
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Zhoujin Tan,
Hunan University of Chinese Medicine,
China

REVIEWED BY

Weiwei Wang,
South China Agricultural University, China
Yan Liu,
Zhejiang University, China

*CORRESPONDENCE

Siwang Hu

siwang_h@wmu.edu.cn

RECEIVED 30 August 2023

ACCEPTED 11 October 2023

PUBLISHED 23 October 2023

CITATION

Wang K and Hu S (2023) The synergistic
effects of polyphenols and intestinal
microbiota on osteoporosis.
Front. Immunol. 14:1285621.
doi: 10.3389/fimmu.2023.1285621

COPYRIGHT

© 2023 Wang and Hu. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Review

PUBLISHED 23 October 2023

DOI 10.3389/fimmu.2023.1285621
The synergistic effects of
polyphenols and intestinal
microbiota on osteoporosis

Keyu Wang1,2 and Siwang Hu1*

1The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First
People’s Hospital of Wenling), Wenling, Zhejiang, China, 2College of Bioscience and Biotechnology,
Hunan Agricultural University, Changsha, Hunan, China
Osteoporosis is a commonmetabolic disease in middle-aged and elderly people.

It is characterized by a reduction in bone mass, compromised bone

microstructure, heightened bone fragility, and an increased susceptibility to

fractures. The dynamic imbalance between osteoblast and osteoclast

populations is a decisive factor in the occurrence of osteoporosis. With the

increase in the elderly population in society, the incidence of osteoporosis,

disability, and mortality have gradually increased. Polyphenols are a fascinating

class of compounds that are found in both food and medicine and exhibit a

variety of biological activities with significant health benefits. As a component of

food, polyphenols not only provide color, flavor, and aroma but also act as potent

antioxidants, protecting our cells from oxidative stress and reducing the risk of

chronic disease. Moreover, these natural compounds exhibit anti-inflammatory

properties, which aid in immune response regulation and potentially alleviate

symptoms of diverse ailments. The gut microbiota can degrade polyphenols into

more absorbable metabolites, thereby increasing their bioavailability.

Polyphenols can also shape the gut microbiota and increase its abundance.

Therefore, studying the synergistic effect between gut microbiota and

polyphenols may help in the treatment and prevention of osteoporosis. By

delving into how gut microbiota can enhance the bioavailability of polyphenols

and how polyphenols can shape the gut microbiota and increase its abundance,

this review offers valuable information and references for the treatment and

prevention of osteoporosis.
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1 Introduction

With the continuous progress of population aging, osteoporosis

(OP) has become one of the top three chronic diseases (1).

Osteoporosis is a chronic disorder characterized by the

deterioration of bone tissue microstructure and loss of bone mass,

primarily attributed to the up-regulation of osteoclasts (2).

Osteoblasts are essential cells for bone growth and maintenance

as they form bone tissue (3). Studies have shown that hormonal

imbalance and local oxidative inflammation in vivo can affect the

dynamic balance of osteoclasts and osteogenesis (4), mainly

manifested as degradation of bone microstructure, reduction in

bone mass, and decrease in bone strength (5). The decline in

osteogenic differentiation and intraosseous angiogenesis of bone

marrow mesenchymal stem cells occurs simultaneously, leading to

increased bone fragility and susceptibility to fractures (6, 7).

Phenols or polyphenols found in our diets are incredibly

abundant and can be found across a wide range of plants in

nature. At present, more than 8,000 phenolic structures are

known, of which more than 4,000 kinds of flavonoids have been

identified (8). Polyphenols are chemically identified as compounds

possessing phenolic structural characteristics. However, this diverse

class of natural products encompasses various subgroups of

phenolic compounds. Rich sources of polyphenols include fruits,

vegetables, and whole grains, as well as other types of foods and

drinks like tea, chocolate, and wine.

In addition, most plant polyphenols are in the form of glycoside,

the skeleton of polyphenols has different positions with different

sugar units and acylation of sugar. Hence, polyphenolic aglycones

can be categorized into phenolic acids and flavonoids, and

polyphenolic amides, based on their chemical structure (9). For

example, quercetin is a well-known flavonol flavonoid that can be

found in a variety of food sources, and its main form is

glycoside (10).

Turmeric has been used throughout history as a spice, herb, and

dye, and is widely used worldwide as an ingredient in curry powder.

In recent decades, numerous studies have demonstrated the

extensive array of advantageous characteristics associated with

curcumin. These include anti-inflammatory, antioxidant,

hypoglycemic, wound-healing, antibacterial, and antitumor

activities (11). Curcumin is an important bioactive substance,

which mainly exists in the rhizome of turmeric (12).

The phenolic hydroxyl structure of plant polyphenols has

antioxidant activity, including direct and indirect antioxidant

effects (13). In addition, polyphenols also inhibit osteoporosis

through mechanisms such as anti-inflammatory and promoting

bone formation (14). Most natural polyphenols must be absorbed

and utilized under the action of specific gut microbiota, and

phenolic metabolites may have activities that are not present in

the original compounds.

Research has revealed that polyphenols interact with gut

microbiota, thereby enhancing the functionality of the intestinal

mucosal mechanical barrier (15). Polyphenols are capable of

changing the composition of gut microbiota, which can improve

the function of the intestinal mucosal mechanical barrier. Studies

have revealed that Resveratrol, a natural polyphenol found in
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plants, may affect the intestinal barrier by inhibiting the growth

of harmful bacteria and fungi, regulating the expression of tight

junction proteins, and balancing pro-inflammatory and anti-

inflammatory T cells. These mechanisms help to control the

growth of pathogens and maintain the integrity of cellular

barriers (16, 17). These actions help to prevent damage to the

intestinal barrier and maintain its proper functioning. The

activation of the PI3K/Akt-mediated Nrf2 signaling pathway by

Resveratrol protects IPEC-J2 cells from oxidative stress, preventing

damage to the intestinal barrier (18, 19).

On the other hand, recent studies have revealed that tea

polyphenols can prevent the disturbance of gut microbiota by

regulating gut microbiota (20, 21). Evidence suggests that

epigallocatechin-3-gallate, the principal active component in

green tea, exhibits the potential to alleviate inflammatory bowel

disease by primarily targeting bacteria responsible for producing

short-chain fatty acids, including Akkermansia (22, 23).

