
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Chen Yang,
German Cancer Research Center
(DKFZ), Germany

REVIEWED BY

Zhiyuan Zhang,
Fudan University, China
Zhicheng Liu,
Huazhong University of Science and
Technology, China
Xianzhe Li,
German Cancer Research Center
(DKFZ), Germany
Ruijie Xie,
German Cancer Research Center
(DKFZ), Germany

*CORRESPONDENCE

Junzhu Shi

sjz661133@163.com

RECEIVED 16 August 2023
ACCEPTED 13 October 2023

PUBLISHED 27 October 2023

CITATION

He D, Tang H, Yang X, Liu X, Zhang Y and
Shi J (2023) Elaboration and validation
of a prognostic signature associated
with disulfidoptosis in lung
adenocarcinoma, consolidated with
integration of single-cell RNA sequencing
and bulk RNA sequencing techniques.
Front. Immunol. 14:1278496.
doi: 10.3389/fimmu.2023.1278496

COPYRIGHT

© 2023 He, Tang, Yang, Liu, Zhang and Shi.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 27 October 2023

DOI 10.3389/fimmu.2023.1278496
Elaboration and validation of a
prognostic signature associated
with disulfidoptosis in lung
adenocarcinoma, consolidated
with integration of single-cell
RNA sequencing and bulk RNA
sequencing techniques
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Yipeng Zhang1 and Junzhu Shi1*

1Department of Laboratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China,
2Department of Laboratory Medicine, Shenzhen Baoan District Songgang People’s Hospital,
Shenzhen, China, 3Department of Oncology, Shenzhen Longhua District Central Hospital,
Shenzhen, China
Background: Lung adenocarcinoma (LUAD), the predominant subtype of non-

small cell lung cancer (NSCLC), remains a pervasive global public health concern.

Disulfidoptosis, a nascent form of regulated cell death (RCD), presents an

emerging field of inquiry. Currently, investigations into disulfidoptosis are in

their initial stages. Our undertaking sought to integrate single-cell RNA

sequencing (scRNA-seq) in conjunction with traditional bulk RNA sequencing

(bulk RNA-seq) methodologies, with the objective of delineating genes

associated with disulfidoptosis and subsequently prognosticating the clinical

outcomes of LUAD patients.

Methods: Initially, we conducted an in-depth examination of the cellular

composition disparities existing between LUAD and normal samples using

scRNA-seq data sourced from GSE149655. Simultaneously, we scrutinized the

expression patterns of disulfidoptosis-associated gene sets across diverse cell

types. Subsequently, leveraging the bulk RNA-seq data, we formulated

disulfidoptosis-related prognostic risk signatures (DRPS) employing LASSO-

Cox regression. This was accomplished by focusing on genes implicated in

disulfidoptosis that exhibited differential expression within endothelial cells (ECs).

Sequentially, the robustness and precision of the DRPS model were rigorously

verified through both internal and external validation datasets. In parallel, we

executed single-cell trajectory analysis to delve into the differentiation dynamics

of ECs. Concluding our study, we undertook a comprehensive investigation

encompassing various facets. These included comparative assessments of

enrichment pathways, clinicopathological parameters, immune cell

abundance, immune response-associated genes, impacts of immunotherapy,

and drug predictions among distinct risk cohorts.
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Results: The scrutiny of scRNA-seq data underscored discernible disparities in

cellular composition between LUAD and normal samples. Furthermore,

disulfidoptosis-associated genes exhibited marked discrepancies within

endothelial cells (ECs). Consequently, we formulated the Disulfidoptosis-

Related Prognostic Signature (DRPS) to facilitate prognostic prediction. The

prognostic nomogram based on the risk score effectively demonstrated

DRPS’s robust capacity to prognosticate survival outcomes. This assertion was

corroborated by rigorous assessments utilizing both internal and external

validation sets, thus affirming the commendable predictive accuracy and

enduring stability of DRPS. Functional enrichment analysis shed light on the

significant correlation of DRPS with pathways intrinsic to the cell cycle.

