closely related to IBD, CRC and subsequent

metastasis. Indeed, gut microbiota can shape host immune system

and recruit immunosuppressive cells to booster CRC development;

provide genotoxic toxins to cause mutations in colon cells;

accelerate the development of CRC by interacting with

environmental factors (4). Therefore, unravelling the interplay

between gut microbiota and immune system help better

understand the pathology and treatment of CRC.

A chronic inflammatory microenvironment is commonly

observed in CRC, with the infiltration of different types of immune

cells. During innate immune responses, neutrophils serve as first host

defense against invading pathogens. Neutrophils kill pathogens

through phagocytosis, secretion of toxic granules and most

importantly, through the formation of neutrophil extracellular traps

(NETs). Upon activation, neutrophils release granule proteins and

chromatin and form web-like structures to capture and kill bacteria

(5). NETs are firstly identified in 2004 and are thought to be

indispensable for bacteria clearance. However, NET has been

considered as a double-edge sword in non-infectious diseases,

including ischemia reperfusion injury, non-alcoholic steatohepatitis,

atherosclerosis and tumors (6–8). NETs can contribute to the

progression and metastasis in cancers. Most interestingly, recent

studies have demonstrated the existence of NETs in the PMN

before the formation of metastases, rendering NET as an important

regulator/predictor in CRC progression (9). NETs have also been

found in the primary lesion of CRC, while how NETs formed remain

largely unexplored. Given that bacteria as one of the most important

activators in generating NETs, the crosstalk between gut microbiota

and NETs formation has arisen widely attention.

In this review, we discuss gut dysbiosis and the function of

immune cells in tumor microenvironment (TME), elucidate how

gut microbiota affect PMN formation and metastasis. Moreover, we

provide the clinical implications of NETs and gut microbiota in

predicting and treating CRC.
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2 Overview of immune cell landscape
and gut dysbiosis in TME

2.1 Gut microbiota dysbiosis contribute to
the development of CRC

One of the most important hallmarks of colorectal

tumorigenesis is gut microbiota dysbiosis, characterized by

decreased microbial diversity and enrichment of cancer-inducing

pathobionts (10). Using metagenomic shotgun sequencing on fecal

samples from healthy donors, advanced adenoma and carcinoma

patients, a number of Bacteroides and Parabacteroides species along

with Alistipes putredinis, Bilophila wadsworthia, Lachnospiraceae

bacterium and Escherichia coli were observed in carcinoma and

adenoma patients (11). Some bacteria strains have also been shown

to be enriched in patients with CRC, including Bacteroides fragilis,

pks+ Escherichia coli, Streptococcus gallolyticus and Morganella

morganii (Figure 1). These bacteria are closely related to

colorectal tumorigenesis (12–15). Enterotoxigenic Bacteroides

fragilis (ETBF) produces a metalloprotease toxin termed BFT,

which has been shown to be closely related to CRC. CRC patients

possess higher ETBF colonization when compared to healthy

controls (16, 17). Mechanistically, ETBF activates Stat3 in mice

and initiates a selective Th17 response, which triggers myeloid-cell-

dependent distal colon tumorigenesis (15). ETBF-induced

colorectal carcinogenesis is also depended on down-regulating

miR-149-3p and promoting PHF5A-mediated RNA alternative

splicing of KAT2A in CRC cells (18). ETBF could also increase

the stemness of CRC cells in vitro and vivo through TLR4-NFAT5-

JMJD2B pathway (19). Pks+ Escherichia coli contain a 50 kb hybrid

polyketide-nonribosomal peptide synthase operon (pks), which is

responsible for the production of genotoxin colibactin (20). Pks+

Escherichia coli cause interstrand crosslinks and double strand

breaks in epithelial cell lines and in mouse models of CRC. The

colibactin alkylates DNA and further results in single base

substitution (SBS) and small indel signature characterized by

single T deletions (21). Streptococcus gallolyticus (S. bovis)

promotes colon cancer progression possibly due to the activation

of b-catenin pathway in epithelial cells, further leads to the

enhanced expression of c-Myc and Cyclin D1 and promotes cell

proliferation (22). Moreover, S. bovis stimulates the production of

inflammatory cytokines such as TNF-a, IL-6, IL-1b and IL-8 in

human colonic cancer cell lines, which establishes a pro-

inflammatory microenvironment to facilitate tumor progression

(23). Morganella morganii produces a family of genotoxic

metabolites termed indolimines and induces DNA damage in

intestinal epithelial cells which in term causes increased colon

tumor burdens in gnotobiotic mouse models (12).
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2.2 Different immune cells infiltrate TME to
influence tumor progression

Immune cells infiltrate tumors while the types of immune

responses and their effects on tumor progression and metastasis

vary between CRC patients (24). Thus, it is of great importance to

understand the complexity of immune cell landscape during the

onset of CRC.