Subsequently, these bacteria produce functional SCFAs which

contribute to beneficial changes in the gut microbiome. These

changes lead to increased production of protective SCFAs, such as

butyrate, which trigger significant antioxidant, anti-inflammatory,

and barrier-strengthening responses, ultimately reducing

inflammation and damage in the gut (23, 24). Additionally,

polyphenols play a “prebiotic” role in the gut, supporting the

growth of beneficial bacteria. While the impacts of various plant

polyphenols on the gut microbiota may vary, the majority of them

typically stimulate the proliferation of beneficial bacteria (25, 26).

It is worth noting that the health benefits of most plant

polyphenols are achieved through a “two-way interaction” with

intestinal microorganisms.

The gut microbiota is the body’s “second largest gene pool” and

is the symbiotic, symbiotic, and disease-causing microbes that live

in our gut (27). The gut microbiome contains approximately 1,200

bacterial species, with the main representative groups being

Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria, and

Myxococcus (28). The metabolites of gut microbiota can act on

the human gut, thereby regulating and preventing most diseases.

Among these factors, intestinal microbes crucially influence the

balance of bone health by exerting effects on host metabolism,

immune function, hormone secretion, and the gut-brain axis (29,

30). These interactions can contribute to the development

of osteoporosis.

The intestinal barrier function is significantly influenced by the

interplay between gut microbiota and the immune system. GM

forms various symbiotic relationships with the host, including

parasitic, commensal, and mutualistic relationships. Under

normal physiological conditions, the gut microbiota contributes

to food digestion, combats pathogens, and aids in the development

of the host immune system, particularly during the early post-natal

period. Throughout one’s lifespan, the gut microbiota interacts with

the host, playing a role in modulating both gut and systemic

immunity (31, 32).

The intricate interplay between immune cells and bone cells is

closely intertwined, with the gut microbiota playing a vital role in

maintaining bone health through its influence on bone turnover

and density (33). By producing metabolites, intestinal
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microorganisms influence and regulate intestinal barrier function.

A normal intestinal barrier is important for isolating harmful

substances, facilitating nutrient absorption, and providing

immune protection. Impaired intestinal barrier function is

considered one of the pathogenic factors contributing to

osteoporosis. The intestinal mucosal barrier is made up of four

components: a mechanical barrier, chemical barrier, immune

barrier, and biological barrier. Together, these barriers prevent

harmful substances such as toxins and bacteria from entering the

body through the intestinal mucosa (34). When the intestinal

mucosal barrier is compromised, it can cause an increase in

intestinal permeability. This can lead to bacterial and endotoxin

translocation, which can trigger or worsen systemic inflammation

and multiple organ dysfunction. Intestinal epithelial cells are

closely arranged by cell junctions, which are composed of tight

junctions, adhesion junctions, and desmosomes, which can

effectively block the entry of bacteria, viruses, and endotoxins,

and it is essential for nutrition absorption and immune function

(35). The chemical barrier consists of gastric acid, bile, a wide

range of digestive enzymes, lysozyme, mucin, and bacteriostatic

substances produced by commensal bacteria residing in the

intestinal cavity. It has the effect of inactivating pathogenic

microorganisms (36). The immune barrier is composed of

intestinal mucosal lymphoid tissue, cells, and secreted antibodies

on the surface of the intestinal mucosa, which induce local and

systemic immune responses and protect the intestinal tract from

damage by foreign antigens and abnormal immune responses (37).

The biological barrier is mainly composed of normal gut

microbiota, which is the intestinal normal parasitic flora with

colonization resistance to foreign strains. When the stability of

this microflora is disrupted, the intestinal colonization resistance

is significantly diminished, thereby increasing the risk of potential

pathogens, including opportunistic pathogens, colonizing and

invading the gut (38). Dysfunction of the gut microbiota can

lead to impaired intestinal barrier function, causing the absorption

of harmful substances and inflammation, ultimately resulting in

bone loss, inhibited osteoblast growth, and increased osteoclast

activity (39, 40)

Chronic inflammatory diseases and immune dysfunctions have

been associated with a higher incidence of osteoporosis, primarily

attributed to the excessive production of pro-inflammatory

cytokines that stimulate osteoclastic activity. Consequently, GM

disorders weaken intestinal barrier function, and enhanced immune

system reactivity contributes to the entry of harmful substances into

the body (39), thereby promoting the production of factors that

activate osteoclasts and lead to bone resorption, ultimately causing

osteoporosis. Therefore, gut microbiota can affect bone formation

and bone resorption Figure 1.

Through the interaction of polyphenols with gut microbiota,

intestinal barrier function can be enhanced, and simultaneously, the

richness and activity of the gut microbiota increase (41, 42). Gut

microbiota converts polyphenols from food into more bioavailable

microbial metabolites. Therefore, under the synergistic effect of the

two, the effect of each on the treatment of osteoporosis is

maximized (43).
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2 Interactions between polyphenols
and gut microbiota

2.1 Effects of GM on foodborne
polyphenols

Polyphenols are renowned for their antioxidant properties and

are frequently utilized in the treatment of diverse diseases. Their

metabolic degradation in the body is influenced by GM (43).

Polyphenols, when consumed through food, are present in the

form of glycosides and complex oligomerization structures. In the

human body, these complex structures undergo sequential

metabolism. After ingestion, some polyphenols are minimally

absorbed in the stomach, primarily as phenolic acids (44). Only a

small fraction (5-10%) of polyphenols are absorbed in the small

intestine, primarily in the form of free polyphenols (45). Under the

influence of intestinal microbial flora, the polyphenols that remain

unabsorbed, especially the ones that are bound, are transported to

the colon where they undergo decomposition, release, and

subsequent absorption. Figure 2 shows the absorption and

metabolism of foodborne polyphenols.

Polyphenols exhibit a range of structural variations that influence

their bioavailability. Upon ingestion, these compounds tend to

accumulate in the large intestine where they undergo extensive

metabolism by gut microbiota. The microbiota transforms

polyphenols into metabolites, making them bioactive. The extended

retention of polyphenols in the intestines can yield beneficial effects

on the gut microbiota. On the contrary, gut microbiota plays a crucial

role in enhancing the biological activity of polyphenols by converting

them into active metabolites known as phenolics (46). Polyphenols

and other compounds are biotransformed by various bacterial

species, including Bifidobacterium, Lactobacillus, Escherichia coli,

Bacteroides, and Eubacterium, resulting in the production of short-

chain fatty acids (SCFAs) and other metabolites (47). Short-chain

fatty acids (SCFAs) play a significant role in reducing the pH of the

intestines, suppressing the growth of harmful pathogens, and

facilitating optimal absorption of minerals and vitamins. The

metabolism of polyphenols in the intestines is carried out by

microorganisms, which utilize hydrolysis, lysis, and reduction

mechanisms to break down the polyphenols (48). Phenolic

compounds in food and herbal products exist as conjugates

and require hydrolysis for absorption (49). Phenolic compounds

like hesperetin, daidzein, ellagic acid, caffeic acid, and

secoisolariciresinol must undergo hydrolysis to produce phenolic

aglycons that can be absorbed (50). Metabolites can undergo two

processes, either being metabolized in the gut or absorbed directly.