Subsequent analysis unveiled correlations between DRPS and gene mutations

characteristic of LUAD, as well as indications of an immunosuppressive status.

Through drug prediction, we explored potential therapeutic agents for low-risk

patients. Concluding our investigation, qRT-PCR experiments confirmed the

heightened expression levels of EPHX1, LDHA, SHC1, MYO6, and TLE1 in lung

cancer cell lines.
KEYWORDS

lung adenocarcinoma, single-cell analysis, endothelial cells, disulfidptosis, prognostic
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1 Introduction

Lung adenocarcinoma (LUAD), a distinct subset within the

non-small cell lung cancer (NSCLC) classification, currently stands

as the most prevalent manifestation of lung malignancy, exhibiting a

gradual upward trajectory in its prevalence in recent years (1, 2).

Contemporary therapeutic approaches for managing LUAD

encompass an array of modalities such as surgical intervention,

chemotherapy, immunotherapy, and targeted therapy, deployed

either singularly or in tandem contingent upon tumor characteristics

(3). Nevertheless, the inconspicuous onset characteristic of LUAD often

leads to delayed detection, consequently missing the critical window for

prompt diagnosis and intervention (4). The paucity of requisite

biomarkers for early-stage detection remains a formidable hurdle in

the clinical diagnosis and therapeutic regimen of LUAD. Furthermore,

the marked aggressiveness, drug resistance, proclivity for relapse, and

evolvement of immune resistance collectively underpin the challenging

nature of LUAD. Notwithstanding the remarkable strides attained in

the clinical application of innovative interventions such as

immunotherapy and targeted therapy, a substantial majority of

advanced-stage LUAD patients continue to face a dire prognosis,

with survival spans rarely extending beyond the 5-year mark (5, 6).

Consequently, the identification of novel, exquisitely responsive

biomarkers or therapeutic targets emerges as an imperative. This

pursuit holds the potential to foster tailored treatment strategies,

thereby mitigating the adverse effects associated with treatment

regimens and potentially enhancing clinical efficacy.

Disulfidoptosis represents a newly characterized variant of

regulated cell death (RCD), incited by the aberrant intracellular

buildup of disulfides. (7). From a mechanistic standpoint, when
02
cells experience glucose deprivation, the elevated expression of

solute carrier family 7 member 11 induces a reduction in

cytoplasmic levels of nicotinamide adenine dinucleotide

phosphate. Consequently, this depletion leads to the

accumulation of irreducible intracellular disulfide compounds,

which subsequently initiates the formation of disulfide bonds

between actin cytoskeletal proteins. Ultimately, this process

results in the collapse of the actin filament network and

ultimately triggers disulfide ptosis. (8). The distinctive

morphological characteristics exhibited by disulfiprosis, which

induce cellular demise through the alteration of cytoskeletal

protein conformation, facilitate its clear differentiation from

alternative types of regulated cell death (RCD) such as ferroptosis

and copper-induced cell death (9, 10). Disulfidoptosis not only

establishes a linkage between cellular metabolism and cellular

destiny but also demonstrates a conspicuous association with the

immune response within the tumor microenvironment (11, 12).

Currently, inducing disulfidptosis of tumor cells is considered a

promising therapeutic strategy. The investigation into disulfidptosis

is still in its early stages, particularly with limited research on

disulfidptosis and LUAD. Despite the availability of solely

conventional bulk RNA sequencing (bulk RNA-seq) data, there is

an opportunity to investigate the potential prognostic indicators of

LUAD. For example, Cui Qi et al. Developed a predictive risk model

using bulk RNA-seq data to illustrate the possible correlation

between genes associated with disulfidptosis and the progression

of lung adenocarcinoma (11). Nevertheless, LUAD is an intricately

intricate and diverse solid neoplasm consisting of various cellular

populations. The exclusive reliance on bulk RNA-seq for analysis

will mask the precise details of individual cells, particularly in cases
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of LUAD with intricate heterogeneity (13). This problem has been

addressed by the advent of scRNA-seq, a technique for sequencing

RNA at the single-cell level. The single-cell RNA sequencing has

offered unexpected fresh perspectives on the associated

investigations of cancer development, tumor diversity, and tumor

surroundings (14).