2.2.1 Innate immune cells in TME
2.2.1.1 Neutrophils and NETs formation

Neutrophils are most abundant leukocytes in human peripheral

blood and serve as important regulators in defense against

pathogens. The increased accumulation of neutrophils in both

primary tumor sites and metastasis sites are commonly observed

in CRC patients (25). Recent studies have shown that tumor-

associated neutrophils (TANs) can be polarized to two distinct

phenotypes including anti-tumorigenic N1 phenotype and pro-

tumorigenic N2 phenotype (26). N1 neutrophils produce

cytotoxic cytokines to induce cancer cell death, while N2

neutrophils support tumor growth by expressing arginase, MMP-

9, VEGF, CCL2, CCL5 and CXCL4 (27). Notably, most TANs in

tumor microenvironment appear to be N2 phenotype, favoring

tumor growth and immunosuppression.

Unlike other cells, neutrophils can be stimulated and further

form a web-like structure named neutrophil extracellular traps

(NETs) through a process called NETosis. NETosis is firstly
Frontiers in Immunology 03
defined as an important host defense reaction under bacterial

infection, since NETs contain anti-bacterial proteins such as

histones, neutrophil elastase (NE) accompanied by massive ROS

production. NETs are formed in multiple cancer types, including

breast cancer, colorectal cancer and lung cancer (28–30). Higher

levels of NETs in plasma are found in CRC patients, suggesting that

NET can be an important biomarker to predict the development of

tumor (31). NETs can support tumor cell metastasis through

shielding cancer cells in circulating blood, supporting tumor

vasculature outgrowth, promoting cancer-associated thrombosis,

regulating epithelial mesenchymal transition and promoting

inflammation (32, 33). NETs bind to CCDC25 on tumor cells and

subsequently activate ILK-b-parvin pathway to enhance cell

motility (34). Tumor-secreted protease cathepsin C promotes

breast cancer metastasis by regulating the formation of NETs

(30). NE and MMP-9, which are key components in NETs, cleave

laminin to induce the proliferation of dormant cancer cells in lung

by activating integrin a3b1 signaling (35). Moreover, NETs

regulates the efficacy of immunotherapies. In pancreatic cancer,

IL-17 drives NETs formation and mediates resistance to immune

checkpoint blockade therapy. Inhibition of neutrophils or PAD4-

dependent NETosis senses tumor cells to PD-1/CTLA-4 therapy

(36). While gut barrier disruption is commonly observed in CRC

patients, recent study has pointed that bacteria dissemination from

primary CRC could shape PMN in liver. Such metastatic niche is

characterized by inflammatory cytokines including TGF-b, CCL2,
TNF-a and IL-6. It is noteworthy that our previous data
FIGURE 1

Gut microbiota contribute to the development of CRC. Several bacteria strains (Pks+ E. coli, ETBF, Morganella morganii) directly cause DNA damage
and genetic alterations through bacteria toxins and metabolites, or activate the transcription factors such as STAT3 and b-catenin, both can promote
cell proliferation. On the other hand, bacteria shape the pro-inflammatory microenvironment, characterized by elevated level of pro-inflammatory
cytokines (TNF-a, IL-6, IL-1b, IL-8, IL-17), initiate Th17 cell responses to facilitate CRC progression. ETBF, Enterotoxigenic Bacteroides fragilis; BFT, B.
fragilis toxin; S. bovis, Streptococcus gallolyticus; Th17, T helper 17.
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demonstrates neutrophils accumulate in liver before the formation

of metastatic lesion, accompanied by NETs formation (37). This

provides new insights into NETs in shaping PMN formation in

CRC and might in other cancer cell types. Further investigations are

needed to clarify the function of early NETosis in distant

metastasis lesions.

2.2.1.2 Tumor-associated macrophages

TAMs are recruited by signal molecules including TGF-b,
CSF1, CCL2, IL-4 and IL-1. In TME, macrophages can be

polarized into two subtypes including classic M1 phenotype and

alternative M2 phenotype (38). M1 macrophages are induced by

bacterial products and interferons related to type 1 immune

responses, while M2 macrophages are induced by cytokines

involved in type 2 immune responses such as IL-4 and IL-13 (39).

M1 macrophages are associated with tissue damage and tumor cell

killing, while M2 macrophages are considered to exert tissue repair

and remodeling functions. Indeed, most macrophages in TME are

M2-like and the increased number of M2-like TAMs are closely

related to the poor prognosis of CRC patients (40). M2

macrophages are considered to be associated with tumor

progression and immune suppression. TAMs release CCL5 to

inhibit T cell-mediated killing of tumor cells and promote

immune escape by stabilizing PD-L1 both in vitro and in vivo

(41). Notably, TAMs could also regulate tumor metastasis, by either

regulating epithelial mesenchymal transition process or enhanced

angiogenesis (42). SPP1+ TAMs exhibit enriched gene signatures

involved in Wnt signaling pathway and support tumor growth

while CXCL5+ TAMs enriched in angiogenesis pathways, indicating

that TAMs might promote tumor vasculature to facilitate tumor

metastasis (43). Moreover, TAMs also participate in drug resistance

via multiple mechanisms. TAMs desensitize CRC cells to 5-

fluorouracil treatment via MRP1-dependent drug efflux process

by CCL17-CCR4-PI3K-AKT axis in tumor cells (44). Thus,

targeting TAMs may provide therapeutical benefits to CRC

patients. Until now, several clinical trials have been carried out to

reprogram TAMs or functionally inhibit TAMs, including

chemokine inhibitors (anti-CCL2 antibody, CCR5 antagonist),

CSF1R inhibitors and antibodies, CD47/SIRPa antibodies and

CD40 antibodies. The combination of TAMs inhibitors and other

drugs including chemotherapeutics and immune-based therapies

might be the promising treatment strategy.