During the cleavage process, the carbon ring is opened and the C-C

bond is broken, while methyl ether is removed through

demethylation. Hydrolase then releases glycogen, which is

subsequently broken down through the cleavage of flavonoids’

carbon ring, the removal of ellagic acid’s esterification through

lactone ring opening and decarboxylation, and the cleavage of the

quinic acid ring from chlorogenic acid (50). C-ring cleavage converts

isoflavone daidzein to O-demethylancomycin and flavonoid

hesperidin to 3-(30-hydroxy-40-methoxyphenyl) hydroxy acrylic
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acid. Collectively, these substances facilitate the transformation of

non-absorbable oligo procyanidins into easily assimilable phenolic

acid molecules, such as derivatives of hydroxyphenylacetic acid,

hydroxyphenylpropionic acid, and hydroxyphenylvaleric acid.

During the reduction process, gut microbiota also catalyze different

PPs reduction reactions (51). The transformation of caffeic acid into

3,4-dihydroxyphenylpropionic acid is a typical hydrogenation

reaction (52). The implementation of targeted dehydroxylation

processes can lead to the production of monohydroxy derivatives.

This process also facilitates the conversion of the aliphatic side chain,

resulting in the formation of phenylacetic acid, benzoic acid, and

decarboxylated metabolites.

Studies have also shown that gut bacteria can metabolize

resveratrol precursors, such as piceid, into resveratrol, thereby

increasing its bioavailability. Bifidobacterium and Lactobacillus

acidophilus are two specific bacteria responsible for producing

resveratrol from piceid (53). Resveratrol, a polyphenol, has the

ability to undergo glycosylation in the gut, resulting in its
Frontiers in Immunology 04
transformation into piceid. Piceid can then be absorbed in both

its free and conjugated forms, the latter being referred to as piceid

glucuronide. It is evident that polyphenol metabolites, which are

metabolized by gut microbiota, exhibit a higher level of activity and

are more efficiently absorbed.
2.2 Effects of polyphenols and their
metabolites on GM

Polyphenols can impact the gut microbiota in two ways, by

promoting the proliferation of beneficial bacteria and increasing

their abundance. Polyphenols have the ability to mimic prebiotics

and change the composition of the human gut microbiota. This has

been shown through numerous studies, both in vitro investigations

utilizing human gut microbiota and in vivo clinical trials. Foods rich

in polyphenols have been consistently proven to effectively modify

the gut microbiota. They achieve this by promoting the
FIGURE 1

Absorption and metabolism of foodborne polyphenols. Intestinal enzymes and gut microbiota are involved in the metabolism and absorption of
polyphenols in the intestine. Once converted, the polyphenols travel to the liver through the portal vein, where they undergo two metabolic stages,
resulting in different metabolic compounds. These compounds then enter phase II metabolism in the circulatory system, where sulfate, glucuronide,
and methyl conjugates are produced. These conjugates can be detected in urine several days after ingestion. Gut microbiota act on bone, leading to
bone resorption or inhibiting osteoporosis mechanisms. Bone formation and bone resorption are key factors affecting the pathogenesis of
osteoporosis. Intestinal microbes can affect bone growth by regulating intestinal homeostasis, such as reducing oxidative stress, increasing anti-
mutagenesis activity, enhancing intestinal barrier function, and regulating immune response. Intestinal microbes always maintain the homeostasis of
the intestinal environment and play a role in the prevention and treatment of osteoporosis.
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proliferation of beneficial bacteria such as Lactobacillus and

Bifidobacterium. For example, cocoa polyphenols have been

shown to regulate the composition of the gut microbiota,

functioning through a probiotic mechanism (54). Cocoa

polyphenols have the potential to stimulate the growth and

proliferation of beneficial gut bacteria, including Lactobacillus and

Bifidobacterium, while concurrently diminishing the population of

harmful bacteria, including Clostridium perfringens.

Some tannins catabolites of the gut microbiota may have

“prebiotic” activity, such as urolithin produced by pomegranate

ellagitannins, which in preclinical studies has actively regulated

lactic bacteria, Bifidobacteria and enterobacteria model of intestinal

inflammation in rats (55).

In the human study, it was observed that a particular subset of the

population (16 out of 20 subjects) exhibited a higher abundance of

Akkermansia muciniphila in their gut microbiota both before and after

the intervention. Notably, these individuals were capable of producing

urolithin A (56). Another study conducted by the same research group

further concluded that the consumption of pomegranate extract

promotes the abundance of A. muciniphila (57).

In addition to the probiotic effects described above, Polyphenols

have the ability to modulate the gut microbiota in a way that

promotes the growth of beneficial strains, thereby positively

impacting the overall health of the host, and the metabolites

derived from polyphenols can enhance gut health and exhibit
Frontiers in Immunology 05
anti-inflammatory properties. For example, the bioactive

metabolites of cocoa can enhance gut health, show anti-

inflammatory effects, have a positive effect on the immune

system, and reduce the risk of various diseases (58). Intake of

polyphenols may improve the health effects of the gut microbiota by

promoting the excretion of short-chain fatty acids, enhancing

intestinal immune function, and other physiological processes.

a majority of studies have consistently demonstrated that

polyphenols can induce favorable alterations in the gut

microbiota composition. Specifically, when individuals consume a

diet rich in polyphenols, notable changes occur in the human gut

microbiota, the numbers of Lactobacillus, Bifidobacterium,

Akkermansia, Enterococcus, and Bacteroides increase, while the

ratio of enterococcus, Clostridium, and firmicutes to Bacteroides

significantly decreases. As an example, red wine, which is rich in

polyphenols, has been found to stimulate the growth of certain

bacteria species, such as Bacteroides and Roseburia intestinalis, in

the gut microbiota (59). Some types of polyphenols found in

fermented papaya juice, such as gallic acid and caffeic acid, can

affect the composition of the microorganisms in the intestines.

