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Mastitis, the inflammatory condition of mammary glands, has been closely

associated with immune suppression and imbalances between antioxidants

and free radicals in cattle. During the periparturient period, dairy cows

experience negative energy balance (NEB) due to metabolic stress, leading

to elevated oxidative stress and compromised immunity. The resulting

abnormal regulation of reactive oxygen species (ROS) and reactive

nitrogen species (RNS), along with increased non-esterified fatty acids

(NEFA) and b-hydroxybutyric acid (BHBA) are the key factors associated

with suppressed immunity thereby increases susceptibility of dairy cattle to

infections, including mastitis. Metabolic diseases such as ketosis and

hypocalcemia indirectly contribute to mastitis vulnerability, exacerbated by

compromised immune function and exposure to physical injuries. Oxidative

stress, arising from disrupted balance between ROS generation and

antioxidant availability during pregnancy and calving, further contributes to

mastitis susceptibility. Metabolic stress, marked by excessive lipid

mobilization, exacerbates immune depression and oxidative stress. These

factors collectively compromise animal health, productive efficiency, and

udder health during periparturient phases. Numerous studies have

investigated nutrition-based strategies to counter these challenges.

Specifically, amino acids, trace minerals, and vitamins have emerged as

crucial contributors to udder health. This review comprehensively

examines their roles in promoting udder health during the periparturient

phase. Trace minerals like copper, selenium, and calcium, as well as vitamins;
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have demonstrated significant impacts on immune regulation and

antioxidant defense. Vitamin B12 and vitamin E have shown promise in

improving metabolic function and reducing oxidative stress followed by

enhanced immunity. Additionally, amino acids play a pivotal role in

maintaining cellular oxidative balance through their involvement in vital

biosynthesis pathways. In conclusion, addressing periparturient mastitis

requires a holistic understanding of the interplay between metabolic stress,

immune regulation, and oxidative balance. The supplementation of essential

amino acids, trace minerals, and vitamins emerges as a promising avenue to

enhance udder health and overall productivity during this critical phase. This

comprehensive review underscores the potential of nutritional interventions

in mitigating periparturient bovine mastitis and lays the foundation for future

research in this domain.
KEYWORDS

periparturient period, mastitis, dairy cattle, immunity, antioxidant status,
antiinflammation, amino acids, trace minerals
1 Introduction

Mastitis, characterized by the inflammation of mammary

glands (1, 2), is intricately associated with immune suppression

and an imbalance between free radicals and antioxidants within the

animal’s physiological framework (3–5). Dairy cows confront the

challenge of negative energy balance (NEB) during the

periparturient period, precipitating a cascade of detrimental

effects such as reduced dry intake, metabolic stress, hormonal

fluctuations, heightened oxidative stress, and compromised

immune responses (6, 7).

This NEB triggers the mobilization of fat reserves, culminating

in the dysregulation of reactive oxygen species (ROS) and reactive

nitrogen species (RNS) (8), along with elevated levels of non-

esterified fatty acids (NEFA) (9, 10) and b-hydroxybutyric acid

(BHBA) (11). The notable concentrations of NEFA and BHB

compromise the bovine immune system, rendering dairy cattle

more susceptible to infections (12). Scientific investigations have

demonstrated that heightened NEFA and BHBA levels exert

inhibitory effects on bovine peripheral blood mononuclear cells

(BPMCs) (13), stifle interferon production (14), and impede the

functionality of polymorphonuclear neutrophils (PMNLs) (15).

Furthermore, escalated levels of NEFA and BHB serve as

indicators of mastitis susceptibility (16, 17). During the

periparturient period, the heightened concentrations of NEFA

and BHB emerge as pivotal factors undermining immune

function, directly augmenting the vulnerability to mastitis (11).

In addition to NEB-related factors, other metabolic disorders

like ketosis and hypocalcemia indirectly contribute to mastitis in

dairy cattle (18–20). Hypocalcemia prompts cows to spend more

time lying down, resulting in teat exposure to physical injury and

facilitating pathogen entry. The compromised sphincter muscle
02
integrity of teats and diminished immune functionality due to

reduced calcium levels emerge as pivotal factors linking mastitis

with hypocalcemia.

In the realm of normal physiological conditions, the intricate

antioxidant system adeptly mitigates and eradicates ROS stemming

from metabolic processes. Nevertheless, the transitions

accompanying pregnancy and calving instigate an overabundance

of ROS production (21, 22). This disruption in the equilibrium

between ROS generation and the availability of antioxidants ushers

in oxidative stress, rendering cattle more susceptible to a spectrum

of maladies (23, 24). The unrestrained ROS production culminates

in lipid peroxidation, tissue impairment, and fluctuations in

reduced glutathione (GSH) levels, a pivotal constituent of

glutathione metabolism (24, 25). Oxidative stress inflicts damage

upon the structure and function of cellular macromolecules,

including lipids, proteins, and nucleic acids, thereby inciting

metabolic dysfunctions and ailments, notably mastitis in dairy

cattle (6, 26). Sustaining redox homeostasis during the

periparturient and peak lactation phases is of paramount

importance (27–29). Oxidative stress associated with parturition

may contribute to immunological and inflammatory aberrations,

heightening the vulnerability to metabolic and infectious disorders

(22, 30).

The metabolic stress encountered during the periparturient

period stands as another pivotal factor exposing animals to

immune suppression and the deviant regulation of oxidative

stress. This phase instigates excessive lipid mobilization,

subsequently leading to oxidative stress (16). The abnormal

regulation of immunity and inflammation driven by metabolic

and oxidative stress constitutes the third critical factor

predisposing dairy cattle to periparturient mastitis (3, 31–33).

Furthermore, oxidative and metabolic stress, negative energy
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balance, immune suppression, and diminished productive efficiency

collectively undermine the overall productivity of these animals

(34–36).

Numerous nutritional strategies have been employed to address

the challenges encountered during the periparturient period in

dairy cattle (37–39). Extensive research endeavors have been

undertaken to probe the intricate interplay between nutrition,

immune modulation, and the augmentation of antioxidant status,

thereby fostering enhanced udder health during this critical phase

(40–45). O’Rourke (41), in particular, highlighted that cows

undergoing negative energy balance face an elevated risk of

ketosis, with clinical ketosis being associated with a twofold

increase in the likelihood of clinical mastitis. Furthermore, extant

research underscores the pivotal role of nutritional disturbances

during the periparturient period in contributing significantly to

immune suppression, oxidative stress, and metabolic perturbations

(46–48).

Among the pivotal nutrients that have garnered attention,

specific amino acids, trace minerals, and vitamins have exhibited

a pronounced impact on udder health during the periparturient

period, particularly in the prevention of mastitis in dairy cattle.

Consequently, this review aims to provide a comprehensive

exploration of the contributions made by trace minerals, vitamins,

and amino acids in bolstering udder health during the critical

periparturient phase in dairy cattle.
2 Key factors associated with
periparturient bovine mastitis

2.1 Metabolic stress, NEFA and BHBA

The NEFA and BHBA represent metabolites resulting from the

mobilization of fat reserves triggered by NEB during the perinatal

period in dairy cows, exerting detrimental effects on the cellular

physiology of various bovine cell types (12). Severe NEB initiates

lipid mobilization, leading to elevated circulating concentrations of

NEFA and BHBA. Clinical data derived from previous studies have

established a strong correlation between heightened levels of NEFA

and BHBA and an increased incidence of postpartum diseases,

including mastitis, ketosis, clinical endometritis, metritis, and other

conditions associated with immunosuppression. These conditions

have adverse repercussions on the overall health, longevity, as well

as the productive and reproductive performances of dairy cows

(11, 49).

Furthermore, a study conducted by Li et al. revealed that NEFA

and BHBA lead to increased accumulation of malondialdehyde

(MDA) and ROS, along with reduced total superoxide dismutase

(T-SOD) and glutathione peroxidase (GSH-Px) activity, resulting in

oxidative stress. Additionally, NEFA and BHBA stimulation led to

heightened expression of inflammatory markers such as nitric oxide

(NO), tumor necrosis factor-alpha (TNF-a), interleukin-6 (IL-6)

and interleukin-1 beta (IL-1b). Mechanistically, their data

demonstrated that NEFA and BHBA activate the mitogen-

activated protein kinase (MAPK) signaling pathway, shedding
Frontiers in Immunology 03
light on the fact that NEFA and BHBA induce oxidative stress

and an inflammatory response, potentially via the MAPK signaling

pathway in BMECs (12). Similarly, another study observed that

elevated NEFA levels increased ROS levels, thereby activating the

MAPK signaling pathway and triggering ER stress-mediated

apoptosis in BMECs (50).
2.2 Oxidative stress

Oxidative stress induced by metabolic stress is closely associated

with several pathological conditions, including mastitis, during the

periparturient period in dairy cattle (26, 51, 52). Consistently,

Sordillo and Aitken (3) reported that oxidative stress resulting

from negative energy balance is intricately linked with impaired

immunity, subsequently leading to heightened inflammation,

thereby rendering dairy cattle more susceptible to mastitis (3, 53;

54). In a similar vein, a study noted that selenium supplementation

effectively enhanced the total antioxidant capacity of dairy cattle,

consequently mitigating the risk of mastitis in periparturient dairy

cattle (55). Additionally, when BMECs were exposed to

lipopolysaccharide (LPS), it was observed that ROS levels

increased, accompanied by inflammatory changes (56, 57). In

Table 1, we present a comprehensive summary of recent

published research findings that elucidate the intricate

relationship between oxidative stress and mastitis in dairy cattle

during the critical periparturient period. The interplay among

multiple factors, including metabolic stress/oxidative stress,

immunity, inflammation, NEB, and susceptibility to mastitis, has

been depicted and summarized in Figure 1.
TABLE 1 Recent studies reported association of metabolic disturbances,
suppressed immunity and oxidative stress with periparturient
bovine mastitis.