2.2.1.3 Dendritic cells

Dendritic cells (DCs) are antigen presenting cells (APCs) and

possess the ability to fine-tuning innate and adaptive antitumor

immunity. DCs influence tumor progression and clinical outcome

of CRC patients (45). The most important function of DCs is

antigen presentation. DCs capture antigens and process antigens to

form antigenic peptides on MHC I and MHC II molecules, which

further lead to the activation of CD4+ and CD8+ T cells (46). DCs

have different subsets including conventional DC (cDC),

plasmacytoid DC (pDC) and monocyte-derived DC (moDC). A

lower number of colon cancer-infiltrating pDCs is significantly

linked to worse prognosis, indicating pDCs are novel prognostic
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factor in CRC patients (47). Defects in DCs are commonly observed

in multiple cancer types, including CRC, which represents a tumor-

escape mechanism to generate immunosurveillance (48). Tumor

cells secrete cytokines such as VEGF, IL-10, PGE2 and TGF-b to

inhibit the function of DCs, characterized by inhibited DC

maturation, low MHC II and co-stimulatory molecule expression.

For instance, IL-10 blocks the differentiation of DCs from

monocytes to impair the APC function of DCs (49), while IL-6

blocks the differentiation of CD34+ progenitor cells into DCs and

inhibit T cell proliferation (50). Cancer-associated fibroblasts

secrete WNT2 to suppress the functions of DCs in TME, and

targeting WNT2 restores DC differentiation and enhances the

efficacy of immune checkpoints inhibitors (51). Moreover, DCs

also express immune checkpoints such as PD-1 and CD80/CD86

molecules on the cell surface to induce T cell exhaustion. Owing to

the original function of DCs, numerous studies have pointed that

manipulating DCs might be an effective way to treat cancers. DC-

based cancer immunotherapy has gained attention over the past few

decades. Autologous DCs were isolated from patients and modified

ex vivo using patient-specific antigens and re-administrated, to

induce intense adaptive immune responses. A variety of antigens

have been used to manipulate DCs including CEA, MAGE, HER2

and other tumor-cell derived antigens (whole tumor lysates, DNA,

mRNA or whole tumor cells). DC vaccination approach can also

serve as an effective treatment against cancers (52). More efforts are

needed to clarify specific DC subsets and its functions in TME to

establish specific cancer treatments.
2.2.2 Adoptive immune cells in TME
2.2.2.1 T cells

Tumor-infiltrating T lymphocytes are highly heterogeneous

within CRC patients and have a large impact on cancer

immunotherapies. CRC patients display microsatellite instability

(MSI) have better responses to immune-checkpoint blockade of

PD-1 than those display microsatellite-stable (MSS), while the

underlying mechanisms are not fully understood (53, 54). An

integrated approach, named STARTRAC has been carried out to

track the dynamic relationship among T cells in CRC and identified

8 CD8+ and 12 CD4+T cell clusters, including naïve, central

memory, effector memory and recently activated effector memory

or effector T cells, mucosal-associated invariant T (MAIT) cells,

blood-Treg cells, tumor-Treg cells, and exhausted CD8+ T cells,

Th1-like cells, Th17 cells, follicular T helper and T regulatory cells

and tissue-resident memory T cells. Single cell transcriptome

analysis reveals exhausted CD8+T cells is the most abundant

proliferative cells and the transition from effector memory to

exhausted T cells mainly occurred in tumor (55). Notably, several

mechanisms have been identified to explain CD8+T cell exhaustion

in TME. Tumoral ammonia levels induce T cell metabolic

reprogramming, leading to CD8+T cell exhaustion. Enhancing

ammonia clearance reactivates T cells, decreases tumor growth,

and extends survival in pre-clinical mouse model (56). Matrix Gla

protein promotes NF-kB signaling and upregulates PD-L1

expression through enrichment of intracellular free Ca2+ levels,

thereby facilitates CD8+T cell exhaustion (57). High-serum
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Dickkopf 1 (DKK1) is related to poor response to PD-1 blockade

therapy due to the suppression of CD8+T cells through GSK3b/
E2F1/T-bet axis (54). Thus, restoration of CD8+T cell function

provide therapeutical benefits in CRC patients.

CD4+T cells exhibit lower proliferative signature compared to

CD8+T cells, with high abundance of tumoral Treg cells in CRC

patients. Interestingly, MSI tumors exhibited abundant Th1-like cells,

whereas MSS tumors were moderately enriched with Th17 cells. The

enrichment of Th1-like cells in MSI patients might contribute to the

favorable response to immunotherapies because similar research has

demonstrated Th1 cells are involved in anti-CTLA4 therapy in

melanoma patients (58). Notably, CRC patients with higher

numbers of Th1 cells had prolonged disease-free survival, whereas

patients with higher numbers of Th17 cells had a poor prognosis (59).