Studies have shown that these polyphenols can decrease the number

of harmful bacteria, like Enterococcus, Clostridium perfringens, and

Clostridium difficile, while promoting the growth of beneficial

bacteria, like Bifidobacterium. Moreover, certain polyphenols can

also encourage the growth of fungi in the gut microbiota (60).
FIGURE 2

Molecular mechanism of osteogenic differentiation controlled by resveratrol and icariin. Icariin down-regulates the expression level of GSK38 by
stimulating the expression of Runx2 through veratrole, thus achieving stable accumulation of b-catenin and transferring into the nucleus, thereby
activating Wnt/B-catenin pathway, promoting osteogenesis differentiation and enhancing bone density. GSK-3b, Glycogen synthase kinase 3b; APC,
adenomatous polyposis coli; Runx2/TCF/LEF, specific transcription factors.
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Consuming grape seeds rich in procyanidins can increase the

number of lactobacilli, Clostridium, and Ruminococcus in the gut

(61). Vegetables, similar to fruits, are rich in polyphenols and

prebiotic fiber. Dietary polyphenol intake in carrots can increase

Bacteroides and Lactobacillus, and decrease the number of

Bordetella such as Clostridium perfringens, Clostridium coccoides,

Bacteroides coccoides, and Enterobacterium ecium (62). In the study

conducted by Xu Song et al., the impact of resveratrol on the

intestinal biological barrier was investigated using 16S rRNA and

metagenomic sequencing analyses. The findings revealed that

resveratrol had a positive effect on the diversity and structure of

the gut microbiota. Specifically, it increased the abundance of

probiotic bacteria and regulated the function of the gut

microbiota to counteract immunosuppression (63).

Monica Maurer Sost et al. conducted a study to evaluate the

impact of citrus fruit extracts containing polyphenols hesperidin

and naringin on the regulation of gut microbiota composition and

activity using an in vitro model of colon dynamics. Their findings

revealed that polyphenol hesperidin led to a dose-dependent

increase in the abundance of Roseburia, Eubacterium ramulus,

and Bacteroides eggerthii (64).

Tart cherry polyphenols underwent a bacterial fermentation

assay in vitro and were subsequently assessed using 16S rRNA gene

sequencing and metabolomics. In vitro, tart cherries were

discovered to stimulate a significant rise of Bacteroides, possibly

attributable to the presence of polysaccharides (65). In the human

study, the consumption of tart cherries was linked to two distinct

and contrasting responses, which were associated with the initial

levels of Bacteroides (65). Studies have shown that individuals with

a high initial abundance of Bacteroides in their gut microbiota tend

to exhibit a specific response to tart cherry juice consumption. In

this group, tart cherry juice consumption was associated with a

decrease in Bacteroides populations and an increase in fermentative

Firmicutes. Additionally, there was an observed increase in the

presence of Collinsella, which has the potential to metabolize

polyphenols. On the other hand, individuals with a low initial

abundance of Bacteroides in their gut microbiota exhibited a

different response to tart cherry juice consumption. In the group

that consumed tart cherry juice, there was an observed increase in

the populations of Bacteroides or Prevotella, as well as a rise in

Bifidobacterium. Conversely, there was a decrease in the abundance

of Lachnospiraceae, Ruminococcus, and Collinsella in these

individuals, as indicated by the 16S rRNA gene sequencing and

metabolomics analysis (65, 66).

Polyphenols, similarly to legumes, represent one of the primary

bioactive compounds. In vitro research has demonstrated that

germinated lentil seeds harbor potent antimicrobial compounds,

including cysteine-rich peptides, which exhibit activity against

detrimental microorganisms like E. coli and Staphylococcus

aureus. In a study focused on mung bean coats, researchers

performed simulated digestion and colonic fermentation in vitro

to investigate the liberation of polyphenols from the mung bean

coat and assess their bioactive properties. These experiments aimed

to understand how the polyphenols in mung bean coats are

digested and fermented within the gastrointestinal tract and their

potential effects on human health. In the study involving the mung
Frontiers in Immunology 06
bean coat, during the process of colonic fermentation, a noteworthy

enhancement in the relative abundance of beneficial bacteria,

particularly Lactococcus and Bacteroides, was observed. This

observation implies that the polyphenols released from the

fermentation of mung bean coats potentially exert a favorable

influence on the growth and multiplication of these beneficial

bacterial populations within the colon (67). Studies exploring the

effects of red wine polyphenols on intestinal microbiota have

observed an increase in the concentration of specific bacterial

genera in the intestines. Specifically, the genera Clostridium,

Bacteroides, Enterococcus, and Bifidobacterium are positively

influenced by red wine polyphenols. The findings indicate that

the intake of red wine polyphenols could potentially yield

advantageous effects on the composition of the intestinal

microbiota (68), that is, accelerate the growth of “phoenixes”,

Klebsiella, Bacillus, Bordetella and Staphylococcus, while reducing

the growth of Bacteroides, Clostridium, anaerobic coccus, and

Bifidobacterium. The incorporation of tea polyphenols,

specifically catechins, in a culture medium containing human

fecal bacteria was observed to lead to a reduction in the levels of

harmful bacteria, including E. coli, Clostridium perfringens, and

Bacteroides. This finding suggests that the introduction of tea

polyphenols in the gut environment may have the potential to

combat the proliferation of these specific pathogenic bacteria. The

results of this study highlight the positive influence of tea

polyphenols on the balance of gut microbiota. Ma et al.

researched the impact of green tea polyphenols on the redox

status of the intestine and its correlation with gut microbiota

(69). It was found that Spirochaetaceae and Bacteroides were

identified as biomarkers of intestinal redox status, revealing the

benefits of tea polyphenols. The polyphenol compounds in oolong

tea are mainly catechins, which can increase the number of

Bacteroides, Bifidobacterium, and Lactobacillus genera. In a 2015

study, researchers examined the potential impact of saponins found

in herbal teas on the gut microbiota of mice (25, 70). In the

treatment group, the administration of ginseng, red ginseng, Panax

San Qi, and ginsenosides led to noticeable increases in

Enterococcus, Lactobacillus, and Bifidobacterium. In addition, a

significant increase in the proportion of Firmicutes/Bacteroides was

observed after consumption of Asarum and San Qi. Consumption

of hypericum tea also increased the growth of aromatic coccus. The

main phenolic substances in coffee are flavanols and chlorogenic

acids (71). When male Wistar rats were fed coffee grounds, the

number of microflora in Ruminococcaceae, Muribaculaeceae, and

Lachnospiraceae increased, while the ratio of Firmicutes to

Bacteroidetes decreased (72). Nuts are rich in polyphenols,

mainly persimmonic acid and procyanidins (73). Increasing the

intake of nut polyphenols can enhance the probiotic effect and

benefit the gut microbiota. Ellagic tannins are metabolized into

urolithin, which circulates in the plasma, thereby increasing the

number of Bifidobacterium and Lactobacillus (74). From this,

polyphenols play a probiotic role in the gut, shaping the gut

microbiota and interacting with the gut microbiota. Table 1

summarizes recent research findings on the effects of specific

polyphenols and/or polyphenol-containing dietary sources on gut

microbiome composition.
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3 Synergistic effect of polyphenols
and GM to treat OP

3.1 The role of polyphenols in the
treatment of osteoporosis

In addition to short-chain fatty acids, polyphenols can be

metabolized into different substances, such as phenolic acid,

glucuronic acid, sulfate, etc.