S.No Outcomes of
oxidative stress

Impact
on udder
health of
dairy
cattle

References

1 Impaired immune response and
abnormal regulation of
inflammation by metabolic
induced oxidative stress

Susceptible
to mastitis

5, 36, 56, 58

2 Inhibition of nuclear factor
erythroid 2 related factor 2
(NFE2L2), a master regulator of
cellular redox homeostasis was
followed by decreased level of
GSH-Px, catalase (CAT), and
superoxide dismutase (SOD)
and increased level of ROS and
MDA in response to exogenous
free fatty acids (FFA) in bovine
mammary epithelial cells

Induced
inflammatory
changes in
mammary
gland

59

(Continued)
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3 Trace minerals role in bovine
mastitis prevention during
periparturient period

3.1 Reference values for serum trace
minerals in dairy cows

To establish appropriate dietary recommendations, it is

essential to consider reference values for serum trace mineral

concentrations in dairy cows. Notable values include: calcium

(2.2–2.6 mmol/L) (64), phosphorus (1.3–2.6 mmol/L) (64),

magnesium (0.75–1.0 mmol/L) (65), selenium (0.73–1.08 µmol/L)

(66), copper (1–18 µmol/L) (67), and zinc (8–19 µmol/L) (68).

Meeting these reference values can help optimize the mineral supply

and overall health of dairy cattle.
3.2 Role of trace minerals in health
regulations of dairy cattle

In the field of bovine veterinary medicine, the pivotal role of

mineral deficiencies in modulating the immune system should not be

underestimated. Recent investigations have elucidated that the
Frontiers in Immunology 04
provision of micronutrient supplements has demonstrably reduced

the count of milk somatic cells (SCC), bolstered immune function,

and elicited anti-inflammatory and antioxidant responses in dairy

cattle during the periparturient period (69, 70). Extensive research

has shown that these deficiencies can lead to immunosuppression,

making the animals more susceptible to infectious diseases such as

mastitis (42). Consequently, addressing mineral imbalances in cattle

health becomes crucial in maintaining optimal health outcomes.

Minerals typically constitute essential structural components within

the body, acting as crucial cofactors for diverse enzymes and

participating in vital processes such as nerve signaling, muscle

contraction, and the regulation of proper keratosis. Insufficient

mineral levels can result in diminished immune cell activity or

disruption of innate defense mechanisms within the breast, thereby

fostering the progression of mastitis (71). Recent studies have shown

promising results regarding the supplementation of trace minerals

and its effect on dairy cattle health by enhancing their immune and

antioxidant status during the periparturient period (72–74). Trace

mineral supplementation has been found to significantly enhance

immune and antioxidant status, contributing to reduced levels of

NEFA (75) and alleviating inflammatory changes, which are critical

factors associated with clinical mastitis (76–80). These studies

emphasize the potential of mineral supplementation as a strategy to

improve cattle health and overall herd performance. Minerals play a

fundamental role in maintaining the immune system of cattle. Recent

studies have highlighted the association between serum trace mineral

concentrations and their impact on bovine health. For instance,

higher concentrations of serum selenium and phosphorus have

been linked to the successful cure of bovine clinical mastitis (81).

Similarly, research demonstrated that subcutaneous supplementation

of specific minerals, such as zinc, manganese, selenium, and copper,

led to increased SOD activity, decreased serum BHBA

concentrations, reduced milk SCC, and a lower incidence of

mastitis (82). These findings underline the vital role of trace

minerals in preventing and mitigating the effects of mastitis in

dairy cattle.

In clinical practice, certain mastitis cases may require

supportive therapy, including the administration of calcium-

containing fluids, due to the prevalent occurrence of

hypocalcemia in cows with udder inflammation (83).

Additionally, the supplementary use of injectable trace

minerals, such as zinc, manganese, selenium, and copper, has

been considered as an adjunctive tool in mastitis therapy.

Clinical evidence suggests that supportive therapy involving

the administration of fluids enriched with calcium can be crucial

in managing mastitis in dairy cows (83). Hypocalcemia,

commonly observed in cows with udder inflammation, can

compromise immune function and hindering the healing

process. Proper calcium supplementation has shown promise

in improving the overall therapeutic outcomes in mastitis cases.

Recent studies have investigated the use of injectable trace

minerals as a complementary approach in the treatment of

mastitis in dairy cows. Hoque et al. (84) emphasized the

significance of antimicrobial therapy as the primary treatment

for mastitis. However, their experiment revealed a noteworthy

finding – cows that received only selenium preparations
TABLE 1 Continued

S.No Outcomes of
oxidative stress

Impact
on udder
health of
dairy
cattle

References

3 Increased levels of ROS,
oxidative stress index (OSi), and
decreased a-tocopherol (a-T)
and serum antioxidant capacity
(SAC) levels around parturition

At high risk
of
developing
mastitis

60

4 The NEFA and BHBA induced
oxidative stress and suppressed
immunity in BMECs

Increased
chances
of mastitis

12, 50

5 Low level of GSH, SOD, CAT,
and total antioxidant capacity
(T-AOC); higher levels of ROS
and MDA

Associated
with
mammary
gland
inflammation

61

5 Elevated oxidative stress Increased the
susceptibility
of dairy cattle
to mastitis

62

6 The progressive development of
oxidative stress during the
transition from late gestation to
peak lactation is thought to be a
significant underlying factor
leading to dysfunctional
immune cell responses.

Expose dairy
cattle
susceptibility
to infections
including
mastitis

55

7 Elevated level of serum amyloid
A (SAA), MDA and decreased
level of total
antioxidant capacity

Increased risk
of mastitis

63
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demonstrated reduced susceptibility to udder inflammation

compared to the untreated control group. Ganda et al. (81)

conducted a study involving the injection of trace minerals,

including zinc, manganese, selenium, and copper, in dairy cows

with mastitis. The results indicated a reduction in the number of

chronic mastitis cases, showcasing the potential of injectable

trace minerals in mitigating the severity and persistence of

the disease.

Another noteworthy study by Machado et al. (85) explored the

effects of injecting a multimineral preparation containing

selenium, copper, zinc, and manganese. Their findings

demonstrated a positive impact on udder health, leading to a

decrease in linear SCC, and a reduction in the incidence of

subclinical and clinical mastitis cases. Furthermore, the

researchers reported an increase in serum SOD activity,

indicating potential antioxidant benefits without affecting

leukocyte function (82). Despite the positive effects observed in

other studies, Ferreira and Petzer (86) reported no significant

correlation between SCC and the levels of selenium in milk or
Frontiers in Immunology 05
serum among cows supplemented with selenium in various forms.

This suggests that other factors might influence the relationship

between SCC and selenium supplementation. A separate

invest igat ion by Bourne et a l . (87) invest igated the

supplementation of vitamin E with selenium. The study revealed

a notable 10% reduction in the risk of culling and mastitis rate,

suggesting a potential synergistic effect between vitamin E and

selenium in enhancing mastitis treatment outcomes. Recent

research conducted by Smulski et al. (88) indicated that

combining an antibiotic treatment with an antioxidant

containing selenium slightly improves the overall effectiveness of

clinical mastitis treatment. This highlights the importance of

considering combination therapies to optimize mastitis

management in dairy cows. Further investigation is necessary to

gain a comprehensive understanding of its effects on cattle health

and immune responses. Figure 2 illustrates the pivotal role of trace

mineral supplementation in health regulation, encompassing its

capacity to enhance immune function, mitigate inflammation, and

bolster antioxidant responses among periparturient dairy cattle.
FIGURE 1

The interlink among metabolic stress, immunity, inflammation and mastitis susceptibility. Oxidative stress disrupts immune and inflammatory
functions via the activation of NF-kB signaling. This aberrant inflammatory regulation, in turn, fosters excessive TNF-a production in non-phagocytic
cells, resulting in heightened oxidative stress and increased lipolysis. The intricate interplay of oxidative stress, escalated lipid mobilization, and
compromised immune and inflammatory processes is predominantly associated with NEB in periparturient dairy cattle. NEB, by triggering an
excessive lipid mobilization in these cattle, elevates NEFAs, BHB and ROS, consequently inducing oxidative stress. This oxidative stress further
exacerbates the disruption of immunity and inflammation regulation, rendering dairy cattle more susceptible to mastitis.
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3.3 Specific

3.3.1 Role of calcium, copper, zinc, and selenium
in regulating anti-inflammatory and immune
responses to prevent mastitis

Calcium assumes a pivotal physiological role within the biology

of living organisms, functioning as an indispensable constituent of

bodily structures and a critical determinant for muscle contractions,

encompassing both skeletal and smooth muscles, such as the

mammary gland sphincter. A prominent periparturient metabolic

affliction, known as hypocalcemia, arises due to the excessive

depletion of calcium in colostrum and milk. Consequently, the

requisite calcium level is constrained to remain below 1.5 mmol/L

to maintain normal muscle physiology, resulting in afflicted animals

assuming a protracted recumbent posture (89). Furthermore,

diminished calcium levels also correlate with compromised

phagocytic activity of neutrophils and suppressed immunity,

predisposing dairy cattle to other periparturient diseases (90, 91).

In addition, the incapacity of the mammary gland sphincter muscle

to contract leads to prolonged teat opening, creating favorable

conditions for pathogenic microorganisms to induce mastitis (92).

Notably, a study revealed lower calcium levels in acute Escherichia

coli (E.coli) mastitic cows compared to healthy counterparts (93).

Moreover, investigations have unveiled that certain polymorphisms

(G519663A and G38819398A) within the Calcium channel,

voltage-dependent, alpha-2/delta subunit 1 (CACNA2D1) gene

are associated with mastitis resistance in Sahiwal cattle (94, 95).
Frontiers in Immunology 06
Copper is another trace mineral, plays a crucial role in the

structure and catalytic properties of cuproenzymes, which are

enzymes that incorporate copper (96). Notable examples of

cuproenzymes include cytochrome-c oxidase, superoxide

dismutase, catechol oxidase, ceruloplasmin, and amine oxidases.

Additionally, copper holds a significant position among enzymes,

ranking as the second most prevalent metal after zinc and

contributing to their proper functioning (97). Apart from its

involvement in enzymatic functions, copper also plays a vital

role in various physiological processes. It contributes to essential

processes such as collagen and elastin synthesis, which are crucial

for tissue structure and elasticity. Furthermore, copper is involved

in myelination, a process critical for nerve impulse conduction,

and hemoglobin production, which is essential for oxygen

transport (96). Copper has been recognized for its antibacterial

properties against bacteria commonly isolated from mastitic cows.