Th17 cells produce Th17-type cytokines (including IL-17A, IL-17F,

IL-21 and IL-22), TNF-a and IL-6 to synergistically activate STAT3

and NF-kB to promote cancer cell growth (60). TGF-b signaling in

Th17 cells promotes uncontrolled IL-22 release and tumorigenesis in

mice through AhR induction and PI3K signaling (61). Treg

expansion in tumor microenvironment is also a hallmark of

immunosuppression and positively correlated to poor clinical

outcomes (62). However, some studies reveal that Treg infiltration

correlates with better prognosis (63, 64). This paradoxical

phenomenon can be explained by the existence of two types of

Treg cells in TME. In CRC patients, infiltrated Treg cells can be sub-

divided into two cell types, including FOXP3lo non-suppressive T

cells and the suppression competent FOXP3hi Treg cells. CRC

patients with abundant infiltration of FOXP3lo T cells showed

better prognosis than those with predominantly FOXP3hi Treg cells

(65). Thus, depletion of FOXP3hi Treg cells have been proved to

augment antitumor immunity and could be used as an effective

treatment strategy for CRC.

2.2.2.2 B cells

B cells possess the functions of not only antibodies secretion,

but also antigens presentation. B cells have multifaceted roles in

tumor progression. The initial studies indicate B cells are mainly

pro-tumoral, since the depletion of B cells using monoclonal

antibodies showed reduced tumor burden in mice (66). Notably,

B cells can generate different immunosuppressive proteins

including IL-10, IL-35 and TGF-b, thus inhibit anti-tumor

immunity (67). In human CRC, B cell antigen presentation and

function are largely attenuated in tertiary lymphoid structures,

while B cells in TME might positively correlate to prolonged

survival (68). This divergence might due to the heterogeneity and

different states of B cells. Using single-cell transcriptome analysis of

infiltrating B cell landscape in colorectal cancer, Xia et al. found two

main B cell populations including CD20+ B cells (mainly localized

in tertiary lymphoid structures) and CD138+ plasma cells (mainly

localized in tumor stroma). Notably, CD20+ B cells express high

level of immune checkpoint-related genes, which represents the

immunosuppressive environment (69). The number of activated B

cells in TME are significantly decreased in CRC with liver

metastasis, which is correlated to survival and clinical outcomes

(70), suggesting that B cells in TME might have anti-tumoral
Frontiers in Immunology 05
function. However, a leucin-tRNA-synthase-2-expressing B cell

subset is found and located outside the tertiary lymphoid

structures and correlated with shortened survival (71). Given the

close relationship between B cells and tumor prognosis, enhancing

the activity of anti-tumor B cell and inhibiting the pro-tumor B cell

function can be promising targets.
2.3 Interplay between gut microbiota and
host immune cells

In CRC progression, gut microbiota can shape host immune

responses, while the host immune system can also influence the

community of gut microbiota. The infiltration of different immune

cells can be directly or indirectly modulated by specific microbes.

For instance, Bacteroides fragilis initiates the activation of STAT3

and induce a selective Th17 cell infiltration, which contributes to

carcinogenesis (15). Gut dysbiosis results in enhanced neutrophil

infiltration in abdominal aortic aneurysm (72). Dysregulated

microbiota profile stimulates tumor cells to secrete cathepsin K

and induce M2 macrophage polarization to enhance CRC

metastasis (73). Of interest, metabolites derived from an altered

gut microbiome also affect the immune system. Gut microbiota-

derived trimethylamine N-oxide, ursodeoxycholic acid and SCFAs

modulate the polarization of macrophages (74–76), while butyrate,

3-oxolithocholic acid, and inosine shape T cell immunity (77–79).

Despite the role of gut microbiota in shaping host immune cells,

several studies have demonstrated the influence of host immunity

on gut microbiota homeostasis. The effector Th 17 cells can regulate

the number of bacteria in small intestine, while regulatory T cells

suppress the upregulation of IL-23 under bacteria insults (80).

Invariant natural killer T cells (iNKT cells) aggravate colonic

inflammation by shaping a pro-colitogenic microbiota, Ja18-/-

mice lack iNKT cells exihibit elevated abundance of Rikenellaceae,

Turicibacteraceae, Bifidobacteriaceae and Prevotellaceae (81). The

offspring of Tcrd-/- mice harbors a distinct intestinal microbiota and

decreased level of intestinal SCFAs, further sensitizes mice to first-

breath-induced inflammation, unravelling a maternal gdT cell-

microbiota-SCFA axis in regulating lung inflammation (82). Since

the intertwined fates between gut microbiota and host immunity,

the cause link between gut microbiota and immune response

remains further investigation.
3 Gut dysbiosis in facilitating NETs
formation and metastasis

3.1 Mechanisms of NETs formation

NETs consist of decondensed chromatin and form web-like

DNA structures with nuclear proteins, granule proteins and

cytosolic proteins. Until now, the clear mechanism of NETs

formation and NETosis remains poorly understood. Basically, two

types of NETosis are found, including lytic NETs formation (slow

cell death) and alternative non-lytic NETs formation (independent
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of cell death and rapid release of nuclear chromatin accompanied by

granule proteins) (83). To initiate NETosis, neutrophil activation is

a prerequisite, as resting neutrophils do not undergo NETosis.