Apigenin, a flavone commonly found in fruits and vegetables,

can be metabolized into p-coumaric acid by gut microbiota. The

metabolism of apigenin by the gut microbiota highlights the role of
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these microorganisms in breaking down dietary compounds and

generating metabolites with potential health benefits. p-coumaric

acid itself possesses antioxidant and anti-inflammatory properties,

and its production through apigenin metabolism adds to the overall

beneficial effects of flavonoid consumption on human health (82).

In cell line studies, 4-hydroxycinnamic acid exhibited notable anti-

inflammatory activity in LPS-stimulated macrophage cells.

Specifically, it was observed to inhibit the activity of nitric oxide

synthase (iNOS), an enzyme involved in the production of nitric

oxide, which plays a role in inflammation. This suggests that 4-

hydroxycinnamic acid may have potential as an anti-inflammatory

agent by modulating the iNOS pathway in immune cells.
TABLE 1 Microbes provoked or inhibited in the gut based on the consumption of polyphenols.

Type of
Polyphenol

Experimental method Changes in the
microbiota

Ref.

Green tea polyphenols
(catechins, flavonoids and
flavonols)

In vivo experiment: Mice were divided into groups and given 100 mg/kg body
weight TP (TPL), 200 mg/kg body weight TP (TPM), and 400 mg/kg body weight
TP (TPH) by tube feeding, respectively, for 12 weeks

C. Difficile↑
C. Bacillus perfringens↑

Bacteroides spp.↑

(75)

Polyphenols (saponins) in herbal
tea

In vivo experiment: mouse modeling, group experiment, drug treatment Bacteroides↑
Lactobacillus↑

Bifidobacterium↑

(75)

Polyphenols (catechins) in
oolong tea

In vitro experiments: Stimulation studies were conducted using in vitro batch
culture models of the distal region of the human large intestine

Enterococcus↑
Bifidobacterium↑

Lactobacillus↑

(68)

Red wine polyphenols
(procyanidins)

In vitro fermentation experiment colibacillus↑ Blautia coccoides↓
Klebsiella↑ Bacteroides↓

Alistipes↑
Bifidobacterium Subdoligranulum↓

Akkermansia↑ C. coccoides↓
Victivallis ↑ Bifidobacterium↓

(68)

Polyphenols (gallic acid and
caffeic acid) in fermented papaya
juice

The patients were supplemented with tube feeding, and the pH value of the colon
was analyzed

Against↓
Bacteroides↓

Clostridium perfringens↓
C. difficile↓

Bifidobacterium Eubacteria↑

(76)

Polyphenols(procyanidins) in
grape seeds

In vivo experimental addition to the pig diet Lactobacillus, Clostridium↑, and
Ruminococcus↑

(61)

Blueberry polyphenols
(chlorogenic acid and malvidin 3,
5-diglucoside)

In vitro study using Campylobacter Organisms (CLO test) and blood agar plating H. Pylori↓ (77)

Carrot dietary polyphenols In vivo experiments: In vitro incubation using male BALB/c mice and in vitro
human fecal samples

Bacteroides,
Lactobacillus and lower

Proteobacteria (Clostridiales,
Ruminococcus, Coprococcus,

Oscillospira)

(62)

Lentil polyphenol (cysteamine) AGAR plate diffusion method was used coli↓
Staphylococcus aureus↓

(78)

Polyphenols (flavan-3-ols and
chlorogenic acid) in coffee

In vivo: male Wistar rats were fed coffee grounds Colonies of Ruminococcaceae↑
Muribaculaecae Trichomillillaceae↑

Firmicutes and Bacteroidetes↓

(79)

Nut polyphenols (ellagitannins
and proanthocyanidins)

Analysis of plasma circulation in consumers Bifidobacterium Lactobacillus↑ (80)

Resveratrol In vivo experiments: Wistar rats were divided into groups and fed an HFS diet
supplemented with resveratrol (15 mg/kg body weight (BW)/day).

Firmicutes/Bacteroidetes ratio↓
Erysipelotrichaceae Bacillus↓
Eubacterium cylindroides↓

(81)
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Nevertheless, it is essential to acknowledge that additional research

is required to corroborate these findings and investigate the possible

therapeutic uses of 4-hydroxycinnamic acid.

Research conducted on rat femoral tissue showed that 4-

hydroxycinnamic acid increased calcium content and affected

bone metabolism in vitro. These findings suggest that 4-

hydroxycinnamic acid holds potential benefits for osteoporosis

and overall bone health. However, it is important to acknowledge

that findings from in vitro studies offer preliminary evidence, and

further research, including in vivo studies and clinical trials, is

necessary to confirm these effects in humans. Further research is

required to validate these findings in animal models and human

clinical trials to fully understand the effects of 4-hydroxycinnamic

acid on bone health (83).

Research has shown that daidzein, a key soy isoflavone in our

diet, can be converted to equol by certain gut microorganisms. This

conversion has been linked to positive health effects in individuals

who produce equol. In women with osteopenia, taking red clover

extract (RCE) with probiotics twice daily for a year has been found

to effectively reduce bone mineral density loss caused by estrogen

deficiency. Additionally, phlorizin, a natural compound found in

several fruit trees, is a dietary component (84). Its metabolites are

Phloretin (phloretic acid and phloroglucinol). Phloretin and its

derivatives, primarily in glycosyl forms, are naturally occurring

dihydrochalcones found in fruits like apples, kumquat, pear,

strawberry, and various vegetables (85).