Research by Reyes-Jara et al. (98) highlights that even low copper

concentrations, as low as 250 ppm, can effectively inhibit the

growth of mastitis microorganisms like E.coli and coagulase-

negative Staphylococci. Supporting studies by Wernicki et al.

(99) and Kalińska et al. (100) demonstrate the potent

antimicrobial activity of silver and copper nanoparticles against

bacteria derived from inflamed udders, indicating copper

preparations as potential alternatives to dipping solutions. In

vivo investigations have revealed promising results concerning

the effects of copper supplementation. A 100-day dietary copper

supplementation study, as conducted by Scaletti et al. (101),
FIGURE 2

Associations between molecular and phenotypic factors related to immunity, apoptosis, milk SCC, anti-inflammatory responses, and antioxidant
activity in dairy cattle following combined treatments with minerals and vitamins are examined. Over a 60-day duration, the combined treatment of
minerals and vitamins exhibited notable downregulation of apoptosis and inflammation-related gene expression levels, concomitant with
upregulation of genes associated with immunity, antioxidation, and pro-inflammatory responses in periparturient dairy cattle. Furthermore, the
integrated regimen of trace minerals and vitamins demonstrated enhancements in neutrophil phagocytic activity, accompanied by reductions in
plasma cortisol and milk SCC levels, suggesting a potential association with mastitis prevention during the periparturient period in dairy cattle.
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showed a reduced clinical response in Holstein cows

experimentally intramammary infected with E. coli. The

exper imental group, supplemented with copper at a

concentration of 20 ppm, exhibited improved outcomes

compared to the control group with 6.5 ppm copper

concentration. Likewise, Gakhar et al. (102) observed a

decreased incidence of postpartum masti t i s in cows

supplemented with copper, further validating the potential

benefits of copper supplementation. Copper deficiencies have

been associated with impaired phagocytosis and decreased Cu,

Zn-SOD (copper-zinc superoxide dismutase) activity. These

findings underscore the importance of adequate copper levels

for a properly functioning immune system (103). The

antibacterial properties of copper are explained by the

oxidation-mediated disruption of bacterial lipids, proteins, and

DNA. This mechanism highlights the potential of copper as an

effective antimicrobial agent (104).

Zinc is a vital trace element that plays a pivotal role in the

maintenance of rumen microbiota and the synthesis of essential

proteins, including collagen, glucagon, insulin, DNA, and RNA

(105). It serves as an indispensable activator for a diverse array of

enzymes, encompassing alkaline phosphatase, carbonic

anhydrase, DNA and RNA polymerase, and, in conjunction

with copper, superoxide dismutase, which assumes a key role in

antioxidant processes (97). Furthermore, zinc acts as a crucial co-

factor for a series of oxidoreductases and significantly contributes

to keratin formation. Studies have shown that dietary

supplementation of zinc can have a significant impact on the

health of dairy cattle. Specifically, some research has reported that

zinc supplementation results in reduced somatic cell count (106,

107) and decreased milk amyloid A levels (106). However,

contrasting findings were observed by Whitaker et al. (108),

where no effect of dietary zinc supplementation on SCC was

found. The integrity of the intact mammary epithelium, which

acts as an impermeable barrier to microorganisms, is recognized

as an intrinsic component of the udder immune system. Notably,

studies have demonstrated that the supplementation of zinc

preparations in Holstein cows can lead to improved integrity of

the mammary epithelium (109), although contradictory results

have been reported by Shaffer et al. (110). Zinc is crucial for the

development and proper functioning of cells involved in innate

immunity, such as neutrophils. Deficiency of this essential mineral

adversely affects the growth and function of T and B cells,

impacting the overall immune response in dairy cattle. Zinc

exhibits potent antioxidant properties and plays a pivotal role in

stabilizing cellular membranes. This feature suggests its

significance in preventing free-radical-induced injuries during

inflammatory processes (111).While the supplementation of

trace minerals has demonstrated the capacity to augment

immune responses and ameliorate inflammatory alterations, it is

imperative to emphasize the need for extensive and in-depth

investigations aimed at elucidating the precise underlying

mechanisms and exploring the potential therapeutic applications

of such supplementation in the context of mitigating mastitis in

dairy cattle.
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3.3.2 Role of selenium of in regulation of
inflammatory and immune response to
prevent mastitis

Selenium has garnered considerable attention as a crucial

element with antioxidant and immune-regulatory properties (36).

Extensive research, encompassing in-vitro and in-vivo studies, has

demonstrated that Se supplementation can alleviate inflammatory

changes, oxidative stress, and mastitis caused by S. aureus in mice

mammary glands (112–114). Plasma GPx-3, an extracellular

antioxidant protein containing selenocysteine, plays a vital role in

reducing hydrogen peroxide and lipid hydroperoxides (115). GPx-3

is essential for the antioxidant defense mechanism in dairy cattle

(116). Furthermore, milk lactoserum obtained from selenium-fed

cows has shown undefined antibacterial action, potentially

attributed to the elevated level of GSH-Px resulting from

selenium treatment (117–119). Selenium supplementation has

also been found to regulate antioxidant-associated genes (SOD,

GPX, TOAX, GSH, and CAT) and suppress oxidative stress in dairy

cattle, thus preventing oxidative stress and subsequent infections

(120). The pivotal role of selenium in regulating immunity and

antioxidant activity has made it a primary focus in mastitis control

research for dairy cattle. Studies have indicated a positive

correlation between low levels of selenium and GPx with

oxidative stress in periparturient dairy cattle. However, desired

selenium supplementation in mammary epithelial cells has been

found to promote anti-oxidative responses, leading to a reduction in

apoptotic cells (121). Moreover, low GPx levels in blood were

associated with a higher percentage of mammary infections

(mastitis) in periparturient dairy cows (122). Recent research

indicates that S. aureus has the ability to modulate myeloid

differentiation factor 88 (MYD88) and engage the NF-kB

signaling pathway, thereby initiating inflammatory responses

within the mammary gland through its interaction with toll-like

receptor 2 (TLR-2) (123, 124). In a recent investigation byWei et al.

(125), an elevation in MYD88, IL-1b, TNF-a, pyrin domain-

containing protein 3 (NLRP), caspase-recruitment domain (ASC),

and caspase-1 levels was observed in S. aureus-infected

macrophages in mice. Remarkably, a 90-day regimen of selenium

treatment led to a significant reduction in the expression of MYD88,

IL-6, IL-1b, NLRP3, and ASC within the macrophages (125).

During instances of microbial infection and cellular damage, the

NLRP3 inflammasome—a vital component of the innate immune

system—maintains regulation over caspase-1 activation and the

secretion of pro-inflammatory cytokines such as IL-1b/IL-18.
However, S. aureus-mediated irregular control of the NLRP3

inflammasome within the mammary gland leads to an atypical

inflammatory response (126, 127). Supplementing with selenium

was shown to significantly curtail the expression of NLRP3

inflammasome and proinflammatory cytokines IL-1b/IL-18,
thereby mitigating the abnormal inflammatory response and

consequently preventing mastitis in mice (112, 127). Furthermore,

Se supplementation effectively restrained the nuclear transcription

factor-kappa B (NF-kB) and MAPK signaling pathways that are

intricately involved in the progression of mastitis within murine

macrophages (128, 129). This suggests that selenium
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supplementation holds potential in suppressing the inflammatory

alterations elicited by S. aureus.

NF-kB and MAPK signaling pathways wield pivotal roles in

initiating inflammatory transformations by bolstering cytokine

production during S. aureus-induced mastitis in the mammary

gland (113, 130, 131). This observation is consistently upheld by

Liu et al. (113), who found that LPS supplementation led to a

reduction in the recruitment of neutrophils and macrophages in

mammary epithelial cells. Moreover, the overexpression of TLR2,

IL-1b , TNF-a , and IL-6, coupled with the heightened

phosphorylation of NF-kB and MAPKs proteins resulting from S.

aureus exposure, were markedly alleviated through Se

supplementation in mouse models (92, 112, 113, 132).

MerTK has been extensively documented as a key player in

regulating the PI3K/AKT/mTOR pathway to enhance anti-

inflammatory capabilities. Activation of the PI3K/Akt pathway

within macrophages by MerTK can effectively impede NF-kB
signaling (133). Furthermore, MerTK-mediated modulation of the

PI3K/AKT/mTOR pathway exhibited repressive effects on TLR2-

triggered immune responses, resulting in diminished inflammatory

reactions and oxidative stress in U937 cells (134). S. aureus in its

induction of an inflammatory response within the mammary gland of

mice increased the levels of IL-1b, IL-6, and TNF-a. Notably,
treatment with S. aureus led to decreased phosphorylation levels of

MerTK, PI3K, AKT, andmTOR in the mouse mammary gland (114).

Conversely, selenium treatment enhanced the phosphorylation levels

of MerTK, PI3K, AKT, and mTOR while concurrently reducing the

expression of inflammatory cytokines (IL-1b, IL-6, and TNF-a).
These observations underscore selenium’s potential to augment

immunity, enhance antioxidant status, and mitigate the

inflammatory response within mammary glands, thereby alleviating

mastitis in mice (114). In a recent in vitro experimental trail utilizing

mammary alveolar cell large T antigen (MAC-T), Jing et al. (135)

substantiated that selenium treatment had a marked downregulatory

effect on genes (IL1B, IRAK4, MYD88, and SOCS3) linked to mastitis

progression in dairy cattle. Furthermore, selenium treatment

exhibited inhibitory effects on PI3K/AKT, MAPK, and NF-kB
signaling pathways, while concurrently promoting the anti-

inflammatory milieu through acceleration of the PI3K/Akt/mTOR

pathway in dairy cattle (135). Furthermore, documented evidence

indicates that Se can enhance the expression of IL10 and peroxisome-

proliferator-activated receptor gamma (PPAR-g) activity, while

concurrently suppressing NF-kB and NO within the mammary

gland. These effects hold true for cases of S. aureus-induced

mastitis (136, 137). Additionally, selenium has been shown to

alleviate the oxidative stress and inflammatory state of the

mammary gland—a crucial factor in reducing the susceptibility of

mice to mastitis (136; Zhang W et al., 2016). Various investigations

have demonstrated positive correlations between selenium

intervention and notable outcomes, including diminished SCC in

milk, elevated levels of GSH-Px and reduced concentrations of MDA

in plasma (138–144). Higher MDA levels are directly associated with

oxidative stress, which heightens the susceptibility of periparturient

dairy cattle to mastitis. Within the realm of animals, a group of

twenty-five selenoproteins, twelve of which exhibit antioxidant and
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immunological functions, have garnered attention as promising

candidates for mitigating mastitis in transition dairy cattle (135,

145, 146). The selenium content appears to be a determining factor

influencing the vulnerability of mammary glands to bacterial

infections during the periparturient period in dairy cattle (122).