Neutrophil activation requires membrane surface receptors (such

as Toll-like receptors, CD18 and Fc receptors) or bacterial toxins,

which finally leads to an increase of intracellular calcium

concentration (84–87). Then the cell-extracellular matrix

adhesion and plasma membrane microvesicles shedding

increased, accompanied by actin disassembly and vimentin

remodeling. Next, the chromatin decondensation occurred, which

is most likely induced by histone citrullination. Citrullinated

histones induce chromatin decondensation by decreasing the

electrostatic interaction between histone and DNA. This process

is mainly supported by protein arginine deaminase (PAD) family

proteins (88, 89). Notably, protein arginine deaminase type 4

(PAD4) is mainly expressed in granulocytes. PAD4 causes the

citrullination of histone H3 at arginines 2, 8, 17 and 26 and H4

and H2A at arginine 3 (90, 91). Due to its function, PAD4 has long

been considered as a key player in chromatin decondensation

during NETosis. Neutrophils from Pad4-KO mice do not

unde rgo NETos i s induced by PMA and LPS (92) .

Pharmacological inhibition of PAD4 could also diminishes

NETosis and subsequent NETs release (93, 94). However, some

studies pointed that PAD4 may not be involved in NETosis under

certain stimulus, since C.albicans also induce NETosis in Pad4-KO

mice (95). Besides, when neutrophils undergo NETosis, granule

proteases such as NE and PR3 could also induce chromatin

decondensation, possibly via histone cleavage (96, 97). This

process needs the translocation of proteases from granules to

cytosol, and further into nucleus. After DNA decondensation,

DNA escape from the nucleus with the help of lamin remodeling

and nuclear envelope holes formation. Finally, DNA break through

the plasma membrane and is released extracellularly (Figure 2).

Lytic NETosis is often accompanied by the rupture of plasma

membrane. Of note, recent studies have pointed out the

significant role of pore-forming proteins in NETosis, especially

Gasdermin D (GSDMD). GSDMD plays an important role in the

generation of neutrophil extracellular traps (98). GSDMD is cleaved

by inflammatory caspases (Caspase-1/4) to generate N-terminal

GSDMD and located on plasma membrane to form pores of about

20 nm in diameter (99). Interestingly, N-GSDMD is not only

processed by caspases, as NE also cleaves GSDMD at C268 (100).

The cleaved GSDMD by NE also have the ability to form pores on

cell membrane. Notably, the active form of GSDMD is not only

located on cell membrane, but also other organelles, such as

mitochondria and nucleus (101). Whether active GSDMD

facilitates proteases release from granules and form a positive

feed-back loop remain further investigation.

Neutrophils can be triggered to undergo NETosis through a lot

of stimuli, including (1): bacteria and bacteria components like LPS,

fMLP and Nigercin (2); cytokines like IL-8, TNF-a, GM-CSF, IL-33

and IL-17 (3); others like PMA, H2O2 and Ca
2+ ionophore. Of note,

endogenous metabolites can be neglected causes of NETosis,

especially in non-infectious diseases. Our previous research
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demonstrated linoleic acid is an important driving force of NETs

formation in NASH, which promotes uncontrolled inflammation

during disease onset (7). Patients with mutations in ADA2 gene

results in a systemic vasculitis accompanied by elevated adenosine

level. Adenosine triggers NETs formation and exacerbate disease

progression (102). High glucose level is also considered to trigger

NETosis in diabetic patients and impair wound healing (103).

Cholesterol causes NETosis and primes macrophages for

production of inflammatory cytokines to amplify immune

responses during atherosclerosis (104). The driving force of

NETosis in CRC remain poorly understood, current opinions

mostly believe that cytokines or proteins secreted by tumor cells

are initiators of NETosis. In CRC, no metabolic factors have been

identified as NETosis triggers, while the dysregulated cellular

metabolism is a key hallmark of colorectal cancer (105). Thus,

further studies might focus on the metabolic regulation of NETs

formation in both primary lesions or metastatic sites.
3.2 Gut microbiota in shaping PMN:
potential role of NETs formation

3.2.1 Gut microbiota translocation is a key event
during CRC progression

Under normal condition, the intestinal barrier is a physical and

chemical barrier that separate host apart from pathogens, invasive

bacteria and viruses. Mucosal layer and immune system are the

chemical barriers in intestine, the mucus layer also contains the

commensal bacteria and produces antimicrobial proteins and

secretory IgA. The intestinal epithelial cell layer acts as the first

physical barrier, and its integrity is maintained by tight junction

proteins, including occludin, claudins and zonula occludens (106).