The osteoprotective effects of phloretin, a dihydrochalcone

present in apple tree leaves, were examined in ovariectomized

(OVX) C57BL/6 female mice to assess its potential for preventing

bone loss (86). The researchers discovered that phloretin modulated

the ASK-1-MAPK signal transduction pathway, resulting in the

transcription of apoptotic genes. This mechanism effectively

prevented osteoclast absorption induced by estrogen deficiency,

thereby highlighting the potential of phloretin in mitigating bone

loss (87). In conclusion, phloridzin metabolites play an important

role in regulating bone dynamics and increasing bone mineral

density and content.

Genistein is indeed a secondary metabolite commonly found in

leguminous plants, seeds, fruits, and vegetables. It belongs to the

class of compounds known as isoflavones and exhibits

phytoestrogenic activity. Genistein, a phytoestrogen, can mimic

the structure or function of 17b-estradiol, a naturally occurring

estrogen in mammals. Several studies have indicated that higher

dietary intake of phytoestrogens like genistein is associated with

increased bone mineral density (BMD) in postmenopausal women,

as observed in cross-sectional analyses. However, it’s worth noting

that these effects were primarily observed in postmenopausal

Chinese women and not in premenopausal women. The exact

mechanisms through which genistein influences bone health are

still being investigated. It is believed that genistein may modulate

the estrogen receptor pathway and exert estrogen-like effects on

bone tissue, leading to potential benefits for bone density. Indeed,

additional research, including prospective studies and clinical trials,

is necessary to gain a more comprehensive understanding of the

association between genistein consumption and its effects on bone

health in diverse populations (88).
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In studies conducted on ovariectomized (OVX) rats, genistein

administered orally at a dose of 10 mg/kg for 12 weeks has been

shown to stimulate bone formation and possess inhibitory

properties against bone resorption (89).

Most of the intestinal metabolites of polyphenols have anti-

inflammatory and antioxidant effects, so they have an important

role in the treatment of osteoporosis.

3.1.1 Anti-osteoporosis mechanism
of polyphenols
3.1.1.1 Anti-oxidative stress

Oxidative stress occurs when there’s an imbalance between the

production and elimination of reactive oxygen species (90, 91).

Excessive reactive oxygen species can cause cell damage and

apoptosis, affect cell function, and trigger diseases (74). Oxidative

stress can affect the functioning of bone marrow-derived

mesenchymal stem cells, thereby influencing both bone growth

and osteogenic differentiation of mesenchymal stem cells.

Consequently, this can result in impaired osteoblast function and

accelerated formation and differentiation of osteoblasts (92) (93).

However, the presence of antioxidants can provide cellular

protection against damage induced by reactive oxygen species.

Polyphenolic compounds contain a large number of phenolic

hydroxyl groups that act as hydrogen donors to reduce singlet

oxygen to less active triplet oxygen, thereby reducing the probability

of oxygen radical generation and terminating chain reactions

triggered by free radicals (94). In addition, they can scavenge free

radicals and protect biological macromolecules from free radical

damage (95). There is research evidence that the intake of natural

berries rich in foodborne polyphenolic compounds, such as

cranberries and blueberries, can combat oxidative stress by

scavenging free radicals, and prevent and treat osteoporosis (96).

3.1.1.2 Anti-inflammatory effects

Polyphenolic compounds exert anti-inflammatory effects by

negatively regulating inflammatory pathways, especially their

regulation of the key NF-kB transcription factor (TF) (97, 98).

Estrogen receptors are capable of engaging in protein interactions

with NF-kB, leading to the formation of complexes and subsequent

binding of NF-kB to specific response elements. These specific

response elements regulate the transcription of NF-kB-dependent
genes in a cell type-specific manner and are crucial in modulating

inflammatory processes (99).

For example, TP can inhibit lipid peroxidation and combat

oxidative stress by regulating the transcription factor NF-kB and

acting as an estrogen receptor ERK in HMC-1 cells. Impaired

expression of inducible nitric oxide synthase reduces the

production and release of inflammatory factors TNF-1, IL-6, IL-8,

and NO. This process, in turn, brings about anti-inflammatory

effects and helps mitigate bone loss (100).

In addition, prong and its polyphenolic compounds have been

shown to inhibit bone resorption by down-regulating the receptor

activated NF-kB ligand (RANKL), and to directly inhibit the

generation of osteoblasts by down-regulating NFATc1 and

inflammatory mediators, thereby reducing osteogenic activity

(101, 102). Under lipopolysaccharide (LPS) induced inflammatory
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conditions, the expression of cyclooxygenase and the production of

nitric oxide (NO) in osteoblastic progenitors were inhibited by

polyphenols extracted from plums at concentrations of 10, 20, and

30mg/mL. The inhibition was achieved by downregulating the

expression of inducible nitric oxide synthase (103). In the presence

of RANKL, these polyphenolic compounds simultaneously

stimulated bone formation and suppressed the generation of NO

and tumor necrosis factor (TNF)-a (104, 105). TNF-a production

increased over time in response to oxidative stress stimulation, and

dried plum polyphenols were able to reduce the differentiation of

bone resorptive cells under normal conditions as well as under

inflammatory and oxidative stress conditions (106).

3.1.1.3 Activate the Wnt/b-Catenin pathway

The Wnt signaling pathway plays a critical role in both bone

development and the maintenance of metabolic homeostasis (107).

Wnt-related proteins or factors can bind to the Frizzled gene

receptor (Fzd) and initiate downstream intracellular cascade

reactions, thereby regulating the transcription or expression of

target genes such as b-Catenin, peroxisome proliferator-activated

receptor g (PPARg), and RUNX2 (Runt-related transcription factor

2) (108, 109). Then it regulates the physiological processes of

osteoblast formation, differentiation, and maturation.b-Catenin is

a pivotal factor in the classical pathway, serving as a central

regulator of the Wnt/b-Catenin signaling pathway. b-Catenin can

enhance the activity of alkaline phosphatase (ALP) while promoting

bone. Runx2 is a specific transcription factor of osteoblasts, which is

closely related to the proliferation and differentiation of osteoblasts.

For example, icariin and resveratrol have been widely used in

the prevention and treatment of OP (110). Potential applications for

regulating the osteogenic differentiation of BMSCs, preventing bone

loss, and promoting bone regeneration have been discovered. In a

study by Wei et al., it was found that icariin intervention in rat bone

marrow stromal cells increased total b-catenin and nuclear

translocation by stimulating b-catenin activation. Additionally,

the expression of Wnt signaling members (b-catenin, Lef1, TCF7,
c-jun, c-myc, and cyclin D) was significantly upregulated (111).