To commence, we embarked on an examination of the

compositional constitution of lung adenocarcinoma (LUAD)

utilizing a scRNA-seq dataset (GSE149655) sourced from the gene

expression omnibus (GEO). The aim was to elucidate the inherent

advantages conferred by single-cell sequencing techniques.

Additionally, we scrutinized the prevalence of disulfidoptosis-

related genes across diverse cell types for enrichment rationale.

Pronounced disparities emerged in the expression profiles of genes

implicated in disulfidoptosis within endothelial cells (ECs),

discernibly demarcating tumor tissues from their normal

counterparts. In parallel, capitalizing on the bulk RNA-seq dataset

(TCGA-LUAD) procured from the cancer genome atlas (TCGA), we

effectively identified a collection of nine genes displaying differential

expression (DEGs) via the employment of LASSO-Cox regression.

Subsequent to this, we adeptly formulated a prognostic signature

(DRPS) intimately linked to the disulfidoptosis phenomenon.

Extensive scrutiny ensued to delineate the nexus between DRPS

and a spectrum of clinicopathological attributes, alongside the

overarching survival outcomes (OS) among LUAD patients.

Additionally, we delved into the mutation status of the nine genes

implicated in disulfidoptosis within the context of LUAD. Validation

of the prognostic risk signature was systematically executed across

both internal and external validation cohorts. Furthermore, an

auxiliary exploration was conducted to unveil the interplay between

DRPS and the responsiveness to immunotherapy interventions. Our

comprehensive research endeavor furnishes an enriched

comprehension of disulfidoptosis-associated genes as potential

harbors of prognostic insights and therapeutic targets within the

LUAD landscape. In this vein, our findings present novel dimensions

to the evaluation and strategic management of LUAD.
2 Materials and methods

2.1 Dataset collection and preprocessing

The single-cell RNA sequencing dataset (GSE149655) was

obtained from the Gene Expression Omnibus (GEO) repository.

From the TCGA and GEO databases, we acquired a large RNA-seq

dataset (TCGA-LUAD, GSE68465, GSE50081, GSE37745,

GSE31210, and GSE3141) specifically for LUAD. Samples without

T stage, N stage, M stage, and clinical stage information were

removed, as well as samples marked with survival time = 0. Thus we

acquired 500 samples from TCGA-LUAD, 442 samples from

GSE68465, 127 samples from GSE50081, 226 samples from

GSE37745, 106 samples from GSE31210, and 111 samples from

GSE3141. To confirm the association between prognostic

characteristics and response to immune checkpoint inhibitors

(ICIs), the IMvigor210 datasets were employed as validation sets.

Gene read count values were also normalized for these patients.
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Pub l i c l y ava i l ab l e da ta inc ludes TCGA, GEO, and

IMvigor210 datasets.
2.2 Single-cell sequencing data processing

To analyze single-cell transcriptomics data, we utilized the Seurat

R package (v4.1.0). The function of Seurat, “NormalizeData” were

used to normalize the counts of single-cell transcriptomics. The filter

conditions were set as: 500 ≤ nCount_RNA ≤ 4000, 400 ≤

nFeature_RNA ≤ 10000, percent.mt ≤ 15, percent. Ribo ≤ 20.

Lognormalize method was used to normalize the data. The

dimensionality was reduced and the main cell clusters were found

using the methods ‘RunPCA’, ‘FindNeighbors’, and ‘FindClusters’.

The clustering parameter was set as 1.2. Subsequently, UMAP, a

method called Uniform Manifold Approximation and Projection, is

utilized to reduce the dimensionality of datasets and represent them

in a lower-dimensional space (typically two or three dimensions) for

visualization purposes. The annotation of single-cell RNA sequencing

data obtained from the Gene Expression Omnibus (GEO) database

was utilized to annotate the clusters of cells in the dataset GSE149655.