The loss of epithelial integrity is commonly witnessed in CRC

patients and animal models. The translocation of several bacteria

strains including E. coli and Enterococcus faecalis have been proved

and thus promotes the activation of innate and adaptive immune

cells to exacerbate inflammation at primary sites. The elevated

inflammation in intestine may further disturb the intestinal

barrier function and damage the barrier, which in turn causes

more bacteria translocation. Notably, some commensal bacteria

may acquire the virulence factors and become pathogenic, thus

fueling CRC progression (107). In addition to mucus and intestinal

barrier, the gut is also equipped with gut vascular barrier, and serves

as a gatekeeper to limit the access of microorganisms into blood

circulation (108). The disruption of gut vascular barrier may

facilitate bacteria and even cancer cells translocation into blood.

Impaired intestinal barrier leads to bacteria dissemination into

tumor sites and further modify the gut vascular barrier, migrate

to the liver to form a favorable PMN for subsequent CRC seeding.

The translocation of bacteria from lumen to metastatic lesion

fosters neutrophils recruitment in liver and creates pro-

inflammatory immune microenvironment (109). Thus, the

translocation of bacteria not only promotes the primary site

tumor cell growth, but also metastasis.
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3.2.2 Participators in PMN formation
Primary CRC can shape liver microenvironment form a favorable

PMN to facilitate metastasis, possibly by mediating immune cells

recruitment, immunosuppression, vascular leakage and

inflammation (110). Chemokines secreted by either tumor cells or

cells reside in TME have impacts on PMN, including CXCL1, CCL2,

CCL9 and CCL15. CXCL1 interacts its receptor CXCR2 on

numerous immune cells and regulates the migration and

recruitment of cells. It is reported that CXCL1 is important for

PMN formation by recruiting CXCR2-positve myeloid-derived

suppressive cells (MDSCs) (111). CCL2 enhances the infiltration of

macrophages in liver and regulates it polarization to a M2 phenotype

(112). Thus, the recruitments of different immune cells triggered by

chemokines are key events in PMN formation. Bone marrow-derived

cells, especially MDSCs, neutrophils and macrophages are important

for PMN formation. MDSCs are firstly found in cancer patients with

strong immunosuppressive activity, which can be divided into

granulocytic MDSCs (G-MDSCs) and monocytic MDSCs (M-

MDSCs). MDSCs could suppress T cell activity to help tumor cells

escape immune surveillance, inducing tumor cell invasion and

proliferation and induce angiogenesis (113).

In addition toMDSCs, pro-tumoral N2 neutrophils release LCN2

and further boost mesenchymal-epithelial transition of circulating
Frontiers in Immunology 07
tumor cells (114). Depleting neutrophils using Ly6G neutralizing

antibody causes a remarkable reduction of metastasis without

affecting the metastatic potential of primary tumors (115). Recently,

NETs are considered to be involved in PMN formation. NETs

occurred in lymph nodes positively correlates to reduced patient

survival, and promotes metastasis, while blocking the NETs

formation could efficiently suppress lymph node metastasis (116).

In early-stage ovarian cancer, NETs are formed and detected in

omentum before metastasis, NETs help shield tumor cells in blood

and facilitate metastasis (9). Sustained lung inflammation induces

NETs formation and awaken the dormant cancer cells in lung. NE

and MMP9 cleave laminin to induce the proliferation of dormant

cancer cells (35). NETs are mainly formed in PMN by cytokines like

CXCL8, complement C3 and IL-1b (117). Notably, Zeng et al.

reported oxalate accumulation in PMN induced NETs formation

due to the upregulation of hydroxyacid oxidase 1 in alveolar epithelial

cells, suggesting a non-negligible role for metabolic reprogramming

in NETs formation (118). Further studies are needed to investigate

the mechanisms of NETs formation in pre-metastatic sites.

Moreover, cancer-derived exosomes are important players in

PMN formation. In CRC, miR-25-3p are transferred from CRC

cells to endothelial cells via exosomes and further regulates the

expression of tight junction proteins in ECs, thus promotes vascular
FIGURE 2

Mechanisms of NETs formation. After the activation of neutrophils by various cell membrane receptors signaling, invading pathogens and DAMPs,
which causes the downstream Ca2+ release from endoplasmic reticulum and ROS production. The release of granule proteins such as NE and MPO
facilitates the decondensation of chromatin accompanied by PAD4. PAD4 citrullinates histones to release DNA. Notably, NE processes GSDMD to
generate N-terminal GSDMD and form pores on plasma membrane to help NETs extrusion. NETs contain proteases, nucleus components, anti-
microbial proteins and other proteins like F-actin and MMP9. NETs can be induced by multiple factors, including PMAPs (bacteria, LPS), DAMPs and
cytokines. NETs formation can also be triggered by PMA, which activates PKC and promotes ROS production. TLRs, toll-like receptors; Fc, antibody
fragment; ROS, reactive oxygen species; MPO, myeloperoxidase; NE, neutrophil elastase; PAD4, protein arginine deaminase type 4; GSDMD,
gasdermin D; PAMPs, pathogen-associated molecular patterns; LPS, lipopolysaccharides; fMLP, N-formylmethionyl-leucyl-phenylalanine; DAMPs,
danger-associated molecular patterns; NETs, neutrophil extracellular traps; PR3, proteinase 3; HMGB1, high mobility group protein B1; BPI,
bactericidal permeability-increasing protein; MMP-9, Matrix metalloproteinase-9. PMA, phorbol 12-myristate 13-acetate; PKC, protein kinase C. GM-
CSF, granulocyte-macrophage colony-stimulating factor.
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permeability (119). CRC-derived exosomal miR-203a-3p induce

M2 polarization of macrophages and increase the metastatic

potential of CRC (120). Exosome-derived HSPC111 also

promotes PMN formation and metastasis by reprograming lipid

metabolism (121). Exosome-derived ADAM17 is upregulated in

CRC patients and promotes the migratory ability of CRC by

cleaving E-cadherin junction (122).