Moreover, the activation of ERa was found to enhance the

expression of osteogenic genes, thereby promoting both the

proliferation and osteogenic differentiation of BMSCs. Similarly,

resveratrol is one of the effective active components of Polygonum

knotweed and veratrol and has estrogen-like effects. Some

researchers concluded by intervening in OVX rats through the

Wnt/b-catenin pathway mediated by resveratrol (112). By

stimulating the expression of Runx2, resveratrol down-regulates

the expression level of GSK38, preventing the effective formation of

b-catenin degradation complex, ensuring the stable accumulation of

b-catenin in cytoplasm and translocation to the nucleus, thus

activating Wnt/B-catenin pathway, promoting osteogenesis

differentiation and enhancing bone density, playing a role in

preventing and treating OP.

3.1.1.4 Inhibition of the NF-kB pathway

The NF-kB signaling pathway has a significant role in bone

metabolism and can also interact with other signaling pathways to

impact the progression of osteoporosis (113, 114). The NF-kB
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signaling pathway is mainly composed of IkB protein, core IkB
kinase (IKK) complex, and NF-kB. The IkBa proteasome degrades

the translocation signal of exposed NF-kB/p65 subunits, promoting

NF-kB to enter the nucleus and bind to related genes, initiating

transcription of these genes. The NF-kB pathway regulates bone

metabolism and influences the skeletal system.

For example, Lin et al. applied paeoniflorin to intervene

osteoclast model differentiated from RAW 264.7 cell line to

observe the effect of paeoniflorin on the osteoclast signaling

pathway. The results suggested that paeoniflorin weakened the

phosphorylation level of p65 NF-kB, that is, inhibited the

activation of the NF-kB signaling pathway (115, 116). The NF-kB
pathway is one of the main biological pathways of osteoclast

differentiation (117). It has been verified that paeoniflorin reduces

the activity of the NF-kB signaling pathway, reduces the activity of

osteoclasts, reduces bone resorption, and further maintains bone

homeostasis by inhibiting the activation of p65 NF-kB (118).

What’s more, Wang used ostiole to interfere with osteoclasts and

studied the mechanism of action of OST on osteoclasts (119). The

experimental findings demonstrated an up-regulation in the

expression of P65 NF-kB, while down-regulation was observed in

the expression of NFATc1, CTSK, MMP-9, TRAP, and p-IkB., the
expression of the NF-kB pathway can inhibit the further

differentiation of osteoclasts, and the activity gap between

osteoblast and osteoblast can be narrowed to a large extent. This

is the molecular mechanism of antiosteoporosis of OST via the NF-

kB pathway. Both peony and snake seeds are traditional Chinese

medicine and contain polyphenols. By inhibiting the NF-kB
signaling pathway, the production of osteoclasts is inhibited, to

achieve the therapeutic effect of osteoporosis (116) Figure 3.

3.1.2 Polyphenols promote bone formation and
inhibit bone absorption

Researchers have extensively studied the beneficial effects of

polyphenols, which are known to enhance bone formation and

suppress bone resorption. During the process of bone formation,

osteoblasts play a vital role in the synthesis and secretion of crucial

components of the bone matrix, including collagen and

glycoproteins (120). Through the study of MC3T3-E1 cells, SaOS-

2 cells, D1 cells, NRG cells, osteosarcoma cells, and other cell

models, it has been confirmed that tea polyphenols can enhance

the activity of alkaline phosphatase (ALP) (121), increase bone

mineral formation and bone mineralization area, improve bone

mineral density, and thereby promote bone formation. Bone

resorption occurs when hematopoietic stem cell-derived pre-

osteoblasts transform into osteoblasts due to the presence of M-

CSF, RANKL, and cytokines (122). These cytokines have the ability

to induce osteoblasts to undergo cell polarization, leading to their

active involvement in the process of bone resorption.

According to a study, it was found that MGF has the ability to

impede the differentiation process of pre-osteoblastic macrophages

(BMM) induced by M-CSF and RANKL, preventing their

transformation into TRAP-positive multinucleated macrophages

(123), i.e. osteoblasts, suggesting that MGF could inhibit the

differentiation of BMM macrophages and promote the expression

of ER-b mRNA. MGF promotes the proliferation and
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differentiation of osteoblast precursor cells MC3T3-E1 through

RunX2; therefore, MGF may promote bone formation of

osteoblasts, thereby regulating the balance of osteoblast and bone

resorption cell functions (124).
3.2 The role of GM in the treatment of OP

Recent research has revealed a significant link between gut

microbiota and osteoporosis. Gut microbiota regulates bone

homeostasis and can affect osteoporosis through various

mechanisms. These include the modulation of its metabolites,

influencing host metabolism, altering drug metabolism, and

regulating the integrity of the gut barrier function (125).

Numerous studies have highlighted alterations in the collagen

properties of the gut microbiota, which are closely linked to bone

fragility. These changes encompass variations in biochemical

properties and protein structure, emphasizing the significant role

of the gut microbiota in bone health. Supplementation with specific

probiotics in mouse models associated with osteoporosis improved

bone density and enhanced bone heterogeneity. In addition,

quercetin fights osteoporosis by regulating the level of short-chain
Frontiers in Immunology 10
fatty acids (SCFAs), improving the bone microenvironment, and

restoring the integrity of the intestinal mucosa (126). Another study

by Zhang et al. showed that fecal flora transplantation (FMT)

improved bone loss in osteoporosis mice after ovariectomy by

regulating gut microbiota and metabolic function (127).

The gut microbiome plays a crucial role in maintaining bone

health by influencing the immune system, which is closely

connected to bone cells. It achieves this by utilizing the host’s

fully developed immune system to regulate responses throughout

the body, thus controlling bone turnover and density. The gut

microbiota improves bone health, enhances calcium absorption,

and regulates serotonin production in the gut, which interacts with

bone cells and is considered a bone regulator (128).

The gut microbiota initially varies but stabilizes quickly as the

immune system responds to environmental factors. The composition

of the gut microbiota changes with age, with great variability in the

elderly (>65 years) (129). The gut microbiota offers many possible

antigens for the immune system of the host. Under normal

conditions, a harmonious relationship exists between the host and

the commensal bacteria, which aid in food digestion and protect

against intruding pathogens (130). In certain conditions where the

host’s ability to control the entry of gut microbiota is compromised,
FIGURE 3

Polyphenols act on the NF-kB pathway and the mechanism of oxidative stress. Paeoniflorin weakens the phosphorylation level of p65 NF-kB,
thereby inhibiting the activation of NF-kB signaling pathway. Oxidative stress is closely related to inflammatory cytokines, which are always
associated with the NF-kB pathway. Inflammation can cause mitochondrial dysfunction, which prevents oxidative metabolism. After the inhibition of
the NF-kB signaling pathway, PG-F2a can be down-regulated to inhibit inflammatory factors.
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certain species may invade host tissues and cause disease. Changes in

the composition of gut microbiota can lead to intestinal inflammation

and disrupt the balance of the immune regulatory network, which has

been linked to osteoporosis in numerous studies (131).

