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Noval advance of histone
modification in inflammatory
skin diseases and related
treatment methods
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Inflammatory skin diseases are a group of diseases caused by the disruption of

skin tissue due to immune system disorders. Histonemodification plays a pivotal

role in the pathogenesis and treatment of chronic inflammatory skin diseases,

encompassing a wide range of conditions, including psoriasis, atopic dermatitis,

lupus, systemic sclerosis, contact dermatitis, lichen planus, and alopecia areata.

Analyzing histone modification as a significant epigenetic regulatory approach

holds great promise for advancing our understanding and managing these

complex disorders. Additionally, therapeutic interventions targeting histone

modifications have emerged as promising strategies for effectively managing

inflammatory skin disorders. This comprehensive review provides an overview of

the diverse types of histone modification. We discuss the intricate association

between histonemodification and prevalent chronic inflammatory skin diseases.

We also review current and potential therapeutic approaches that revolve

around modulating histone modifications. Finally, we investigated the

prospects of research on histone modifications in the context of chronic

inflammatory skin diseases, paving the way for innovative therapeutic

interventions and improved patient outcomes.
KEYWORDS

histone modification, inflammatory skin disease, therapy, epigenetic, inflammatory
reaction
1 Introduction

The epithelial tissues, comprising the outermost layer of an organism, serve as a

protective barrier against environmental stressors, including physical, chemical, and

microbial agents. Epithelial tissues are not only a physical barrier; they are also

immunological organs that are activated in response to the attack of foreign agents and

trigger different sets of transcriptional cascades that stimulate a specific type of
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immune response (1). The epithelial immune microenvironment is

an important component in implementing this process; however,

an aberration in this microenvironment may contribute to

inflammatory skin diseases (2, 3).

Inflammatory skin diseases encompass a range of skin disorders

characterized by the infiltration of inflammatory cells and a

significant increase in inflammatory cytokines (4). The most

prevalent inflammatory skin diseases include psoriasis, atopic

dermatitis (AD), lupus, systemic sclerosis (SSc), contact dermatitis,

lichen planus (LP), and alopecia areata (AA) The underlying causes

of these diseases remain unclear. Genetic susceptibility has been

proposed to partially explain the immune imbalances observed in

patients with inflammatory skin conditions. Research indicates that

defects in the filaggrin gene may increase the risk of allergic

sensitization, atopic eczema, and allergic rhinitis (5). Another study

discovered that the TYK2 gene’s loss-of-function missense variant

rs34536443 is associated with decreased susceptibility to various

autoimmune diseases in individuals with psoriasis (6). However,

investigations involving monozygotic twins have shown that

genetic factors do not comprehensively explain the underlying

causes of inflammatory skin conditions (7, 8).

Epigenetic modifications, characterized by reversible alterations

in gene expression, independent of DNA sequence changes, are

manifested during various stages of development or in response to

environmental stimuli. These modifications, commonly known as the

“second code,” have gained increasing attention due to their

significance in inflammatory skin diseases, specifically immune

activation, T-cell polarization, and impairment of skin barrier

function (9–13). In eukaryotic cells, the chromosomal DNA is

organized into a compact structure known as chromatin (14). The

chromatin comprises nucleosome subunits, consisting of a histone

octamer made up of two copies each of the core histones H2A, H2B,

H3, and H4, wrapped by 147 base pairs of DNA (15, 16). The

nucleosomes are then condensed further into a higher-order

chromatin structure when the linker histone H1 binds to the linker

DNA. This condensation enables the storage of a significant amount

of DNA, approximately six feet long when stretched from end to end,

within a single cell (17–19). Dynamic chromatin remodeling

significantly regulates various DNA-dependent biological processes,

including RNA transcription, DNA replication, DNA repair, and

chromosome condensation and segregation (20).

The chromatin structure can be classified into two categories

according to its association with gene transcription. In a

heterochromatic state, robust DNA-protein interactions induce

highly condensed chromatin, characterized by limited interaction

between transcription factors and the genome, which results in gene

repression. Conversely, in a euchromatic state, DNA-protein

interactions are diminished, resulting in loosely packed chromatin

with an accessible structure that facilitates transcription factor

binding to DNA, stimulating gene activation (21, 22). The core

histones within the histone octamer exhibit a predominantly

globular structure, except for their N-terminal “tails” that extend

from the nucleosome. These N-terminal “tails” are rich in basic

lysine and arginine residues and are subject to various

modifications. Subsequently, these modifications result in

conformational changes within the chromatin, enabling it to
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adopt relaxed or condensed states that either stimulate or inhibit

transcription, respectively (23, 24). Histone modification has been

shown to interact with the immune microenvironment and

promote the occurrence and development of inflammatory skin

diseases. A study reported that the a-KG–H3K9me3–BBOX1 axis is

critical in the metabolic reprogramming of cluster of differentiation

(CD)147, which is pivotal in glycolysis reprogramming during the

pathogenesis of psoriasis (25). One of the histone deacetylases,

SIRT1, potentially inhibits the apoptosis of keratinocytes induced

by UVB in cutaneous lupus erythematosus (26). Another histone

deacetylase, HDAC1, exhibits dysregulation in patients with AA

and acne vulgaris (27). Some aberrant histone acetylation and

methylation modifications were also found in PBMCs of patients

with pemphigus vulgaris. These modifications may contribute to the

pathological immune responses in the disease (28).

In this review, we described different types of histone

modifications, analyzed their relationship with common chronic

inflammatory skin diseases, and reviewed the therapeutic

approaches currently employed for treating these conditions in

association with histone modification. Additionally, we evaluated

the prospects of utilizing histone modification in treating

inflammatory skin diseases.
2 Different types of histone
modifications and its function

2.1 Histone acetylation

Histones typically contain amino acids with basic side chains

that carry a positive charge, while genomic DNA carries a negative

charge, creating an attractive force between the two (29). The

process of histone acetylation primarily occurs at lysine residues,

which neutralizes the positive charge of histones and reduces the

interaction between nucleosomes and DNA. Consequently, histone

acetylation results in a heterochromatic state, whereas histone

deacetylation tends to result in a euchromatic state, significantly

affecting the initiation and elongation of gene transcription (30, 31).