For each cluster, the FindAllMarkers function was utilized to detect

(DEGs) with a logic. threshold of 0.25. Identification of cell types was

conducted by utilizing the differentially expressed genes (DEGs)

within each cluster and subsequently verified through manual

examination, as outlined in a prior investigation.
2.3 Score according to the disulfidptosis-
related gene set

We curated a collection of 32 disulfidoptosis-related genes,

integral to cancer research, constituting the disulfidoptosis-related

gene set. Leveraging the GSE149655 dataset, we harnessed

algorithms including AUCell, Ucell, singscore, ssGSEA, and

AddModuleScore (Add) to compute gene set scores for the

disulfidoptosis-related gene sets (15, 16). Subsequently, the

outcomes of these five gene set scores were amalgamated and

standardized for the purpose of Scoring analysis. Differences

pertaining to six distinct cell types across tumor and normal

tissues were visually presented through the utilization of the

ggplot2 R package (version 3.3.5).
2.4 Intercellular communication

To elucidate the intercellular interaction networks, we

employed the CellChat tool (version 1.1.3). Specifically, we

employed the ‘AggregateNet’ feature of CellChat, which integrates

diverse cellular communication networks. These networks

encompass various cell types, including epithelial cells, NK cells,

T cells, macrophages, endothelial cells (ECs), and smooth muscle

cells.To examine the signaling pathways within the intercellular

communication network, we employed the “netVisual_aggregate”

function provided by CellChat. This function allowed us to

compute and visualize the inherent signaling pathways.
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Furthermore, to determine the significance of specific cell

types within the tissue microenvironment, we used the

“netAnalysis_computeCentrality” function in CellChat. This

function enabled us to calculate centrality scores, providing

insights into the predominant signaling roles of distinct cell types.
2.5 Creation and verification of a
prognostic risk signature

The test set includes the TCGA-LUAD dataset. Internal

validation sets encompass GSE68465, GSE5008, GSE3774,

GSE31210, and GSE3141, while IMvigor210 serves as an external

validation set. These datasets collectively underpin our model’s

assessment. The investigation dataset aids in identifying

disulfidoptosis-associated genes and crafting prognostic risk

signatures. To prevent overfitting, we employ the LASSO

penalized Cox proportional hazards regression technique via the

glmnet R package. Our signature is determined using a penalty

parameter (l), assessed through ten-fold cross-validation against

stringent criteria. We compute patient risk scores using gene

expression levels and their corresponding coefficients. These

scores are the sum of gene expression values multiplied by their

coefficients (b). Patients are categorized into high- or low-risk

groups based on median risk scores. We then conduct a Kaplan-

Meier analysis to compare overall survival curves between these

groups. Additionally, we employ time-dependent ROC analysis to

illustrate survival rates at 1, 3, and 5 years. The Area Under the

Curve (AUC) quantifies the signature’s predictive ability.
2.6 Univariate and multivariate Cox
regression analysis

Cox regression analysis was performed to ascertain whether the

risk score held standalone prognostic significance. Univariate Cox

regression analysis encompassed variables including age, gender,

tumor grade, TNM stage, and risk score. Significant factors thus

identified were subsequently integrated into the multivariate Cox

regression analysis, adjusting for potential confounders and

covariates to assess the independent prognostic significance of

each variable. To summarize the outcomes, we presented the

results in a forest plot, which provides a concise overview of the

impact of each variable on patient prognosis.
2.7 Analyses of clinical correlations

Clinical correlation analysis was undertaken across diverse

patient cohorts to glean insights into the interplay between the

risk score and clinical characteristics. For the assessment of

attributes’ sensitivity and specificity, the survivalROC R package

was harnessed to construct ROC curves and ascertain the associated

AUC values. Capitalizing on both the risk score and clinical

attributes, a nomogram for LUAD was meticulously formulated

using the ‘rms’ script.
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2.8 Correlation between DRPS and
clinicopathological features

Clinical correlation analysis was conducted on various patient

groups to enhance comprehension of the association between DRPS

and clinical characteristics. Moreover, the integration of DRPS with

other clinical parameters and biomarkers may be necessary for

enhancing predictive accuracy and clinical applicability in the

context of its implementation in clinical practice.
2.9 Functional enrichment analysis

Utilizing the limma R package, we extracted the differentially

expressed genes (DEGs) within the TCGA-LUAD dataset by

contrasting the high-risk and low-risk groups. To evaluate the

functional enrichment of these DEGs, we carried out stepwise

analyses involving both Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) databases.