In addition, gut microbiota alleviates oxidative stress by

producing antioxidant molecules such as glutathione, folate, and

polysaccharides (132, 133). Furthermore, certain components of the

intestinal microbiota have the capability to produce short-chain fatty

acids (SCFA). These SCFAs not only stimulate the generation of

antioxidant molecules but also aid inmitigating oxidative stress (134).

Certain lactic acid bacteria in the gut have been found to aid in

preventing osteoporosis by reducing mutagenic activity. These

bacteria can attach themselves to potent mutagens in the gut,

lessening their mutagenic impact. This, in turn, lowers the levels

of inflammation and DNA damage, thus providing superior

shielding for the gut wall. Furthermore, this process promotes

improved mineral absorption, ultimately thwarting the onset of

osteoporosis (135).

In addition, exopolysaccharides exhibit a vast variety of

biological activities, such as immunomodulatory, antioxidant,

anti-tumor, and regulation of intestinal microbial balance, thereby

improving immune response and playing an anti-inflammatory and

antioxidant role (136).

The study examined how Lactobacillus plantarum extracellular

polysaccharide affects the intestinal immune response, oxidative

stress, intestinal mucosal barrier, and microbial community in

immunosuppressed mice induced by cyclophosphamide (137).

These results suggest that the extracellular polysaccharide of L.

plantarum JLAU103 may regulate the intestinal immune response

by regulating SCFA production and intestinal microbiota in

immunosuppressed mice, thereby activating systemic immunity

(137). In a separate study, Bifidobacterium WBIN03 was

identified as having a high growth rate and exopolysaccharide

production. The effects of these exopolysaccharides on the

intestinal microflora in mice were examined. The study showed

that exopolysaccharides boosted the growth of Lactobacillus and

anaerobic bacteria while suppressing Enterobacter, Enterococcus,

and Bacteroides fragilis (138). An additional analysis of the gut

microbiome revealed that Lactobacillus plantarum NCU116

enhanced the abundance of microbial populations involved in gut

regeneration and glycan metabolism (139).

In conclusion, in addition to their metabolites, their

exopolysaccharides also have anti-inflammatory and antioxidant

stress effects and also have a certain impact on the treatment

of osteoporosis.
3.3 Effects of GM improved by PPs
on OP treatment

Due to their capacity to inhibit inflammatory factors and engage

in various other mechanisms, polyphenols have been identified as

potential agents for the treatment of osteoporosis, and chronic

inflammation, and multiple mechanisms are closely intertwined
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with the function of the intestinal barrier, the gut microbiota is

usually related to the immune regulatory network, and the

regulation of the immune system is often induced by

inflammatory factors, and inflammation is closely related to bone

loss and osteoclast activation (140). Osteoporosis is treated by

converting polyphenols into metabolites to inhibit inflammatory

factors, enhance intestinal barrier function, and regulate immunity

to inhibit bone loss and osteoclast formation (141). Meanwhile,

polyphenols can increase the abundance and activity of the gut

microbiota, acting as regulatory mediators and inducers in the gut

barrier-bone-immune system (142). Studies in mice with osteopenic

ovariectomies fed a diet supplemented with crude extracts of dried

plums and dried plums polyphenol compounds showed that the

polyphenols caused modifications in both the gut microbiota and

the levels of cecal short-chain fatty acids. These findings

demonstrate the potential prebiotic activity of dried plum

polyphenols and their significant contribution towards regulating

both bone formation and bone resorption (143). Sangeeta Huidrom

et al. conducted a study, which demonstrated that the oral

administration of various strains of probiotics exhibited

promising effects in reducing bone resorption and increasing

bone density. This finding was observed in both animal models

and human studies, suggesting the potential of probiotics as a

therapeutic approach for osteoporosis (144). Therefore, probiotics

may be an effective way to prevent and treat postmenopausal

osteoporosis. As a prebiotic, polyphenols can improve gut

microbiota and increase the number of intestinal probiotics, to

achieve the effect of treating osteoporosis (144). Hence, the

synergistic effect between polyphenols and gut microbiota

emerges as a critical factor in the treatment of osteoporosis.
4 Conclusions and perspectives

Osteoporosis is a common metabolic disease. In this paper, the

effects of polyphenols and intestinal microbes on the treatment of

osteoporosis were summarized. Polyphenols can be decomposed into

metabolites that are more easily absorbed, and the abundance and

activity of intestinal microorganisms are increased due to the action of

polyphenols. Under the synergistic effect of the two, they play their

respective functions and roles to a greater extent, providing innovative

ideas and important insights for the treatment of osteoporosis.
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50. Espıń JC, González-Sarrıás A, Tomás-Barberán FA. The gut microbiota: A key
factor in the therapeutic effects of (Poly)Phenols. Biochem Pharmacol (2017) 139:82–
93. doi: 10.1016/j.bcp.2017.04.033

51. Scalbert A, Morand C, Manach C, Rémésy C. Absorption and metabolism of
polyphenols in the gut and impact on health. BioMed Pharmacother (2002) 56(6):276–
82. doi: 10.1016/s0753-3322(02)00205-6

52. Di Pede G, Favari C, Bresciani L, Almutairi TM, Del Rio D, Crozier A.
Occurrence, bioavailability and metabolism of berry (Poly) phenols. Berries Berry
Bioactive Compounds Promoting Health (2022) 33:41.

53. Shen L, Ji H-F. Reciprocal interactions between resveratrol and gut microbiota
deepen our understanding of molecular mechanisms underlying its health benefits.
Trends Food Sci Technol (2018) 81:232–6. doi: 10.1016/j.tifs.2018.09.026

54. Sorrenti V, Ali S, Mancin L, Davinelli S, Paoli A, Scapagnini G. Cocoa
polyphenols and gut microbiota interplay: bioavailability, prebiotic effect, and impact
on human health. Nutrients (2020) 12(7):1908. doi: 10.3390/nu12071908
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