The acetylation and deacetylation of histones are primarily

regulated by histone acetyltransferases (HAT) and histone

deacetylases (HDACs). HATs are protein complexes that facilitate

the transfer of acetyl groups, including acetyl-CoA, onto the amino

tails of histones (32). HDACs are categorized into four distinct

classes: Class I (HDACs 1-3 and 8), Class II (HDACs 4-7, 9, and 10),

and Class IV (HDAC11). HDACs require Zn2+ for their enzymatic

activity, while Class III (Sirt1-7) HDACs are NAD+-dependent.

These HDAC classes remove acetyl marks from histones and other

protein substrates (17, 33). Table 1 shows the classification and

family of the enzymes involved in histone acetylation. Histone

acetylation plays a significant role in the pathogenesis and

progression of inflammatory diseases. Among the HAT proteins,

KAT2A has been identified as one of them. The expression of

KAT2A has been positively correlated with the immunopathology

of inflammatory joint diseases in both patients with rheumatoid

arthritis and mice with experimental arthritis. This correlation is
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attributed to the promotion of Il1b and Nlrp3 transcription through

histone H3K9ac modification and the inhibition of NRF2

transcription repressor activity by KAT2A. Additionally, another

type of HAT, CBP/p300, enhances cytokine expression by

increasing the levels of H3K27a (34). Another type of HAT,

known as CBP/p300, facilitates the expression of cytokines by

upregulating the abundance of H3K27ac (35). Given the role of

histone acetylation in modulating inflammatory responses, it is

plausible to consider manipulating histone acetylation levels as a

potential therapeutic approach for managing inflammatory

disorders. Figure 1 shows how histone acetylation influence

inflammatory reaction.
Frontiers in Immunology 03
2.2 Histone methylation

Histone methylation occurs at specific lysine or arginine

residues located on histone’s N-terminal “tails” of histone (36).

Compared to acetylation, methylation is a more intricate and

nuanced process as it does not alter the charge in histone

methylation, and both lysine and arginine residues can undergo

multiple methylation states (37). Lysine residues, specifically

H2BK5, H3K4, H3K9, H3K27, H3K36, H3K79, and H4K20, can

undergo monomethylation, dimethylation, or trimethylation on the

ϵ-amino groups of lysine residues. On the other hand, arginine

residues, specifically H3R2, H3R8, H3R17, H3R26, and H4R3, can

undergo monomethylation, symmetrical dimethylation, or

asymmetrical dimethylation on their guanidinyl groups (23). Both

the positioning of modified residues and the quantity of methyl

groups are crucial for the functional consequences of histone

methylation (38). The trimethylation of H3K4 (H3K4me3) at

gene promoters and H3K36me3 across gene bodies results in

open regions within chromatin and transcription activation.

Conversely, H3K27me3 and H3K9me3 are commonly associated

with gene silencing (17). In some conditions, monomethylation,

including H3K9me1 and H3K27me1, is involved in the activation of

transcription, while trimethylation at the same sites is associated

with repression (17). Table 1 displays the classification and family of

the enzymes involved in histone methylation. The polarization of

macrophages can be influenced by various types and levels

of histone methylation, which in turn can impact the occurrence

and progression of inflammation. The function of M1 macrophages

is to produce pro-inflammatory cytokines, including TNF-a, IL-1b,
IL-6, IL-12, and IL-23, through the expression of transcription

factors, mainly the NF-kB. Macrophages adopt the M1 phenotype

in response to pro-inflammatory cytokines secreted in response to
TABLE 1 Enzymes involved in histone acetylation and histone methylation.

Classification Family Example

HAT

GNAT GCN5, ELP3, HAT1, Hpa2

p300/CBP p300/CBP

MYST KAT5, KAT6B, KAT6A, KAT7, KAT8

TAFII TAFII250

HDACs

Class I HDACs 1-3 and 8

Class II HDACs 4-7, 9 and 10

Class III Sirt1-7

Class IV HDAC11

HMTs
PRMTs PRMT1-9

HKMTs KMT1-6

Histone Demethylase
LSD KDM1A, KDM1B

JMJD JMJD1C, JMJD2D, JMJD3
FIGURE 1

The impact of histone acetylation and histone methylation on the inflammatory response is examined. The up-regulation and down-regulation of
these two types of histone modification play a role in macrophage polarization, T cell differentiation, and variation in cytokine levels. The specific
locations and types of these modifications may lead to different directions of variation, ultimately influencing the regulation of the inflammatory
response. The adjustment of histone modifications is mediated by relevant enzymes.
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persistent and severe inflammation or infection. However, if the