Additionally, a notable observation was made regarding selenium

treatment’s efficacy in reducing SCC levels and IL-6 concentrations,

while concurrently augmenting GSH-Px activity in dairy cattle (122).

The potential of selenium treatment in impeding the growth of

mastitis-causing bacteria, such as Streptococcus uberis (S. uberis), S.

aureus, E. coli, and Streptococcus agalactiae, has been documented

(147). This approach has also been associated with pronounced

antibacterial effects, heightened antioxidant capacity, elevated GSH-

Px activity, and lowered SCC levels in the milk of perinatal dairy cows

(147). Likewise, other investigations have reported that selenium

intervention, by enhancing GSH-Px activity, reduces the likelihood of

mammary gland infections in dairy cattle during the transition phase

(148, 149). Similarly, a distinct finding was noted, where selenium

supplementation outperformed antibiotic treatment during the

periparturient period in dairy cattle. To elaborate, among 36 cows,

14 still encountered infections even after antibiotic treatment, while

merely 4 out of 36 cows developed mastitis in response to 4 mg of

selenium supplementation during the transition phase in dairy cattle

(150). Additionally, records indicate that selenium intake enhanced

antioxidant capacity and concurrently regulated both innate and

adaptive immunity within the mammary glands, effectively

countering mastitis in dairy cattle (117). The summary of the

studies discussing the association of selenium with health-

enhancing phenotypic traits (antioxidant, anti-inflammation, and

immunity) has been presented in Table 2. In addition, the

mechanism through which selenium prevents mastitis has been

highlighted in Figure 3.
4 Exploring the potential of mineral
nanoparticles for mastitis mitigation

In animal production, minerals can be integrated into the diet

or utilized in therapy through various forms, such as inorganic salts,

organic forms, chelates, or nanoparticles (NPs). Nanoparticles have

been studied extensively for their potential as animal growth

promoters, antimicrobials, and alternatives to conventional

cleaning agents (154). A significant advantage of NPs is their

ability to avoid bacterial resistance by exerting toxic effects on via

DNA degradation, and lipid and protein peroxidation (155, 156).

Consistently, recent studies extensively described the role of

different types of nanoparticles in the treatment of mastitis with

positive results (157, 158). In the literature, various types of

minerals nanoparticles containing copper (CuNPs), silver

(AgNPs), platinum (Pt_NPs), and zinc (ZnONPs) have been

described for the treatment of mastitis (100). For instance, CuNPs

have shown notable inhibitory activity against various bacteria,

including E. coli, Klebsiella pneumoniae, Pseudomonas aeruginosa,

Propionibacterium acnes, and Salmonella typhi. Additionally,

CuNPs exhibit antifungal activity against Candida species, which
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TABLE 2 Selenium role in alleviation of mastitis by improving immunity,
anti-inflammatory and antioxidant status of dairy cattle.

S.No Treatment Biological impact References

1 Selenium
treatment (1.5
mg/kg) of S.
aureus infected
mammary gland
cells
(inoculation of
100 ml S. aureus
with 7 × 108

CFU/ml)

• Mastitis induced by S.
aureus within the mammary
gland tissue of mice was
driven by the upregulation of
specific elements, including
interleukin (IL-1b), IL-6,
TNF-a, NF-kB, and MAPK
pathways.
• Conversely, the
introduction of selenium
supplementation in mice
acted as a preventive measure
against S. aureus-induced
mastitis.
• This was achieved by
effectively inhibiting the
expression levels of IL-1b, IL-
6, TNF-a, NF-kB, and
MAPK pathways.
• Furthermore, the
application of selenium
treatment in mice yielded
additional benefits; it not
only curtailed the
inflammatory response but
also alleviated oxidative stress
resulting from injuries to the
mammary gland tissues
caused by S. aureus.

Liu et al. (113)

2 Organic
selenium (20
mg/kg body
weight/day)
treatment of S.
aureus infected
mammary gland
cells ((2 × 107

CFU/mL)

• In the context of S. aureus,
the initiation of inflammatory
alterations occurred through
the augmentation of
inflammatory cytokines’
expression (IL-1b, IL-6, and
TNF-a), coupled with the
reduction in the
phosphorylation levels of
MerTK, PI3K, AKT, and
mTOR.
• Contrastingly, selenium
treatment orchestrated a
different outcome: it
effectively lowered the levels
of IL-1b, IL-6, and TNF-a
expression. Simultaneously, it
bolstered the phosphorylation
levels of MerTK, PI3K, AKT,
and mTOR.
• This intricate signaling
cascade facilitated an anti-
inflammatory response,
enhanced antioxidant status,
and ultimately mitigated the
onset of mastitis in the
rat population.

Chen
et al. (114)

3 Selenium (0.2
mg of Se/kg)
treatment of S.
aureus ((105

CFU/mL)
infected
mammary
gland cells

• In the context of S. aureus
exposure, there was an
observable increase in the
expression of NLRP3, ASC,
caspase-1, caspase-1 p20, and
pro-IL-1b, thus intensifying
the inflammatory response.
• Conversely, the
supplementation of selenium

Bi et al. (127)

(Continued)
F
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TABLE 2 Continued

S.No Treatment Biological impact References

exerted a substantial
inhibitory effect on the levels
of NLRP3, ASC, caspase-1,
caspase-1 p20, and pro-IL-1b.
• This outcome stands as
compelling evidence that
selenium treatment serves as
a preventive measure against
S. aureus-induced mastitis in
mice, achieved by effectively
curtailing the NLRP3 level.

4 Selenium
treatment (1.5
mg/kg) of S.
aureus infected
mammary gland
cells
(inoculation of
100 ml S. aureus
with 7 × 108

CFU/ml)

• The application of selenium
treatment effectively curtailed
the levels of NLRP3, IL-1b,
TNF-a, ASC, and caspase-1
that resulted from S. aureus
influence within the
mammary gland of mice.
Moreover, Se
supplementation notably
bolstered the antioxidant
capacity, enhanced the anti-
inflammatory response, and
fortified the immune status of
the mice population.
• Beyond this, the
administration of selenium
emerged as a preventive
strategy against mastitis,
primarily attributed to its
capability to inhibit NLRP3
inflammasome activation and
suppress NF-kB/MAPK
pathway signaling.

Ma et al. (112)

5 Selenium (2.0
mmol Se/L)
treatment of S.
aureus infected
mammary
gland cells

• Dietary supplementation
with selenium led to a
decrease in the expression of
TLR2 and the activation of
the NF-kB/MAPK pathway
induced by S. aureus in
murine subjects.

Wang L
et al. (138)

6 Selenium (1.5/
kg) treatment of
S. aureus
infected
mammary
gland cells

• In vivo and in vitro
investigations demonstrated
that S. aureus triggered
inflammation, both within
live organisms and primary
mouse epithelial cells
(MMECs) cultured in the
laboratory.
• This resulted in an increase
in the expression levels of
mmu-miR-155, IL-1b, TNF-
a, and TLR2. Additionally,
the phosphorylation levels
within the NF-kB/MAPK
signaling pathway were
heightened in mammary
epithelial cells of mice upon
infection with S. aureus.
• Remarkably, selenium
displayed a notable capacity
to suppress the elevated
expression levels of mmu-
miR-155, IL-1b, TNF-a,
TLR2, and the NF-kB/MAPK

Zhang
et al. (92)

(Continued)
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can cause mastitis. Moreover, AgNPs and AuNPs have

demonstrated significant susceptibility against S. aureus strains

isolated from clinical and subclinical mastitis cases (159).

Furthermore, ZnO-NPs also exhibit antimicrobial properties

against S. aureus and other pathogenic bacteria, such as E. coli

and K. pneumoniae (160). AgNPs have also been considered for use

in diseases caused by algae, which are associated with udder

inflammation (161). According to research by Wernicki et al.

(99), AgNPs and CuNPs may have a synergistic effect on various

pathogens, making them potentially effective solutions in

mastitis management.
5 The role of vitamins
supplementation in mastitis alleviation

The significance of vitamins in their capacities as antioxidants

and immune regulators has been extensively deliberated in the

literature (16, 150, 162). Consequently, the inclusion of vitamin

supplementation in mastitis control strategies has been well-

documented (163–166).
5.1 Role of folic acid in mastitis prevention

The existing body of published evidence strongly supports the

notion that folic acid supplementation yields notable

improvements in metabolic function (167), while also playing a
TABLE 2 Continued

S.No Treatment Biological impact References

signaling pathways within the
mammary epithelial cells of
mice. These insightful
findings suggest that selenium
holds potential in averting
mastitis in mice by mitigating
oxidative stress and curtailing
the inflammatory response.

7 Selenium (1.5
mg/kg)
treatment of S.
aureus infected
mammary
gland cells

• Selenium intervention
mitigated both oxidative
stress and the inflammatory
reaction. It downregulated the
expression of IL-1b, TNF-a,
ASC, caspase-1, and pro-IL-
1b.
• Additionally, selenium
hindered the activation of
NLRP3 within bMECs
following infection with
S. aureus.