Furthermore, we subjected the enrichment outcomes of the nine

prognostic genes to gene set variation analysis (GSVA). To this end,

we accessed the h.all.v7.1.symbols Oncogenic Signature Pathway

Gene Set, sourced from the MSigDB database.
2.10 Gene mutation and DNA
damage repair

We utilized the maftools R package to examine nine genes

associated with prognosis using TCGA’s somatic mutation data

(PMC5982584). We explored the impact of these nine genes on

oncogenic pathways, copy number variation (CNV) status, and

associations between DNA damage measures and survival risk

scores. In addition, we analyzed mutual co-occurrence or exclusive

mutations among the top 19 mutated genes. atlas provides a

comprehensive examination of DDR deficiencies in various types of

cancer (17). We utilized this source to investigate various markers of

genetic instability, such as the rate of mutations that cause changes in

protein coding, count of genomic segments, proportion of altered

genetic material, deficiencies in homologous recombination, and a

score indicating abnormal chromosome numbers.
2.11 Immune status assessment and
immune microenvironment analysis

The ESTIMATE algorithm was employed to evaluate the

infiltration of stromal and immune microenvironment based on

gene transcriptome information. Using the TCGA-LUAD dataset,

we employed the CIBERSORT algorithm to examine the immune

infiltration of tumors in the high- and low-risk groups.

Additionally, we utilized the ESTIMATE algorithm to assess the

proportion of immune stromal components in the high- and low-

risk groups. We investigated the expression of inhibitory receptors

and ligands of immune cells in high- and low-risk groups using the

Spearmen’s correlation test. Using the TIDE algorithm, we
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evaluated the potential for tumor immune escape by analyzing the

gene expression profiles of both high- and low-risk groups.
2.12 Immune response analysis

The IMvigor210 datasets were used as external validation sets

for the correlation between prognostic features and treatment

response to ICIs, including differences in efficacy and survival

outcomes. The effectiveness of ICIs was assessed based on the

Response Evaluation Criteria in Solid Tumors (RECIST)

guidelines. Patients who showed complete response (CR) or

partial response (PR) were referred to as responders, whereas

patients with stable disease (SD) or progressive disease (PD) were

classified as non-responders.
2.13 Single-cell trajectory analysis

We examined the trajectories of endothelial cells (ECs) within

scRNA-seq data through the creation of pseudo-temporal

developmental trajectories using Monocle2 (version 2.22.0) (13).

The alterations in expression levels of prognostic genes along the

pseudo-temporal developmental direction were visualized

using heatmaps.
2.14 Drug prediction

In order to identify appropriate chemotherapy medications for

low-risk patients, we conducted a thorough investigation utilizing

the Cancer Genome Project (CGP) database. This database

provided valuable information regarding various chemotherapy

medications. We meticulously assessed the response to

chemotherapy in both low-risk and high-risk patient groups. To

further enhance our predictive capabilities, we leveraged the

pRRophetic R package. Using this powerful computational tool,

we accurately predicted the IC50 values of chemotherapeutic drugs

for each individual patient. This gave us valuable insights into the

potential efficacy of different chemotherapy treatments. Based on

these comprehensive analyses, we recommended specific drugs or

drug classes for low-risk patients.
2.15 Verification of DRPS

To confirm the levels of gene expression of DRPS in tumor and

normal cells, we utilized quantitative real-time polymerase chain

reaction (qRT-PCR). Procell (Wuhan Procell Life Science and

Technology Co. Ltd., Wuhan, China) supplied two variants of non-

small cell lung cancer cells (A549 and H1299) and one variant of

normal lung epithelial cell (BEAS-2B). Every cell line was grown in its

specific culture medium provided by Wuhan Procell Life Science and

Technology Co. Ltd., located inWuhan, China. The cells were grown in

RPMI-1640 (Gibco-BRL) medium, which was enriched with 10% fetal

bovine serum (Bioserum), 100 U/mL penicillin G, and 100 mg/mL
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streptomycin.AG RNAex Pro reagent (Accurate Biology) was used to