3.2.3 Gut microbiota: new aspects of PMN
formation

Given the dysregulated microbiota profiles during CRC

progression, and bacteria translocation is commonly observed,

gut microbiota may be involved in PMN formation. Our previous

data supported the notion that long-term, high-concentration of

capsaicin in diet could shape liver PMN prior to CRC metastasis,

along with bacteria translocation to liver (37). Moreover, microbial

disturbance caused by diet may have an impact on bacteria

translocation and PMN formation. High-fat diet promotes lung

PMN formation and metastasis through changes of microbiota

(123). Recently, the tumor-resident bacteria E.coli found in CRC

are considered to disrupt gut vascular barrier. The disruption of

barrier causes the dissemination of bacteria to liver, fostering the

formation of PMN (109). The gut-liver axis is important in bacteria

dissemination and thus might explain why CRC often leads to liver

metastasis. Gut bacteria initiate a pro-inflammatory response in

liver by upregulating the expression of chemoattractants such as

Saa1/2/3/4, Lcn2 and Tlr5, thereby enhance the PMN formation.

However, the deeper mechanistic studies are needed to unravel how

gut microbiota initiates pro-inflammatory responses and key

microbiota-immune cell relationships in liver. In CRC patients,

gut microbiota might be the initiator of liver PMN formation.

Notably, since how NETs formed in metastatic niche remain

uncertain, it is possible that in CRC, gut microbiota is an important

mechanism in regulating NETs formation in liver. NETosis can be

triggered by either bacteria or bacteria components (Figure 2). Studies

have proved that gut bacteria can regulate NETs formation. In

abdominal aortic aneurysm patients, gut microbiota dysbiosis leads

to increased neutrophil infiltration and NETs formation.

Metabolomics analysis revealed R. intestinalis-derived metabolite

butyric acid could inhibit NETs formation in vivo by regulating

NOX2 expression (72). Similarly, microbiota-derived butyrate also

inhibits NETs formation and inflammatory cytokines secretion in

IBD patients (124). In acute mesenteric ischemia-reperfusion injury,

antibiotic-treated mice or germ-free mice showed increased NETosis,

further suggesting the potential role of gut microbiota in NETs

formation (125).
4 Clinical applications of NETs and gut
microbiota in CRC

4.1 Gut microbiota as a biomarker in CRC

Due to the significance of some specific bacteria strains in CRC

progression, gut microbiota biomarkers have potential translational

applications in CRC screening and early diagnosis. Faecal
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immunochemical testing (FIT) is often used to screen CRC,

which lacks the sensitivity, especially for adenomas (126). Thus,

large-scale assessments of gut microbiome between CRC patients

and healthy people have been carried out and some bacteria strains

are able to discriminate between patients and those without cancer

with a high level of accuracy (area under curve AUC > 0.9).

Fusobacterium nucleatum (Fn) was reported to be more abundant

in colorectal cancer than controls, with AUC of 0.868. The

abundance of Fn could also discriminated colorectal cancer from

controls with a sensitivity of 77.7%, which provide valuable

diagnostic biomarkers for clinical colorectal cancer (127, 128).

The increased abundance of Clostridium symbiosum was found in

colorectal adenoma, early CRC and advanced CRC patients, being a

promising biomarker for early and noninvasive detection of CRC.

Notably, when combining Clostridium symbiosum and FIT or CEA,

the diagnosis power is improved. A signature combining Fn, C.

hathewayi, Bacteroides clarus and m7 resulted in a superior AUC of

0.89 (129). Beyond bacteria, multi-kingdom microbiota analyses

revealed 16 multi-kingdom markers including 11 bacterial, 4 fungal

and 1 archaeal feature and showed good performance in diagnosing

patients with CRC (AUC=0.83) (130), suggesting that when using

microbiota as diagnosis markers, it is better to combine more

markers due to the complexity of gut microbiota composition.
4.2 NETs as an indispensable biomarker in
CRC metastasis detection

NETs are easily and efficiently detected in patient serum samples

by analyzing the MPO-DNA complex. Given the pro-tumoral effects

of NETs in cancers, PMN formation and subsequent cancer

metastasis, NET becomes a promising biomarker to predict the

metastasis potential. Elevated NETs formation is strongly correlated

to a higher risk of metastasis. In patients with breast cancer, higher

levels of serum NETs are associated with subsequent metastasis to

liver (34). In a cohort of 85 patients with CRC, NETs are significantly

associated with lymph node metastasis (131). Thus, analyzing the

NETs in peripheral blood offers a new way to predict the metastasis

potential in cancer patients. Moreover, some studies pointed out that

NETs also correlate with survival of cancer patients. The infiltration

of NET-release neutrophils is negatively associated with the survival

of HCC patients (132). The level of NETs is an independent

prognostic factor for progression-free survival in patients with

advanced gastric cancer (133). A NET-associated gene signature is

also efficient to predict the overall survival in gastric cancer (134).
4.3 Pharmacological inhibition of
NETs formation