Yang
et al. (151)

8 Selenium (1.5
mg Se/kg)
treatment of S.
aureus infected
mammary
gland cells

• The addition of selenium
curbed the inflammation
provoked by S. aureus within
the murine mammary gland.
• Moreover, selenium
supplementation notably
decreased the quantities of
myeloperoxidase (MPO),
TLR2, IL-1b, TNF-a, and IL-
6 within the mammary gland
of mice exposed to S. aureus.

Gao et al. (152)

9 Selenium (1.5
mg Se/kg)
treatment of S.
aureus infected
mammary
gland cells

• Selenium supplementation
was effective in diminishing
the quantities of NF-kB and
nitric oxide, while also
promoting the activation of
PPAR-g activity.
• These actions collectively
worked to safeguard mice
from developing mastitis
caused by S. aureus infection.

Gao et al. (136)

10 Selenium
administration

• Supplementing dairy cattle
with selenium substantially
enhanced selenium
concentrations in their serum
throughout the transition
phase.
• Additionally, there exists an
inverse correlation between
Se levels and milk SCC as
well as IL-6 levels.
• On the other hand, Se levels
are positively linked to the
activity of GSH-Px in
periparturient dairy cattle.

Wang D
et al. (122)

11 Selenium
supplementation

• Low level of selenium
availability in the body was
associated with higher level of
SCC
• Selenium administration led
to a reduction in milk SCC,
alleviated oxidative stress, and
lowered the risk of mastitis

Ceballos-
Marquez
et al. (153)

(Continued)
TABLE 2 Continued

S.No Treatment Biological impact References

occurrence in periparturient
dairy cattle.

12 Selenite
treatment

• The introduction of selenite
resulted in heightened
phagocyte recruitment to the
infected milk compartment of
the udder, augmenting both
the activity of GSH-Px and
the antibacterial properties of
milk lactoserum.
• This supplementation also
curbed the in vitro
proliferation of mastitis-
causing pathogens, indicating
the potential of selenium as a
potent therapeutic agent in
managing mastitis.

Ali-Vehmas
et al. (147)

13 Selenium
feeding

• Selenium enrichment
improved the effectiveness of
antioxidants by fostering the
activity of GSH-Px in dairy
cattle from Estonia.
• Additionally, observations
indicated that cows receiving
selenium supplementation
exhibited a reduced presence
of pathogenic bacteria within
their milk.

Malbe et al.
(148); Malbe
et al. (149)
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crucial role in preventing oxidative stress and enhancing immune

responses (168) in periparturient dairy cattle (169). The period

around calving presents a vulnerability to lowered immunity in

dairy cattle due to folic acid deficiency (165). Folic acid’s pivotal

contributions to immunity and anti-inflammatory processes have

led to its exploration for mitigating bovine mastitis in

periparturient dairy cattle (166, 170, 171). Recently a published

research demonstrated that folic acid treatment significantly

regulated LnRNA MSTRG.11108.1 in mastitic cows. The

LncRNA MSTRG.11108.1 further regulated the genes (CXCL3,

ICAM1, CXCL1, LHFPL2, LTF, ITGA9, and KIR3DL2) that were

associated with immunity and inflammation (172). In addition,

they also documented several immunity and immunity linked

biological signaling pathways (B cell receptor signaling pathways,

TNF signaling pathway, IL-17 signaling pathway and NF-kB
signaling pathway) which is in consistent with findings reported

previously (165, 173). By inhibiting the activation of MAPK and

NF-kB, folic acid supplementation maintains an anti-

inflammatory environment, consequently averting mastitis

(170). Correspondingly, a study has recorded that administering

folic acid (at a dosage of 120 mg per 500 kg of body weight) for 21

days led to the downregulation of several genes linked to immune

function and inflammation (PIM1, SOCS3, ATP12A, KIT, LPL

NFKBIA, DUSP4, ZC3H12, ESPNL, TNFAIP3) (165). These

genes, found to be upregulated in S. aureus-induced mastitis

during the periparturient phase in dairy cattle (174, 175) were

notably downregulated.

Additionally, our prior investigation established that folic acid

supplementation significantly modulated the signaling of
Frontiers in Immunology 11
glutathione metabolism along with its associated genes (LAP3,

GSR, G6PD, GSTA4, GCLC, GPX3, PGD, IDH1, GGT1, GPX7,

MGST1, and MGST2) in periparturient dairy cattle (165).

Moreover, we documented that folic acid effectively enhanced

dairy cattle’s antioxidant capabilities and augmented their

res i s tance to mammary gland infect ions dur ing the

periparturient phase. Aligning with this, (166) recently

conducted an experimental study showing that S. aureus-

induced mastitis in MAC-T cells resulted in the downregulation

of the noncoding RNA associated with progenitor renewal

(PRANCR). Notably, in MAC-T cells treated with folic acid, this

expression exhibited an increase, suggesting folic acid’s potential

as a prime therapeutic agent in mastitis prevention (166).

Treatment with 5 mg/mL of folic acid significantly curtailed

apoptosis in Mac-T cells and offered robust defense against

MRSA treatment through enhanced cytosolic DNA sensing and

tightened junction signaling (173, 176). They observed the

upregulation of ZBP1, IRF3, IRF7, and IFNAR2 within the

cytosolic DNA-sensing pathway in folic acid-treated MAC-T

cells. ZTP1, a factor associated with milk SCC (166), also

assumes a critical role in activating anti-pathogenic mechanisms

and inflammation (177). Furthermore, it was found that ZTP1

gene cytosolic DNA sensing pathway upregulated by folic acid

treatment which has key role in activation of antipathogenic

mechanism thereby enhancing the anti-inflammatory response

(173). In addition, they documented that ZTP1 was significantly

associated with inhibition of inflammation (177), low milk SCC

and mastitis resistance (166). In light of the compiled data, we can

deduce that folic acid supplementation, administered at
FIGURE 3

Mechanism through which selenium prevent mastitis in dairy cattle during periparturient period in dairy cattle.
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appropriate dosages and durations, holds promise as a valuable

therapeutic resource within mastitis control strategies for

periparturient dairy cattle.
5.2 Role of vitamin E supplementation in
periparturient bovine mastitis prevention

Vitamin E is a fat-soluble vitamin that could protect cell

membrane from the action of lipid peroxidation chain reaction

(178, 179). Consequently, a study found that immune cells were

prone to the effects of lipid peroxidation by ROS due to the

polyunsaturated fatty acids present in their cell membranes (179,

180). Furthermore, the vitamin E combats peroxyl radicals and

stops the oxidation of polyunsaturated fatty acids (PUFA). In the

presence of vitamin E, peroxyl radicals react with a-tocopherol
rather than lipid hydroperoxide, stopping the chain reaction of

peroxyl radical formation and inhibiting further oxidation of

PUFAs in the membrane (181). The oxidative stress caused by

aluminum was relieved by post-vitamin E injection in rats (178,

182). Furthermore, it has been demonstrated that vitamin E is

important for regulating immunity and reducing oxidative stress

which are the key factors for mastitis resistance/susceptibility

(182–185). Additionally, vitamin E has been shown to guard

against pro-oxidant-caused harm to the integrity of the bovine

mammary endothelial cell barrier (186). Mokhber-Dezfouli et al.

demonstrated that intramuscular vitamin E injection could lower

MDA expression and lipid peroxidation and enhance plasma’s

antioxidant capacity. Vitamin E supplements have been given to

dairy cattle during the periparturient stage to reduce oxidative

stress and maintain immunity (40). In addition, vitamin E has

been extensively targeted in mastitis mitigation research in

periparturient dairy cows due to its substantial role as an

antioxidant and immune regulator.

Vitamin E administration has been shown to improve

immunity, minimize mammary infections in dairy cattle and

boost the anti-inflammatory and antioxidant functions in dairy

cattle during the perinatal period (189). According to Politis et al.,

mastitis and oxidative stress were substantially linked to vitamin E

deficiency throughout the periparturient phase (190, 191).

Consequently, it has been proved experimentally that

supplementation of vitamin E improved the immunity,

antioxidant capacity, and anti-inflammatory ability of dairy cattle,

and reduced the incidences of mastitis during the transition phase

in dairy cattle (192).

Parenteral injection of 2100 mg vitamin E for 14 days before

and on the day of calving significantly reduced the occurrence of

periparturient mastitis in dairy cattle (87). Consistently, another

study reported that supplementation of 1g vitamin E/cow/day for

one month pre-calving and two months post-calving reduced the

incidences of mastitis in dairy cows (193). Vitamin E has also been

found effective against E. coli and S. uberis and prevented

mammary gland infection during the periparturient phase in

dairy cows (194, 195). Altogether, it was concluded that vitamin

E is the key nutrient involved in immune regulation and relieving
Frontiers in Immunology 12
oxidative stress, which are the factors responsible for mastitis in

periparturient dairy cattle.
5.3 Role of vitamin D supplementation in
periparturient bovine mastitis prevention

Extensive research findings have demonstrated the profound

impact of vitamin D (calcidiol a source of vitamin D)

administration, typically within a daily dosage range of 1mg to

3mg on the regulation of various genes associated with crucial

aspects of bovine immunity, inflammation, antimicrobial activity,

calcium metabolism, and oxidative response (196). Notably, genes

associated with immunity (CD44, ICAM1, ITGAL, ITGB1,

LGALS8, SELL, NOD2, TLR2, TLR6, FOS, JUN, NFKB2),

inflammation (IL1B, IL1R1, IL1RN),antimicrobial activity (CTSB,

LYZ, DEFB3), calcium metabolism (TP2B1, STIM1,TRPV5,

CALM3) and oxidative burst (RAC2)in periparturient dairy cattle

were regulated in response to vitamin D supplementation (196).

This regulatory effect is not limited to immune cells but extends to

various tissues, as evidenced by the activation of 1a-hydroxylase
and the subsequent regulation of calcitriol synthesis (197).

Furthermore, exposure to bacterial components such as LPS and

peptidoglycan has been observed to stimulate local expression of

1a-hydroxylase in peripheral blood monocytes of dairy cows.

Additionally, the influence of vitamin D signaling has been

elucidated in mammary gland macrophages and neutrophils

when these cells are exposed to endotoxin challenge (198). In

vitro experiments have also substantiated the role of vitamin D in

up-regulating the mRNA activity of b-defensins and antimicrobial

peptides in monocytes and milk somatic cell counts (199, 200).