M1 phase continues, it causes chronic inflammation, tissue damage,

and loss of organ functions. Two kinds of histone methylation,

H3K9me3 and H3K36me2, can negatively regulate the M1

phenotype (39, 40). On the contrary, a decrease of H3K27me3

may promote the M1 macrophage phenotype (41). Histone

methylation is also very important in T-cell responses. The

differentiation from naive CD4+ T cells to Th17 cells causes

upregulation of H3K4me3 in the RORC promoter while

decreasing H3K27me3. In contrast, the differentiation of Th1 cells

is anticipated to contribute to the upregulation of H3K27me3 at the

regulatory regions of RORC (42). These findings provide evidence

suggesting that histone methylation plays a pivotal role in the

inflammatory response. Figure 1 shows how histone methylation

influence inflammatory reaction.
2.3 Other modifications of histone

The most studied histone modifications include acetylation and

methylation, while other significant modifications include

phosphorylation, ubiquitination, sumoylation, biotinylation, and

ADP-ribosylation. Histone phosphorylation at serine and threonine

residues contributes to chromatin relaxation (43) in various cellular

processes, including transcription, mitosis, DNA repair, and

apoptosis. Additionally, it enhances the effectiveness of histone

acetylation (44, 45). Ubiquitin and small ubiquitin-like modifiers

(SUMO) are conserved small proteins that undergo covalent

attachment to an ϵ-amino group of a lysine residue on the histone

(46, 47). Ubiquitination and sumoylation are associated with DNA
Frontiers in Immunology 04
double-strand break repair (48, 49). Histone biotinylation also occurs

at lysine residues and may be involved in transcriptional repression

(19, 50). ADP-ribosylation, catalyzed by ADP-ribose transferases

using NAD+ as a cofactor, adds an ADP-ribose unit to an N-

terminal chain. This process occurs in lysine, arginine, glutamic

acid, and aspartic acid residues and is associated with DNA

damage (51). Figure 2 indicates different kinds of histone

modifications and their position in N-terminal “tails”. The

enrichment of H3 serine 28 phosphorylation was observed at

induced genes in mouse macrophages stimulated with bacterial

lipopolysaccharide, serving as a mediator for MSKs in the

regulation of inflammatory response (52). USP38, a histone

deubiquitinase, exhibits specificity in removing monoubiquitin

from H2B at lysine 120. This process plays a role in coordinating

inflammatory responses with the histone H3K4 modifier KDM5B

(53). The process of histone ADP-riboyslation, mediated by PARP1,

enhances the expression of inflammatory cytokines in microglia by

promoting the accessibility of promoter DNA (54). The investigation

of the association between inflammation and other kinds of histone

modifications remains infrequently explored in scholarly literature.
3 Histone modifications in
inflammatory skin diseases

3.1 Psoriasis

Psoriasis, a prevalent chronic inflammatory skin disease,

exhibits a significant genetic predisposition and autoimmune
FIGURE 2

Different histone modifications, including methylation, acetylation, ubiquitination, phosphorylation, and sumoylation, and their position in the N-
terminal “tails”.
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pathogenic characteristics (55, 56). The presentation of psoriasis in

patients varies in terms of morphology, distribution, severity, and

course, although scaling papules and plaques are frequently

observed. This condition is categorized as a “chronic, non-

communicable, painful, disfiguring, and disabling disease for

which there is no cure,” affecting a substantial population of over

60 million adults and children (57, 58). Psoriasis is characterized as

an inflammatory skin disease mediated by Th17 cells. In the study

conducted by Ovejero-Benito et al. (59), individuals with psoriasis

had elevated levels of H3K4 compared to healthy individuals.

Additionally, significant alterations in H3K27 were observed

between individuals who responded positively to biological drugs

and those who did not, specifically at the 3-month follow-up.

H3K27 has been identified as a regulator of Th17 cell

differentiation, while H3K4 has been associated with Th17

plasticity (60, 61). Additionally, a decrease in H3K9me2 in

keratinocytes may contribute to the upregulation of IL-23,

thereby playing a role in developing chronic inflammatory

diseases dependent on the IL-23/IL-17 axis (62). A study of
Frontiers in Immunology 05
Rasheed et al. showed that the expression of Class III HDACs,

specifically SIRT1, was reduced while SIRT6 was increased in

psoriatic skin (63). Another study also observed an increase in

HDAC1 and a decrease in SIRT1 levels in skin tissues (64). The

transcription cofactor p300 is a histone acetyltransferase with

histone acetylase activity. Liao et al. (65) reported that the

transcription factor Wilms Tumor 1 regulates the expression of

IL-1b by facilitating the binding of P300 to the IL-1b promoter,

thereby contributing to the development of psoriasis. These

publications demonstrated that histone acetylation and

methylation play an important role in the occurrence and

development of psoriasis. Table 2 shows studies published on

histone modification variation in psoriasis.
3.2 Atopic dermatitis

AD is characterized by the presence of recurring eczematous

lesions and severe itchiness and discomfort, resulting in sleep
TABLE 2 Studies on histone modification in inflammatory skin disease in recent years.

Disease Modification Site
Study
model

Results Ref.

Psoriasis

Histone
methylation

H3K9me3 Mice
CD147 is critical in metabolic reprogramming through the a-KG-H3K9me3- axis in the
pathogenesis of psoriasis, indicating that epidermal CD147 is a promising target for
psoriasis treatment.

(66)

Histone
methylation

H3K4me3,
H3K4me1

Mice
Depletion of CD147 increased transcriptional expression and activity of g-butyrobetaine
hydroxylase (g-BBD/), a crucial molecule for carnitine metabolism, by inhibiting histone
trimethylations of H3K9.

(67)

Histone
acetylation

H3K27Ac Human

In the most over-expressed genes in psoriasis, there is an enrichment of H3K27Ac.
However, the loss of H3K27 acetylation modification does not correlate with decreased
gene expression.
GRHL appears to play an important role in the pathogenesis of psoriasis and, therefore,
might be a new target for psoriasis therapeutics.

(68)

Histone
methylation

H3K27me3 Cell culture
EZH2 and H3K27me3 were over-expressed in the epidermis of psoriatic lesional skin
compared to normal skin.

(69)

Histone
acetylation

H3K9Ac,
H3K27Ac

Human&mice

Glutaminase 1-mediatedglutaminolysis was aberrantly activated in patients with psoriasis
and in psoriasis-like mouse models, which promoted Th17 and gd T17 (IL-17A-producing
gd T) cell differentiation through enhancement of histone H3 acetylation of the Il17a
promoter, thereby contributing to the immune imbalance and development of psoriasis.