Since NETs formation is important in both primary CRC and

PMN formation, targeting NETosis and NETs may provide

therapeutical benefits to patients. Unlike animals, neutrophils

cannot be depleted using neutralizing antibodies due to its

important role in host defense against pathogens in humans, but

several pharmacological approaches have achieved successful benefits

both in pre-clinic and clinic. So far, two methods have been used to
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inhibit NETosis, including degradation of NETs using DNase I and

inhibition of PAD4 using small-molecule inhibitors. While DNase I

could cause impaired host defense against infection, tumor specific

delivery and release of DNase I in tumor sites breaks NET-mediated

physical barrier and increases the contact of cytotoxic T cells and

sensitizes immune checkpoint blockade therapy in CRC (135).

Biomimetic CCDC25-overexpressing cell membrane hybrid

liposomes loaded with DNase I efficiently eliminates NETs and

inhibits CRC liver metastasis (136). PAD4 inhibitors include Cl-

amindine, GSK484, YW3-56 and some other peptide-based

inhibitors. However, due to the highly conserved structure of all

PAD isozyme active sites, it is difficult to design and develop selective

PAD4 inhibitors, most of the inhibitors are pan-PAD inhibitors (137).

Cl-amidine covalently modifies the active site cystine of PAD4 and

irreversibly inactivate PAD4 in a calcium-bound state (138). Cl-

amidine could efficiently inhibit histone H3 citrullination and NETs

formation both in vitro and in vivo (93). Due to the poor cell

permeability of most PAD inhibitors, YW3-56 is developed to

achieve better cell permeability with an improved inhibitory effect

on PAD4 enzymatic activity (139). The development of high selective,

improved bioavailability PAD4 inhibitors are still needed in future.

4.4 Manipulating of the gut microbiota

The dysregulated microbiota in CRC patients prompts us to

recover the homeostasis of gut microbiota. Fecal microbiota

transplantation (FMT) is often used to alter the gut microbiota

composition, and has been designated as a biological drug by FDA

(140). In Clostridium difficile infection (CDI), FMT is used in

clinical settings and the effectiveness of FMT for clinical cure of

recurrent CDI approximately 90% (141). By transferring the

microbiota from healthy mice to CRC mice, cancer progression is

significantly inhibited, while microbiota from patients with CRC

can drive carcinogenesis in both germ-free mice and mice received

carcinogen azoxymethane, suggesting the potential role of FMT in

CRC treatment (142, 143). Moreover, FMT also improves

immunotherapies and chemotherapy responses. The intact

commensal bacteria community controls the response of

chemotherapy in CRC (144). In melanoma patients, recent

clinical trials demonstrate FMT can overcome the resistance to

anti-PD-1 therapy and provide therapeutical benefits in patients

(145, 146). Bacteroides fragilis and Bacteroides thetaiotaomicron

govern the efficacy of CTLA blockade therapy in tumor patients,

since FMT from human to mice confirms the positive correlation

between B.fragilis and CTLA-4 responses (147).

Using antibiotic to inhibit cancer-associated bacteria like

Fusibacterium reduces cancer cell proliferation and overall tumor

growth in Fusobacterium-associated colorectal cancer (148). In

addition, colonization of several commensals can enhance cancer

immune therapies. Oral supplementation with Akkermansia

muciniphila could sensitize patients to PD-1 inhibitors (149).

Colonization of Bifidobacterium improves the efficacy of PD-L1

checkpoint blockade therapy and leads to CD8+T cell accumulation

in TME (150). More studies are needed to bring pre-clinical

investigations into clinical trials and provide real benefits to

CRC patients.
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5 Conclusion

In this review, we summarize the recent advances of gut dysbiosis

and immune cells in CRC progression and metastasis, highlight the

role of NETs in facilitating CRC metastasis. Notably, gut microbiota

translocation may be a potent regulator of PMN, possibly by

regulating of the formation of NETs. Thus, a deeper understanding

of the gut bacteria dysbiosis during CRC progression, along with the

interplay between gut bacteria and immune cells not only in TME,

but also in PMN may provide the thorough development of anti-

tumor therapies in future. So far, it is of great interest that FMT could

serve as a standardized treatment of gut dysbiosis in multiple diseases.

While the definition of healthy microbiota remains further

investigation, the FMT process may have side-effects in the context

of clinical treatments. Thus, a personalized gut microbiota analysis is

needed to achieve precise editing of gut microbiome to combat CRC

progression and metastasis. In addition, both NETs and gut

microbiota can be useful clinical indicators to predict the

progression and metastasis potential of primary CRC, but have no

unified conclusions till now. The combination of bothmight provides

more accurate prediction in clinical settings.
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