Importantly, studies have shown that vitamin D supplementation

plays a pivotal role in reducing the incidence of mastitis and metritis

in periparturient dairy cattle by mitigating oxidative stress and

enhancing the immune response (201). Furthermore, vitamin D

treatment has been associated with increased cell viability and the

inhibition of S. aureus adhesion and invasion in bovine mammary

epithelial cells, underscoring its potential significance in mastitis

prevention (202). Consistently, a recent published article has

demonstrated that vitamin D and its metabolites hydroxyvitamin

D [25(OH)D] with a concentration of 20-400 ng/ml has shown a

positive role on bovine immune cells, antioxidant response and

could be consider as therapeutic agent for mastitis prevention (203–

205).In light of the available literature, it is evident that vitamin D

holds a central position in bolstering dairy cattle immunity and

potentially alleviating bovine mastitis. However, it is worth noting

that further comprehensive investigations are warranted to gain a

deeper understanding of its precise mechanisms and potential

therapeutic applications in this context. For ease of review, the

recent findings associated with role of vitamins supplementation in

boosting immune, antioxidant and anti-inflammatory response

in dairy cattle during periparturient period has been summarized

in Table 3. Furthermore, Figure 4 illustrates the impact of vitamin

supplementation on immune, antioxidant, and anti-inflammatory

responses in dairy cattle.
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5 The effect of rumen-protected
amino acids on immune function,
oxidative and anti-inflammatory status
of dairy cattle

The cellular detoxification process is facilitated by GSH through

the action of GST and the neutralization of hydrogen peroxide by
TABLE 3 Role of vitamins in boosting immunity, anti-inflammation and
antioxidant response in periparturient dairy cattle.

S.No Treatment Outcomes References

1 Folic acid (120 mg/500
kg)/oral

Regulated immunity
and suppressed
inflammation via
associated genes
(ICAM1, GRO1 and
CXCL3) and lncRNA
MSTRG.11108.1 in
periparturient
dairy cattle

Liu X
et al. (172)

2 Folic acid (10 µM FA/
mL/cell culture)

Reduced cell
apoptosis via
elevation the
expression of B-cell
lymphoma-2 (BCL2)
and the BCL2 to
BCL2 associated X 4
(BAX4) in BMECs

Zhang J
et al. (206)

5 Multivitamins and
multiminerals (Zinc 40
mg/ml, Manganese 10
mg/ml, Copper 15 mg/
ml, Selenium 5 mg/ml)
and five ml of MV
(Vitamin E 5 mg/ml,
Vitamin A 1000 IU/ml,
B-Complex 5 mg/ml,
and Vitamin D3 500 IU/
ml)/Injection

Enhanced oxidative
stress (SOD and
CAT elevated),
decreased anti-
inflammatory
cytokines (IL-4 and
IL-10), increased
proinflammatory
cytokines (IL-1a, IL-
1b, IL-6, IL-8, IL-
17A, IFN-g and
TNF-a)
Lower percentage of
total neutrophils and
immature
neutrophils, higher
percentage of
lymphocytes as well
as increased
phagocytic activity of
neutrophils and
proliferative capacity
of lymphocytes

Somagond
et al. (44)

3 Folic acid (30.8 ng/mL/
cell culture)

Reduced apoptosis by
enhancing bcl-2/bax
mRNA expression

Bae et al. (176)

4 Vitamin E and folic acid Regulate immunity,
antioxidative stress
and relieved
inflammatory
responses and
prevent mastitis

Khan et al. (16)
and Xiao
et al. (36)

6 Folic acid (5 mg/mL/
cell culture)

Mediated the
expression alteration
in lncRNAs linked to
toxin metabolism
and inflammation to
fight against S.
aureus infection

Mi et al. (166)

7 Folic acid (120 mg/500
kg)/oral

Relieved oxidative
stress, enhanced
immunity and anti-
inflammatory status,
reduced SCC level

165

(Continued)
TABLE 3 Continued

S.No Treatment Outcomes References

and improved
milk production

8 Folic acid alone or in
combination with
vitamin B12/(120 mg/
500 kg)/oral

Enhanced the
perimarturient dairy
cattle health and
production
performance
(enhanced immunity
and milk production)

167, 169

9 Calcidiol 3 mg/d
(3mg) prepartum

Regulated bovine
immunity, anti-
inflammatory
response,
antimicrobial activity
leukocytes, pathogen
recognition efficacy,
calcium metabolism,
and antioxidative
status of
periparturient
dairy cattle

Vieira-Neto
et al. (196)

10 25-hydroxyvitamin D3
(3 mg/oral)

Lowered the level of
SCC and enhanced
T-AOC, total SOD,
CAT,
immunoglobulin A
and immunoglobulin
G and decreased
MDA and TNF-a.
Reduced the
susceptibility of
periparturient dairy
to mastitis

Xu et al. (207)

11 Dietary protein levels
(10.3% or 12.2%),
vitamin A levels (0 or
110 IU/kg body weight),

Lowered the level of
SCC and improved
ant-inflammatory
response in
periparturient
dairy cattle

Agustinho
et al. (69)

12 The supplementation of
vitamin A, 105 IU + zinc
sulphate, 60 ppm+
vitamin E, 2500 IU) in
compounded
concentrate DM (100
g)/oral

Lowered milk SCC
and enhanced total
immunoglobulins in
colostrum
Lowered oxidative
stress and cortisol
levels and higher
immune response
Improved the
phagocytic activity of
neutrophils of
periparturient
dairy cattle

Alhussien
et al. (70)
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GSH-Px. The GSTs (EC 2.5.1.18) are pivotal antioxidant enzymes

responsible for the regulation of cellular redox equilibrium, as

documented by several studies (208–210). Recent evidence

underscores the involvement of methionine in glutathione

synthesis (211), thereby potentially enhancing the antioxidant

capacity in animals and their products. This notion is

corroborated by research demonstrating that methionine, in

conjunction with choline, elevates glutathione and amino acid

levels in perinatal dairy cows (212). Furthermore, methionine

supplementation has been found to augment very-low-density

lipoprotein (VLDL), facilitating the circulation of vitamin E (213).

Consequently, the detrimental impact of lipid peroxidation by-

products, such as MDA, can be mitigated through the

administration of rumen-protected amino acids (213).

Additionally, the control of ROS by antioxidant systems,

categorized into enzymatic and non-enzymatic components like

metabolites, has been extensively discussed in previous studies

(210, 214).

Dysregulated immune function, notably in early lactation dairy

cows, has been observed, adversely affecting neutrophils, circulating

monocytes, and lymphocytes (6, 215 55, 216). It is postulated that

complete metabolic adaptations are required to cope with the

substantial nutrient demands associated with lactation initiation,

contributing to immunological dysfunction (19, 217, 218). A

noteworthy finding is that prolactin blockade leads to an increase

in oxidative burst activity in neutrophils, resulting in an initial
Frontiers in Immunology 14
reduction in milk production and nutritional requirements, along

with a subsequent decline in lymphocyte proliferation (219).

Empirical investigations have consistently demonstrated that

methionine supplementation exerts favorable effects on the anti-

inflammatory and antioxidant status in periparturient dairy cattle

(220–222) and neonatal calves (223). A recent study conducted by

Hu et al. has reported that the supply of methionine and arginine

significantly modulates milk protein synthesis, thereby alleviating

potential inflammatory and pro-oxidant conditions in transition

dairy cattle (224). Moreover, emerging research has highlighted the

significance of methionine supplementation in conjunction with

arginine in conferring anti-inflammatory effects and enhancing the

antioxidant status in transition dairy cattle. Notably, Dai et al. (225)

and Batistel et al. (222) have reported the beneficial impact of

methionine and arginine co-supplementation. Additionally,

Abdelmegeid et al. (226) documented that the combination of

choline and methionine effectively regulates antioxidative

mechanisms, resulting in heightened anti-inflammatory and

cytoprotective responses against oxidative stress in neonatal

Holstein calves. Consistently, Zhou et al. (227) demonstrated that

cho l ine and meth ion ine supp lementa t ion improved

immunometabolic status, bolstered blood polymorphonuclear

leukocyte phagocytosis capacity, promoted anti-inflammatory

responses upon pathogenic challenges, and elevated antioxidative

capacities in peripartal cows. In a relevant experiment, a group of

cows was subjected to either methionine supplementation alone or
FIGURE 4

Mechanisms governing the regulation of immunity, antioxidant, and anti-inflammatory responses for the prevention of mastitis in periparturient dairy
cattle through vitamin supplementation. Vitamin supplementation demonstrated an augmented antioxidative status by upregulating key antioxidant
genes (SOD, CAT) while concurrently downregulating the levels of MDA. Additionally, vitamins exhibited regulatory effects on immunity-related and
inflammatory-associated genes and their associated signaling pathways, thereby substantiating their pivotal role in mastitis resistance
or susceptibility.
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in combination with lysine. Wang H et al. (223) found that the

offspring (calves) of cows receiving rumen-protected amino acids

exhibited heightened passive immunity, characterized by increased

immunoglobulin G concentrations and superior growth rates

compared to their counterparts in the unsupplemented amino

acid group. Furthermore, they documented that methionine

supplementation upregulated the expression of antioxidant-

related genes, such as SOD and GSH-Px and conferred

cytoprotective effects against hyperthermia (228, 229). The

synergistic effects of methionine and arginine supplementation

have also been observed in the regulation of immunity and the

mitigation of oxidative stress induced by bacterial LPS in BMECs

(225). Dai et al. (225) reported that bacterial LPS significantly

down-regulated the expression of key genes associated with

antioxidant responses, such as NFE2L2, NQO1, GPX1, ATG7,

and GPX3, while increasing the levels of SOD2 and NOS2 in

BMECs. Folic acid was found to enhance antioxidant activity,

reduce the expression of inflammation-related genes, and improve

udder health in dairy cattle (225). Additionally, when BMECs were

challenged with gamma-d-glutamyl-meso-diaminopimelic acid (iE-

DAP), a component of bacterial cell walls, it induced inflammatory

changes and oxidative stress, which were effectively mitigated by

arginine and methionine treatment (230). Similarly, another study

demonstrated that glutamine treatment provided protective effects

against the adverse effects of iE-DAP in BMECs (231). Furthermore,

iE-DAP was found to elevate the expression of inflammatory

markers, including NOD1, inhibitor of nuclear factor-kB
(NFKBIA, IkB), nuclear factor-kB subunit p65 (RELA, NF-kB
p65), IL-6, and interleukin-8 (IL-8) in cell culture (231).