(70)

AD
Histone
acetylation

/ Cell culture
TGase II, through interaction with NF-kB, induces expression of HDAC3 and snail, which
in turn exerts transcriptional repression on E-cadherin to mediate allergic inflammation.

(71)

SSc

Histone
acetylation/
Histone
methylation

H3K4me1,
H3K27ac

Human The SSc-associated haplotypes were enriched for H3K4me1/H3K27ac marks in monocytes. (72)

Histone
methylation

H3K27me3 Human
SSc myofibroblasts in vitro and SSc skin biopsies in vivo display high levels of HOTAIR, a
scaffold-long non-coding RNA known to direct the histone methyltransferase EZH2 to
induce H3K27me3 in specific target genes.

(73)

Histone
acetylation

/ Human
CYR-61, epigenetically regulated by HDAC5, is a potent antifibrotic and proangiogenic
mediator in SSc.

(74)

Histone
acetylation/
Histone
methylation

H3K4me3,
H3K27

Human
1046 and 534 genomic loci showed aberrant H3K4me3 and H3K27ac marks, respectively,
in SSc monocytes

(75)

(Continued)
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deprivation, reduced self-esteem, and impaired academic and

occupational performance. Globally, AD affects approximately 7%

−10% of adults and up to 25% of children with a significant genetic

influence (80, 81). This allergic disease is primarily mediated by Th2

cells. Kwon’s study suggested that the interaction between mast

cells, keratinocytes, and dermal fibroblast cells can potentially

contribute to AD development. The presence of CXCL13 in the

exosomes of mast cells in a pathological model was observed to

enhance the expression of HDAC6 in both skin mast cells and

dermal fibroblast cells.

Additionally, HDAC6 was found to negatively regulate MiR-9,

thereby influencing the expression of SIRT1. The downregulation

or inhibition of HDAC6 and SIRT1 demonstrated a suppressive

effect on AD, as discussed in this article (82). Mesenchymal stem

cells can interact with both the innate and adaptive immune

systems and inhibit the activation of immune cells. These cells

have been observed to be protective against AD, and this function

has been linked to an increase in the expression levels of HDAC3

(83). Furthermore, the expression of miR-335, a potent inducer of

keratinocyte differentiation, is abnormally diminished in AD-

lesioned skin. This reduction is epigenetically regulated by histone

deacetylases (84). The influence of histone modification to AD is

mainly concentrated on acetylation. Publications on the histone

methylation to AD are seldom to see. Table 2 indicates studies

published on histone modification variation in AD.
3.3 Systemic sclerosis

Scleroderma, or SSc, is an infrequent autoimmune disease

affecting multiple systems, characterized by dysregulated innate

and adaptive immunity resulting in extensive systemic fibrosis

(85). Skin thickening has been extensively studied as a symptom

of SSc because it facilitates diagnosis, and there has been a proven

correlation between increased skin involvement and more severe

internal organ damage, an unfavorable prognosis, and heightened

disability (86). EZH2 is involved in T cell differentiation, EC-

mediated angiogenesis, myofibroblast transformation, and tissue

fibrosis in SSc (87–89). It has been reported that both EZH2 and
Frontiers in Immunology 06
H3K27me3 were elevated in SSc dermal fibroblasts and endothelial

cells compared with healthy controls (90). JMJD3, a type of histone

demethylase, is upregulated in SSc fibroblasts. This upregulation

decreases H3K27me3 levels at the FRA2 promoter, which

stimulates FRA2 expression and ultimately promotes SSc

fibroblast activation (91). Ciechomska et al. reported that

epigenetic alterations in monocytes can influence the

pathogenesis of SSc by exerting either promotive or repressive

effects on myofibrogenic differentiation (92). Histone acetylation

also plays a significant role in SSc. In a study by Shin, ChIP-qPCR

results showed an increase in H3K27 acetylation in SSc fibroblasts

(93). The variation of histone modification is significant in

fibroblasts and monocytes, which may be a valuable approach to

understanding the development and changes of SSc. Table 2

displays the studies published on histone modification variation

in SSc.
3.4 Systemic lupus erythematosus

Systemic lupus erythematosus (SLE) is a chronic systemic

autoimmune disease that may affect multiple tissues and organ

systems, including cutaneous, renal, cardiopulmonary,

musculoskeletal, neural, and hematologic systems (94). It is

observed that nearly all patients with SLE experience cutaneous

manifestations at some point during the progression of their disease

(95). Currently, the treatment of SLE involves using glucocorticoids

and immunosuppressive agents; however, the long-term prognosis

for SLE remains unfavorable (96). Additionally, the regulation of

SLE is significantly influenced by H3K27me3. Compared with

healthy controls, lupus patients showed elevated levels of

H3K27me3 in CD4+ T cells, a process facilitated by EZH2, a

histone methyltransferase (97). Luo et al. observed a substantial

increase in H3K27me3 at the HPK1 promoter in Tfh cells of SLE

patients (98). In SLE mice, glomerular cells showed significantly

upregulated HDAC6 and HDAC9 expression compared with

healthy mice. Targeted inhibition of HDAC6 effectively reversed

SLE-associated abnormalities by modulating the proportions of

cells in the late pro- and early pre-B cell fractions and altering T
TABLE 2 Continued

Disease Modification Site
Study
model

Results Ref.

SLE

Histone
acetylation

/ Human
Upregulated SIRT1 inhibits the NLRP3 inflammasome to slow the progression of lupus
nephritis by regulating NF-kB and ROS/TRPM2/Ca channels

(76)

Histone
methylation

/ Cell culture
JMJD3 could regulate B-cell differentiation by promoting naïve B-cell differentiation into
CD27 B cells, and Blimp-1 and Bcl-6 also decreased after inhibitor treatment

(77)

Histone
acetylation/
Histone
methylation

H3K27Ac,
H3K4me

Human

We observed many interactions in the TAD and strong enhancer markers (H3K4me1 and
H3K27ac) near the two gene loci (online Supplementary Figure S8C). According to the
Enhancer-Atlas2.0 database, the region was annotated as a super-enhancer in CD4+ T/CD8
+ T cells

(78)

Histone
acetylation/
Histone
methylation

/ Mice
HDAC10 abundance was decreased in mouse macrophages in response to innate immune
stimuli. It was reduced in peripheral blood mononuclear cells (PBMCs) from patients with
systemic lupus erythematosus (SLE) compared with that in PBMCs from healthy donors.

(79)
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cell differentiation, as indicated by increased Treg cells and

decreased thymic DN T cells (99). Zhou et al. (100) showed a

significant augmentation in H3 acetylation and H3K4me2 within

the CD4+ T cells of individuals diagnosed with lupus. The

anomalous alterations in histone modifications of CD4+ T cells

potentially play a role in the pathogenesis of lupus by upregulating

CD70 expression. More evidence suggested that histone

modification take part in the abnormal differentiation of T cell in

SLE individuals, which lead to the changes in pathological

characteristics. The results of this study provided evidence that

histone acetylation and methylation both play a role in regulating

the immune microenvironment in SLE. Table 2 lists the studies

published on histone modification variation in SLE.
3.5 Contact dermatitis

Contact dermatitis, a prevalent inflammatory skin disease, is

caused by direct exposure to environmental chemical substances

that have the potential to irritate or cause allergenic reactions (101).

These chemical substances facilitate the differentiation of T

lymphocytes into Th2 cells, resulting in elevated levels of

inflammatory cytokines and blood IgE (102). Additionally, the

upregulation of IL-4 hinders the functionality of Th1 cells,

resulting in reduced cell-mediated immunity and exacerbating the

inflammatory response (103). Occupational contact dermatitis, a

prominent subset of contact dermatitis, primarily affects individuals

regularly exposed to water or irritating substances in their

occupational settings (104). Hairdressers, construction workers,

and healthcare professionals are particularly vulnerable to

developing occupational contact dermatitis. Sonday et al.

conducted a study involving 697 health workers in two tertiary

hospitals in Southern Africa and reported that 12.3% of them

exhibited a likelihood of contact dermatitis within the past 12

months (105). Additionally, contact with cosmetics and medical

supplies was identified as a common source of contact dermatitis

(106–108). A knockout experiment conducted in mice showed that

HMGB1 exhibits anti-inflammatory properties in keratinocytes of

contact dermatitis mice. The reduction in IL-24 expression is

accomplished by inhibiting H3K4me3 binding to the promoter

region of IL-24 (109). Additionally, another study indicated that the

absence of Utx, a histone demethylase, could contribute to various T

cell abnormalities and worsen the symptoms of contact dermatitis

(110). Gaining insight into alterations in histone modification levels

associated with contact dermatitis holds the potential to facilitate

the development of novel preventive and therapeutic approaches

aimed at enhancing the occupational and residential conditions of

certain populations.
3.6 Lichen planus

LP is a chronic mucocutaneous disease characterized by the

presence of reticular, purple papules and plaques on the skin, as well

as white papules and erosions on mucous membranes, and

progresses through a chronic relapsing course (111–113). LP
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primari ly affects the skin and oral mucosa, affecting

approximately 1%-2% of the general population (111). LP is more

prevalent in middle-aged or older adults and women (114). LP is

characterized by dysfunctional T cells that initiate epithelial cell

apoptosis. Immune infiltration, primarily consisting of T cells, is a

common occurrence in LP. Most cytotoxic clones observed in

lichen planus lesions are CD8+ T cells, while most non-cytotoxic

clones are CD4+ (115). In addition to contributing to the

development of autoimmunity, these cytotoxic CD8+ T cells are

essential for promoting apoptosis of oral mucosal basal cells (116).

The World Health Organization (WHO) recognizes oral LP as a

potentially malignant disorder (115). Some studies have found that

histone acetylation take part in the process of LP. A study

conducted on 66 patients with oral LP and 23 patients with

cutaneous LP showed that H3K9 histone acetylation is more

prevalent in both lesions, with no significant distinction between

them (117). Another study reported that H3K9 histone acetylation

acts as an epigenetic marker for the recurrence of oral LP (118). Jun

et al. observed a decrease in histone H3 acetylation and an increase

in HDAC activity in CD4+ T cells of oral LP patients, which may

impact the synthesis of inflammatory cytokines. The level of histone

H3 acetylation showed a negative association with IL-4 and MCP-1

production, while the expression of HDAC6 mRNA exhibited a

positive correlation with MCP-1 production (119). Nevertheless,

the relationship between LP and other kinds of histone

modifications are required to be researched.
3.7 Alopecia areata

Alopecia areata (AA) is a prevalent autoimmune disorder that

manifests as temporary and non-scarring hair loss. The affected

regions can vary from small areas of baldness to complete hair loss

on the scalp and face and, in some cases, extend to body hair (120).

The global prevalence of AA is estimated at approximately 2%, with

0.27% prevalence in China (121). AA commonly affects a patient’s

physical appearance and significantly impacts their health-related

quality of life (121–123). Research indicates that individuals with

AA may have a more than twofold increased risk of experiencing

depression or anxiety disorders compared to the general population

(124). AA is a disease that primarily affects the hair follicles;

however, systemic immune activation and dysregulation of serum

cytokine levels may be associated with this condition (125). AA

patients typically exhibit perifollicular and intrafollicular

infiltration, with CD4+ Th1 cells predominantly located near the

hair follicle and CD8+ Tc1 cells within the follicular epithelium

(126). Zhao et al. compared the epigenetic profiles of peripheral

blood mononuclear cell (PBMC) samples from 25 AA patients and

20 healthy controls. AA patients exhibit a significant elevation in

histone H3 acetylation levels and a significant reduction in histone

H3 lysine-4 methylation levels compared with healthy controls.