However, when cells treated with iE-DAP were subsequently

exposed to glutamine, this intervention led to the suppression of

the NOD1/NF-kB pathway and the enhancement of antioxidant

protein levels (231). This aligns with previous findings that amino

acids play a pivotal role in NO regulation in mammary cells, thereby

exerting antibacterial activity against LPS during inflammation

(232–234). In vitro experiments have consistently demonstrated

that methionine supplementation effectively attenuates apoptosis,

necrosis, and lipid peroxidation in bovine mammary gland cells

(228, 229, 235). Moreover, these studies have shown that arginine

and methionine co-supplementation enhances the expression of

antioxidative genes and elevates the NFE2L2 signaling pathway in

mammary cells, a crucial component of the cellular antioxidant

defense system (236). Lan et al. (237) conducted experimental

research revealing that pretreatment with 2 mM Met-Met had the

capacity to mitigate the elevated levels of specific inflammatory

markers following exposure to 1 mg/mL LPS. This included a

reduction in TNF-a, IL-1b, and IL-8. Furthermore, their

investigation indicated that the genes commonly affected by this

treatment were primarily associated with the NF-kB, MAPK, and

IL-17 pathways. Notably, the suppression of NF-kB, P38, and JNK

by Met-Met appeared to occur through the Janus kinase 2-signal

transducers and activators of transcription 5 (JAK2-STAT5)

pathway (237). Additionally, it was observed that the Met-Met-

induced reduction in LPS-triggered activation of p-IkB, NF-kB, and
JNK was reversed in the presence of a JAK2 inhibitor, highlighting
Frontiers in Immunology
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the intricate interplay between Met-Met and these signaling

pathways (237). Furthermore, a concise summary of research

endeavors investigating the impact of rumen-protected amino

acids on immune function, oxidative stress, and anti-

inflammatory responses in dairy cattle has been thoughtfully

compiled in Table 4 for your reference and elucidation.
TABLE 4 Summary of studies investigating the effect of rumen-
protected amino acids supplementation on immune function, oxidative
and anti-inflammatory status in dairy cattle.

S.No Amino
acid
Administration

Main
outcomes

References

1 Methionine and lysine
supplementation (107g/
twice a day/7 weeks/oral)

• Attenuated the
severity of SCC
and BCS, thereby
mitigating the risk
of clinical
mastitis
occurrence.

Abreu
et al. (238)

2 Methionine/at a rate of
0.09% and 0.10% of DMI/
oral/28 day before
parturition till 60 days
after parturition (88 days)

• Notable
enhancement in
plasma biomarkers,
following improved
liver function,
reduced oxidative
stress and
inflammation, as
well as enhanced
oxidative burst and
neutrophil
phagocytosis.

Batistel
et al. (222)

3 Increase methionine (175
mg/mL) and lysine (175
mg/mL) ratio
1:2.5 respectively

• Modulated the
expression of genes
associated with
immunity, anti-
inflammation, and
antioxidation in
LPS-challenged
BMECs.
• Elevated the
expression of genes
such as NFE2L2,
NQO1, GPX1,
GPX3, SLC36A1,
SLC7A1, SOD2,
NOS2, and
concurrent
decreased
expression of
RELA, IL1B, NF-
kb, and CXCL2.

Dai et al. (225)

4 5-10 gm zinc methionine/
head/day/oral

• Reduced the
SCC levels and
decreased the
required mastitis
treatment duration
with antibiotics

Gaafar
et al. (239)

5 Methionine at a rate of
0.09% and 0.10% of DMI/
oral/28 day before

• Upregulated the
expression of genes
involved in the
metabolism of

Han et al. (240)

(Continued)
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TABLE 4 Continued

S.No Amino
acid
Administration

Main
outcomes

References

parturition till 60 days
after parturition (88 days)

antioxidants,
notably increasing
the expression level
of NFE2L2, a
prominent
transcription factor
associated with
antioxidant
response.

6 Methionine at a rate of/
0.08% of DM/d/oral

• Reduced
inflammatory
changes, improved
antioxidant status
followed by
augmentation of
immune responses,
thereby reducing
the susceptibility to
infections in
transition
neonatal calves

Jacometo et al.
(241); Jacometo
et al. (242) &
Jacometo
et al. (243)

7 2 mM methionyl-
methionine treatment

• Mitigated the
inflammatory
alterations induced
by LPS through
downregulation of
the expression of
inflammatory-
associated genes,
including TNF-a,
AP-1, MCP-1, Jak2,
IL-1b, and IL-8,
along with the
inhibition of key
signaling pathways
such as JAK2-
STAT5, NF-kB,
MAPK, and IL-17
in BMECs

Lan et al. (237)

8 2 mM methionyl-
methionine treatment

• Significantly
reduced the
expression of
inflammatory
linked genes such
as IL-8, TNF-a,
AP-1, and MCP-1
induced by LPS
in BMECs

Lan et al. (244)

9 Rumen-protected lysine
(10 g of digestible lysine/
cow per day) and
methionine (4 g of
digestible
Methionine/cow)

• Reduced the
levels of BHB,
improved BCS, and
lowered SCC,
which collectively
contributing to
enhanced udder
health in
periparturient
dairy cattle

Lee et al. (245)

10 Hydroxyselenomethionine
supplementation (0.5
mg/oral)

• Significantly
elevated the levels
of antioxidative

Li et al. (246)

(Continued)
F
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TABLE 4 Continued

S.No Amino
acid
Administration

Main
outcomes

References

status and reduced
the risk of
periparturient
mastitis in cattle

11 Methionine
supplementation
at a rate of 0.09%/oral

• Enhanced the
mRNA expression
of genes associated
with antioxidative
status and the
metabolism of
GSH, thereby
improving cellular
antioxidant
defenses.

Liang
et al. (247)

12 60 g/d of NALM acetyl-l-
methionine (NALM)/cow

• Ameliorated
oxidative stress in
mid-lactating dairy
cows, as evidenced
by increased
concentrations of
total plasma
protein and
globulin,
concomitant with a
reduction in
plasma
MDA
concentration.

Liang
et al. (248)

13 Methionine and choline
treatment/cell culture

• Significantly
enhanced the
expression of genes
linked to immunity
and anti-
inflammatory
responses, while
concurrently
reduced oxidative
stress in
bovine PMNLs

Lopreiato
et al. (249)

14 Methionine
supplementation at the
rate of 0.19 or 0.07% DMI

• Enhanced whole
blood neutrophil
phagocytosis
followed by
improved immune
defense system
• Reduced
oxidative stress and
improved
antioxidant
response in dairy
catle
• The improved
immunity and
antioxidant status
were associated
with reduced risk
of mastitis

Osorio
et al. (250)

15 Methionine
supplementation at the
rate of 0.19 or 0.07% DMI

• Triggered a series
of positive
metabolic changes
with a notable

Osorio et al.
(211); Osorio
et al. (220)

(Continued)
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TABLE 4 Continued

S.No Amino
acid
Administration

Main
outcomes

References

enhancement of 1-
carbon metabolism,
showcasing its
impact on
fundamental
metabolic
processes.
• Antioxidant
status was
improved, as
evidenced by
elevated levels of
liver GSH.
• Decreased
concentrations of
plasma biomarkers
associated with
inflammation,
indicating its
potential role in
mitigating
inflammatory
responses and
promoting overall
physiological
well-being

16 Zn-Meth supplementation
(1 g/d Zn/oral)

• Reduced
inflammatory
changes, enhanced
immunity and
lowered the SCC
following
improved udder
health in transition
dairy goats

Salama et al.

17 Increase methionine (175
mg/mL) and lysine (175
mg/mL) ratio
1:2.5 respectively

• Regulated the
AKT1 and
mTORC1
Signaling which
are pivotal in cell
growth,
proliferation, and
immune responses.
• In addition
elevated the
expression of genes
associated with
anti-inflammatory
responses and
metabolic
regulation
(PPARG), anti-
apoptotic activity
(CL2L1) and cell
growth and
immunity (MAPK1
MTOR, RPS6KB1,
BAX, EIF4EBP1
and JAK2)

Salama
et al. (252)

18 Methionine (30 g/d of
Mepron)/
oral supplementation

• Improved
immune system’s
cellular defense
mechanisms by

Soder and
Holden, (253)

(Continued)
F
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TABLE 4 Continued

S.No Amino
acid
Administration

Main
outcomes

References

enhancing
population of T
lymphocytes in the
bloodstream.
• Reduced the level
of SCC, which
shows methionine
supplementation
could significantly
prevented mastitis

19 15 g/d RPC + 15 g/d RPM
from 21 days prepartum
to 21 days postpartum.

• Enhanced CD4
+/CD8+ T, GSH-
Px, T-AOC,
decreased the
plasma
concentrations of
NEFA, BHBA, total
cholesterol (TC)
and low-density
lipoprotein
cholesterol (LDL-
C)
• In addition,
lymphocyte ratio,
immunity and
antioxidative status
were improved

Sun et al. (213)

20 Methionine (8.0 and 12.0
g/d) and choline (12.4 g/
d) supplementation

• Effectively
mitigated the
hyperactive
response of IL-1b
during an LPS
challenge. This
suggests that
methionine
improved the
body’s ability to
regulate
inflammatory
processes,
potentially
reducing the risk of
excessive
inflammation and
its associated
negative effects.
• Relieved oxidative
stress and
improved
postpartum
neutrophil and
monocyte
phagocytosis
capacity.
• In addition
phagocytosis and
oxidative burst
activity was
improved. This
means that
immune cells were
more effective in
generating reactive
oxygen species to

Vailati-Riboni
et al. (254)

(Continued)
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6 Future research direction

While this review has synthesized existing knowledge regarding

the role of amino acids, vitamins, and trace minerals in mitigating

periparturient mastitis, several avenues for future research emerge.