Additionally, there is a positive correlation between AA disease

severity and the acetylation levels of histone H3. This study also

observed an upregulation in the expression of p300, HDAC1,

MLL, SETD7, EHMT2, KDM4C, and KDM5A, as well as a

downregulation in the expression of HDAC2, HDAC7, KDM1A,
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KDM4A, and KDM4B. These results showed that epigenetic

modification of PBMC may be involved in the pathogenesis of

alopecia areata (127). In a study comprising a cohort of 25

individuals with patchy AA, 26 patients with acne vulgaris, and

25 healthy controls, the enzyme-linked immunosorbent assay

(ELISA) data showed a decreased level of histone deacetylase 1

(HDAC1) in both AA and acne vulgaris patients (128).

Additionally, the inhibition of SIRT1 enhanced the synthesis of

Th1 cytokines (IFN-g and TNF-a) IFN-inducible chemokines

(CXCL9 and CXCL10). It facilitated T cell migration in hair

follicles’ outer root sheath cells. Conversely, the activation of

SIRT1 suppressed the autoreactive inflammatory reactions. The

antagonistic impact of SIRT1 on the immune response was

mediated via the deacetylation of NF-kB and the phosphorylation

of STAT3. Thus, SIRT1 downregulation may contribute to AA

development (129). The variation of histone acetylation is observed

in AA patients, which provides new ideas for the treatment of AA.
4 Therapeutic method and potential
therapeutic method related to
histone modifications

4.1 Short-chain fatty acids and
their derivative

The occurrence and progression of inflammatory skin diseases

are frequently accompanied by gut microbiota alterations, which

serve multiple functions (130–133). The gut microbiota produces a

wide range of short-chain fatty acids (SCFAs) through the

fermentation of non-digestible carbohydrates, including dietary

fiber (134). SCFAs are fatty acids with carbon backbones ranging

from one to six, and the predominant SCFAs found in the

intestines, with concentrations exceeding 100 mM, are

propionate, acetate, and butyrate (134, 135). SCFAs are produced

by two predominant bacterial groups, with acetate and propionate

primarily generated by the Bacteroidetes phylum, while butyrate is

mainly produced by the Firmicutes phylum (136). An animal model

study showed that mice with intestinal microbiota exhibited higher

histone acetylation levels than germ-free mice. Conversely, when

SCFAs were administered through drinking water, histone

acetylation in germ-free mice increased significantly to a higher

level compared with the microbiota group. This study proves that

gut microbiota regulates histone modification through SCFA

metabolism (137). Another study showed that SCFAs produced

by Propionibacterium acnes can inhibit the activity of HDAC,

thereby contributing to the development of inflammatory

responses (27). Short-chain fatty acids (SCFAs) are produced

through the metabolic processes of gut bacteria and exert an

impact on the development of inflammatory skin conditions by

inhibiting histone deacetylase (HDAC). This observation

underscores the intricate nature of the etiology of inflammatory

skin diseases and presents a novel therapeutic avenue for their

management. In contrast, imiquimod reduces the suppressive

activity of Treg, resulting in the upregulation of IL-17 and IL-6
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and the downregulation of IL-10 and FOXP3. Consequently, this

effect helps develop a psoriasis-like skin inflammation model. One

specific SCFA, butyrate, can reverse these processes by inhibiting

HDACs (138). SCFAs represent a promising therapeutic target for

inflammatory skin diseases due to their involvement in the

regulation of histone modification. Krautkramer et al. (137)

reported that administering SCFAs through water to germ-free

mice can replicate gut colonization and its impact on histone

modification. The combined treatment of sodium butyrate, one of

the SCFAs, and the EGFR inhibitor PD153035 has enhanced

keratinocyte differentiation (139). Another study showed that

administering either injected or topically applied sodium butyrate

onto the ears of mice sensitized to 2,4,6-trinitro-1-chlorobenzene

significantly reduced the contact hypersensitivity reaction (140). As

histone deacetylase inhibitors, butyrate and propionate upregulate

miRNAs that suppress AID expression, thereby modulating

autoantibody responses in lupus-prone MRL/Faslpr/lpr mice

(141). Luo et al. reported that butyrate can suppress IL-33

expression in keratinocytes infected with S. aureus by inhibiting

HDAC3 (142). These findings suggest that the modulation of

SCFAs on histone modification can potentially treat inflammatory

skin diseases; however, additional research is required on

autoimmune disorder therapies.
4.2 HDAC inhibitors

HDAC inhibitors modulate gene expression by inhibiting the

removal of acetyl groups from the N-terminal tails of histones

through binding to HDAC (13, 143). Extensive research has shown

the potential of HDAC inhibitors in antineoplastic therapy (144–

146). Additionally, the antiproliferative and anti-inflammatory

properties of HDAC inhibitors have prompted an active

investigation into their efficacy for treating inflammatory skin

diseases (13). Trichostatin A (TSA) is one of this context’s most

extensively studied HDAC inhibitors. A study by Kim showed that

TSA treatment resulted in a decreased IL-4 production and an

increased T reg cells population, effectively suppressing AD-like

skin lesions in NC/Nga mice treated with DNFB under SPF

conditions (147). Additionally, TSA can reverse the aberrant

e xp r e s s i on o f mu l t i p l e g ene s a s so c i a t ed w i th th e

immunopathogenesis of SLE patients (148). Mohammadi’s (149)

study showed that sodium valproate inhibits HDAC in SLE

patients, resulting in immunomodulatory effects on macrophages.

Additionally, a study on 10 AD patients and 6 healthy individuals

showed that the HDAC inhibitor belinostat restored epidermal

miR-335 expression and rescued the impaired skin barrier in AD

(84). Souliotis et al. reported that administering vorinostat resulted

in hyperacetylation of histone H4, chromatin decondensation,

improved DNA repair efficiency, and decreased apoptosis among

patients with SLE. Consequently, genes involved in DNA damage

repair and signaling pathways were significantly under-expressed,

while genes associated with apoptosis were significantly over-

expressed (150). Additionally, panobinostat treatment in SLE

mice significantly reduced autoreactive plasma-cell numbers,

autoantibodies, and nephritis, while other immune parameters
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remained largely unaffected. The findings indicate that

panobinostat has the potential to be a therapeutic option for

autoimmune conditions driven by B-cells without causing

significant long-term negative effects on B-cell memory (151).

Clinical applications for systemic lupus erythematosus were

demonstrated by suberoylanilide hydroxamic acid in two distinct

mouse model experiments (152, 153). Different types of HDAC

inhibitors have been shown to have an impact on inflammatory skin

diseases, thereby offering novel support for the management of

such conditions.
4.3 Bromodomain and extraterminal
protein inhibitor

Bromodomain proteins, a group of evolutionarily conserved

motifs involved in protein-protein interactions, have been found to

recognize acetylated lysine residues on histones and play a

significant role in chromatin remodeling (154). Bromodomain

proteins are characterized by the presence of four left-handed

bundle a-helices, which are arranged in a manner that creates

two distinct interhelical aZ-aA and aB-aC loop regions. These

loop regions contribute to the formation of a hydrophobic pocket.

The primary function of this hydrophobic pocket is to facilitate the

recognition of acetylation modifications on lysine residues (155).

The bromodomain and extra-terminal domain (BET) family of

proteins is most widely studied among bromodomains in cellular

biology. BET proteins consist of two tightly packed BRDs, BD1 and

BD2, and an extra-terminal domain (ET) located at the carboxy

terminus. The ET region is also highly conserved, consisting of

80 amino acids (156). This domain’s primary role is to interact

with various cellular proteins, including histone-lysine

N-methyltransferase and Jumonji domain-containing 6 (157,
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158). As is shown in Figure 3, known as “chromatin readers,”

BET proteins play a crucial role in numerous biological processes,

including chromosomal architecture, DNA replication, DNA

damage repair, and transcriptional regulation (156). JQ1, one of

the BET inhibitors, has exhibited significant efficacy in suppressing

multiple inflammatory and autoimmune diseases. JQ1 mitigates

lupus in MRL-lpr mice by suppressing BAFF, pro-inflammatory

cytokines, and autoimmunity. This finding suggests the therapeutic

potential of JQ1 in treating lupus disease (159). Another study

involving mice and cell culture showed that BRD4 inhibitors

exhibited superior antifibrotic effects compared to other BET

inhibitions (160). Additionally, it has been reported that OTX015

and ABBV075 can reduce the severity of imiquimod-

induced psoriasis in mice. ABBV075 achieves the same

pharmacodynamics at a dosage one-tenth of that required for

OTX015 (161). Sato et al. (162) designed and synthesized various

pyrido-benzodiazepinone derivatives, among which one exhibited

the most effective therapeutic effect in treating imiquimod-induced

psoriasis mice. Currently, the primary emphasis of clinical

investigation concerning BET inhibitors lies in their application

for anti-tumor therapy. Nevertheless, considering their involvement

in transcription subsequent to histone modification, it is anticipated

that these pharmaceutical agents will find utility in the management

of inflammatory skin disorders.
5 Discussion and expectations

The epithelial immune microenvironment of the skin is a

dynamic network composed of keratinocytes, immune cell

subpopulations, cytokines, and metabolites. The disorder of the

epithelial immune microenvironment may contribute to

inflammation reactions. Inflammation has long been recognized
FIGURE 3

The HAT, HDAC, and BET proteins perform distinct roles in the regulation of gene transcription. HAT proteins function as “writers” by modifying
lysine residues with acetyl groups using acetyl CoA. Conversely, BET proteins act as “readers” by binding to acetylated lysine residues and facilitating
the recruitment of transcription factors. HDAC proteins, on the other hand, function as “erasers” by deacetylating lysine residues, thereby reducing
the frequency of transcription events.
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as a defensive mechanism triggered by infections or injuries

characterized by rubor, calor, swelling, and pain. It is an immune

cell-mediated biological response that occurs when the body is

stimulated by microorganisms, pathogens, damaged cells, and

various internal and external environmental factors (163).

Inflammation serves as a crucial defense mechanism in preserving

the well-being of the host. It stimulates the activation of the immune

system to eliminate the pathogen, initiates the healing process,

reduces the severity of tissue damage and infection caused by the

stimulus, and ultimately counteracts the threat while restoring

homeostasis (164). Conversely, inflammation frequently coincides

with heightened acidity in the affected area. Prolonged persistence

of unresolved inflammation may result in the development of

chronic inflammation and tissue deterioration, which can further

increase the prevalence of inflammatory disorders and skin diseases.