Further investigation into the intricate mechanisms underlying the

interactions between these nutrients, oxidative stress, and immune

modulation will deepen our understanding of their synergistic

effects. Incorporating molecular and cellular approaches can

unravel the specific pathways through which these nutrients
TABLE 4 Continued

S.No Amino
acid
Administration

Main
outcomes

References

destroy pathogens,
further
strengthening the
immune response.

20 Infusion of arginine (3gm/
h for 5 days) protected the
dairy cattle from LPS
challenge (0.033 mg/kg
per h)

• Relieved oxidative
stress and
inflammatory
changes caused by
LPS in dairy cattle.
Arginine infusion
played a role in
mitigating
inflammation
triggered by LPS.
• Suppressed the
LPS induced NOS
and reduced the
LPS-binding
protein levels. This
is significant
because LPS-
binding protein is
associated with the
body’s recognition
of bacterial
endotoxins, and
reducing its levels
may contribute to a
reduced risk of
systemic
inflammation.

Zhao
et al. (255)

21 Infusion of arginine (3gm/
h for 5 days) protected the
dairy cattle from LPS
challenge (0.033 mg/kg
per h)

• Enhanced the
body’s antioxidant
defenses. This
could be due to its
properties as a
precursor to NO,
which has
antioxidant effects.
• Enhanced the
level of TAC which
suggests that
arginine
contributes to the
body’s ability to
counteract
oxidative stress
during
inflammation.
• Increased the
expression of GSH
and inhibited the
MDA level in LPS
challenged
dairy cattle

Zhao
et al. (256)

22 Methionine and choline
supplementation (at a rate
of 0.08% of DM/oral)

• Regulates taurine
synthesis, which is
involved in
supporting
antioxidant
defenses and
stabilizing cell
membranes.

Zhou Z
et al. (221)

(Continued)
TABLE 4 Continued

S.No Amino
acid
Administration

Main
outcomes

References

• Being a precursor
for GSH, play a key
role in enhancing
antioxidant status.
• Reduced
inflammatory and
chances of udder
infections in
periparturient
dairy cattle

23 Methionine
supplementation at 0.08%
of DMI/oral l

• Improved
biochemical
pathways,
including DNA
methylation, which
can influence gene
expression.
Increased
methionine
availability can
potentially affect
the expression of
genes related to
different biological
processes
(immunity,
inflammation and
oxidative stress)
• Strengthening
the immune system
by upregulating the
expression of genes
associated with
immunity.
• Enhanced the
body’s antioxidant
defenses by
influencing the
expression of
antioxidant linked.

Zhou
et al. (212)

24 Methionine
supplementation at 0.08%
of DMI/oral

• Significantly
decreased the
expression of genes
associated with
inflammation and
oxidative processes
and improved the
udder health in
periparturient
dairy cattle

Zhou
et al. (227)
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influence immune responses and oxidative balance. Additionally,

longitudinal studies assessing the long-term effects of targeted

supplementation on mastitis incidence, milk quality, and overall

cow health are essential to validate the efficacy of these strategies

under practical farming conditions. Furthermore, understanding

the interplay between genetic factors, environmental conditions,

and nutritional interventions can provide insights into personalized

approaches for mastitis prevention. Moreover, exploring novel

delivery mechanisms for these nutrients, such as innovative

formulations or precision feeding, could optimize their absorption

and utilization within the complex physiological milieu of

periparturient dairy cattle. In conclusion, future research

endeavors should focus on unraveling the nuances of nutrient-

nutrient interactions, delineating precise molecular mechanisms,

and translating these findings into practical strategies that empower

dairy farmers to effectively manage periparturient mastitis,

bolstering animal health and farm productivity.
7 Conclusion

In light of the intricate interplay between immune suppression,

oxidative stress, and metabolic perturbations during the

periparturient period, this comprehensive review underscores the

paramount importance of proactive nutritional strategies in

mitigating bovine mastitis. The critical vulnerabilities arising from

negative energy balance, oxidative stress, and compromised

immune responses underscore the need for targeted interventions

to enhance udder health and overall productivity in dairy cattle. The

exploration of trace minerals, vitamins, and amino acids as key

mitigation factors offers promising avenues for addressing

periparturient bovine mastitis. These nutritional components have

demonstrated significant potential in bolstering antioxidant

defenses, modulating immune responses, and preventing

oxidative damage. The multifaceted roles of trace minerals,

particularly copper, selenium, and calcium, have been deliberated

in the context of mastitis control. Similarly, the established impact

of vitamins, such as vitamin B12 and vitamin E, in enhancing

metabolic function and immune responses underscores their

potential in ameliorating mastitis susceptibility. Furthermore,

amino acids’ pivotal role in maintaining cellular oxidative balance

through their participation in crucial biosynthesis pathways

presents a novel perspective in combatting mastitis-related

challenges. The insights gained from this review highlight the

need for a holistic approach that encompasses these nutritional

factors to enhance udder health and mitigate the risks associated

with periparturient mastitis.
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24. Mikulková K, Kadek R, Filıṕek J. Evaluation of oxidant/antioxidant status,
metabolic profile, and milk production in cows with metritis. Irish Veterinary J
(2020) 73:8. doi: 10.1186/s13620-020-00161-3

25. Wullepit N, Raes K, Beerda B, Veerkamp RF, Fremaut D, Smet S. Influence of
management and genetic merit for milk yield on the oxidative status of plasma in
heifers. Livestock Science (2009) 123:276–82. doi: 10.1016/j.livsci.2008.11.013

26. Sharma N, Singh N, Singh O, Pandey V, Verma P. Oxidative stress and
antioxidant status during transition period in dairy cows. Asian-Australasian J Anim
Sci (2011) 24:479–84. doi: 10.5713/ajas.2011.10220

27. Castillo C, Hernandez J, Bravo A, Lopez-Alonso M, Pereira V, Benedito JL.
Oxidative status during late pregnancy and early lactation in dairy cows. Veterinary J
(2005) 169:286–92. doi: 10.1016/j.tvjl.2004.02.001

28. Markiewicz H, Gehrke M, Malinowski E, Kaczmarowski M. Evaluating the
antioxidant potential in the blood of transition cows. Medycyna Weterynaryjna (2005)
61:1382–4.

29. Kowalska J, Jankowiak D. Changes of reduction-oxidation balance in pregnant
ruminants. Postępy Biochemii (2009) 55(3):323–8.

30. Mavangira V, Mangual MJ, Gandy JC, Sordillo LM. 15-F2t-isoprostane
concentrations and oxidant status in lactating dairy cattle with acute coliform
mastitis. J Veterinary Internal Med (2016) 30:339–47. doi: 10.1111/jvim.13793

31. Agrawal A, Khan MJ, Graugnard DE, Vailati-Riboni M, Rodriguez-Zas SL,
Osorio JS, et al. Prepartal energy intake alters blood polymorphonuclear leukocyte
transcriptome during the peripartal period in Holstein cows. Bioinf Biol Insights (2017)
11:1177932217704667. doi: 10.1177/1177932217704667

32. Mann S, Sipka A, Leal Yepes FA, Nydam DV, Overton TR, Wakshlag JJ.
Nutrient-sensing kinase signaling in bovine immune cells is altered during the
postpartum nutrient deficit: a possible role in transition cow inflammatory response.
J Dairy Science (2018) 101:9360–70. doi: 10.3168/jds.2018-14549

33. Mann S, Sipka AS, Grenier JK. The degree of postpartum metabolic challenge in
dairy cows is associated with peripheral blood mononuclear cell transcriptome changes
of the innate immune system. Dev Comp Immunol (2019) 93:28–36. doi: 10.1016/
j.dci.2018.11.021

34. Yin FG, Zhang ZZ, Ju H, Yin YL. Digestion rate of dietary starch affects systemic
circulation of amino acids in weaned pigs. Br J Nutr (2010) 103(10):1404. doi: 10.1017/
S0007114509993321

35. Zhou XH, He LQ, Wan D, Yang HS, Yao K, Wu GY, et al. Methionine restriction
on lipid metabolism and its possible mechanisms. Amino Acids (2016) 48(7):1533–40.
doi: 10.1007/s00726-016-2247-7

36. Xiao J, Khan MZ, Ma Y, Alugongo GM, Ma J, Chen T, et al. The antioxidant
properties of selenium and vitamin E; their role in periparturient dairy cattle health
regulation. Antioxidants (2021) 10(10):1555. doi: 10.3390/antiox10101555

37. Khan MZ, Liu S, Ma Y, Ma M, Ullah Q, Khan IM, et al. Overview of the effect of
rumen-protected limiting amino acids (methionine and lysine) and choline on the
immunity, antioxidative, and inflammatory status of periparturient ruminants. Front
Immunol (2023b) 13:1042895. doi: 10.3389/fimmu.2022.1042895

38. Alhussien MN, Dang AK, Bu D. Strategies for mitigating the transition period
stress in dairy cattle. Front Veterinary Science (2023) 10:1157526. doi: 10.3389/
fvets.2023.1157526

39. Du XE, Cui Z, Zhang R, Zhao K, Wang L, Yao J, et al. The effects of rumen-
protected choline and rumen-protected nicotinamide on liver transcriptomics in
periparturient dairy cows. Metabolites (2023) 13(5):594. doi: 10.3390/metabo13050594

40. Spears JW, Weiss WP. Role of antioxidants and trace elements in health and
immunity of transition dairy cows. Veterinary J (2008) 176:70–6. doi: 10.1016/
j.tvjl.2007.12.015

41. O’Rourke D. Nutrition and udder health in dairy cows: a review. Irish Veterinary
J (2009) 62:15–20. doi: 10.1186/2046-0481-62-S4-S15

42. Weiss WP. A 100-year review: from ascorbic acid to zinc—Mineral and vitamin
nutrition of dairy cows. J Dairy Science (2017) 100:10045–60. doi: 10.3168/jds.2017-
12935
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