Inflammation is an intricate and sequential phenomenon

requiring synchronized involvement of various cellular and tissue

components. The intercel lular communicat ion within

inflammatory systems is primarily orchestrated by cytokines,

encompassing protein, peptide, or glycoprotein messenger

molecules (165). While inflammation shares similarities with the

nervous system regarding sensory and effector pathways,

inflammatory cells can migrate to any location within any tissue

(166). Consequently, there may be inconsistencies in the etiology

and distribution of inflammatory diseases, occasionally resulting in

systemic abnormalities. The inflammatory cascade comprises

cytokines, chemokines, growth factors, and other peptides

synthesized by skin keratinocytes and immune cells. The

expression of these components is controlled by epigenetic

modifications (13). The influence of histone modification on

inflammatory reaction often focuses on two sides: immunocyte

and epithelial cells. Section two demonstrates that the modulation

of histone modification can impact the polarization of

macrophages. Additionally, histone modification exerts an

influence on the differentiation and function of T cells. These

mechanisms have the potential to either facilitate or impede

inflammatory responses, thereby influencing the development of

inflammatory skin conditions. It is worth noting that both histone

methylation and histone acetylation play a role in this regard. For

instance, the administration of VPA has been shown to inhibit the

activity of HDAC, modulate macrophage polarization, increase the

expression of anti-inflammatory cytokines, and enhance the

immune response against inflammation in patients with SLE

(149). In a separate study, the inhibition of SIRT1 was found to

stimulate the secretion of Th1 cytokines, IFN-inducible

chemokines, and T cell migration in ORS cells, thereby

contributing to the development of AA (129). The significance of

epithelial cells in the regulation of immunity has gained increasing

recognition (167). Keratinocytes, being the principal epithelial cell

in the skin, exert influence on immune responses through two

mechanisms: direct expression of cytokines and antimicrobial

peptides, as well as indirect functions as a barrier separating the

environment from classical immunocytes (12). The reduction of

H3K9me2 in keratinocytes within psoriatic lesions demonstrates a
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positive association with IL-23 expression, potentially contributing

to the development of psoriasis (65). The inhibition of HDAC3 by

butyrate leads to a decrease in IL-33 expression and subsequently

alleviates skin inflammation in a mouse model resembling atopic

dermatitis (142). The aforementioned findings suggest that the

modulation of keratinocytes through epigenetic mechanisms has

the potential to impact the development and progression of

inflammatory skin diseases.

However, the complexity of this regulatory mechanism arises

from the fact that similar epigenetic modifications can elicit diverse

responses in various cell types (168, 169). Histone acetylation

induces a state of open chromatin that facilitates the binding of

transcription proteins, potentially leading to elevated expression of

pro-inflammatory cytokines or suppression of inflammatory

mediators in various cell types. Typically, HDAC inhibitors are

considered crucial in anti-inflammatory approaches; however,

Sanford et al. reported contradictory findings (170). SCFAs,

acting as HDAC inhibitors, possess anti-inflammatory properties

in myeloid-derived cells; they may disrupt the epidermis’ tolerance

to inflammatory stimuli. Applying SCFAs on the skin surface and

their subcutaneous administration may yield contrasting outcomes.

Another study on cell cultures revealed that SCFAs can exhibit pro-

inflammatory effects under specific circumstances (27). The

elimination of Sirt2 was observed to exacerbate psoriasiform skin

inflammation, whereas the reintroduction of Sirt2 through genetic

means reduced disease severity (171).

The consideration of drug side effects, particularly those related

to histone modification, is crucial in the treatment of inflammatory

skin diseases. It has been reported that hematologic toxicity

represents a significant concern in certain HDAC inhibitor drugs

(172). Prolonged treatments with HDAC inhibitors have been

associated with various adverse events, including leucopenia,

neutropenia, thrombocytopenia, anemia, peripheral sensory

neuropathy, fatigue, vomiting, and myalgia (173, 174). Therefore,

a comprehensive evaluation of the side effects associated with

HDAC inhibitor therapy is required (175–177). Developing new

HDAC inhibitors aims to achieve good efficacy while minimizing

side effects. HDAC inhibitors can be categorized into four groups:

hydroxamates, benzamide derivatives, cyclic peptides, and aliphatic

acids. Benzamide derivatives are believed to possess lower toxicity

than hydroxamates due to their isotype-selective nature as opposed

to being pan-HDAC inhibitors (178). Bollmann et al. have

successfully developed a novel and highly selective HDAC

inhibitor called YAK540. The combined administration of

YAK540 and the proteasome inhibitor bortezomib shows

potential as a promising strategy against leukemias, as it enhances

the anticancer efficacy while minimizing the overall toxicity

associated with HDAC inhibitors (179). A novel drug delivery

system utilizing oxygen-containing nanosomes has been

developed to efficiently transport HDAC inhibitors to dormant

HIV-infected cells. Incorporating oxygen nanosomes in this study

alleviates drug toxicity and regulates the rate of drug release (180).

The administration of BET inhibitors also presents side effects. The

most commonly observed treatment-related adverse events include
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thrombocytopenia, anemia, fatigue, and gastrointestinal

complications (181). These side effects arise due to the ability of

BET inhibitors to target any proteins containing bromodomains

(182). Therefore, a BET inhibitor with enhanced selectivity and

reduced side effects has been developed compared to pan BET

inhibitors. GSK778 and dBET57 exhibit BD1-selectivity, while

GSK046, ABBV-744, and SJ432 exhibit BD2-selectivity.

Conversely, AZD5153 is a bivalent BET inhibitor specifically

targeting both BD1 and BD2 of Brd4 (183–187). Although most

of these studies do not pertain to inflammatory skin disease, it is

anticipated that novel inflammatory skin disease epigenetic

therapies with low toxicity and high efficacy will be developed soon.

Our assay aims at summarize the relationship between

inflammatory skin disease and one type of epigenetics: histone

modification. For it is a huge family of epigenetic modification and

various function can be achieve by this kind of phenomena.

Therapeutic method and potential therapeutic method related to

histone modification was introduced by this assay. Many recently

published literature has also been reviewed in this assay. In

conclusion, histone modification is a crucial biological process

in various inflammatory skin diseases. The studies on variations

in histone modification during the pathogenesis of these diseases

continue accumulating, and our understanding of their onset

and progression is progressively expanding. Developing novel

therapeutic approaches targeting histone modification, such as

next-generation drugs and combination therapy methods, has

become a pivotal area of research interest.
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