extract total RNA from BEAS-2B, A549, and H1299. The reverse

transcriptase reaction was performed using the Evo M-MLV RT Mix

Tracking Kit from Accurate Biology, and detection was carried out

using SYBR-Green, also from Accurate Biology. GAPDH was used to

normalize the mRNA expression levels of TLE1, LDHA, SHC1, EMC6,

HTATIP2, JAG1, EPHX1, MYO6, and HERPUD1. The LDHA

primers used were ATGGCAACTCTAAAGGATCAGC (forward

primer) and CCAACCCCAACAACTGTAATCT (reverse primer);

the SHC1 primers used were GCCAAAGACCCTGTGAATCAG

(forward primer) and GTATTGTTTGAAGCGCAACTCG

( r e v e r s e p r ime r ) ; t h e EPHX1 p r ime r s u s ed we r e

CTTTGCCATCTACTGGTTCATCT (forward primer) and

TCTCCTCATCTGACGTTTCCA (reverse primer); the MYO6

primers used were TATTGTGGATATTGGCCCCGA (forward

primer) and TGGATTCACTGCAATCAGAATGT (reverse primer);

the TLE1 primers used were GAGTCCCTGGACCGGATTAAA

(forward primer) and AATACATCACATAGTGCCTCTGC

(reverse primer); and the GAPDH primers used were

ACCCACTCCTCCACCTGA ( f o rwa rd p r ime r ) and

TCCACCACCCTGTTGCTGTA (reverse primer).Calculate the fold

difference for each group using normalized CT values.
2.16 LDHA knockdown and cell
proliferation assay

Cell Counting Kit-8 was purchased from Med Chem Express,

Cat. No.: HY-K0301. LDHA antibody was acquired from abcam,

Cat. No.: ab300637. siLDHA was designed via http://

sidirect2.rnai.jp/, with LDHA siRNA1: 21nt guide (5’→3’)

UUAUCAGUCCCUAAAUCUGGG and 21nt passenger (5’→3’)

CAGAUUUAGGGACUGAUAAAG; LDHA siRNA2: 21nt guide

(5’→3’) UUCCUUAUCUUUAUCAGUCCC and 21nt passenger

(5’→3’) GACUGAUAAAGAUAAGGAACAC.
2.17 Statistical analysis

All bioinformatic analyses were performed using R 4.0.3. Cox

regression analysis was utilized to compare the K-M survival curve.

The Wilcoxon rank sum test was used to compare the variation in

expression levels between groups. Correlation analysis involved the

utilization of Pearson correlation. Values with r greater than 0.1

were regarded as relevant, while those with P less than 0.05 were

considered statistically significant. In this study, the symbols ‘*’, ‘**’,

and ‘***’ were used to represent statistical significance levels of P <

0.05, P < 0.01, and P < 0.001, respectively.
3 Results

3.1 Single-cell sequencing analysis

Inceptionally, we scrutinized the disparities in composition

between samples afflicted with Lung Adenocarcinoma (LUAD) and
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their corresponding healthy counterparts via scRNA-seq datasets.

The dataset GSE149655 encompasses singular-cell sequencing data

procured from tumor lesion tissue and its distal normal lung tissue

counterpart, harvested from treatment-naïve LUAD patients. In the

preliminary phase, we executed dimensionality reduction, clustering,

and the visualization of GSE149655, employing the Seurat R package

and the UMAP algorithm. This comprehensive analysis unveiled the

discernment of 17 distinct clusters within the specimen (Figure 1A).

These clusters were subsequently categorized into six distinct cell

types, precisely: epithelial cells, Natural Killer (NK) cells, T cells,

macrophages, endothelial cells (ECs), and smooth muscle cells. Such

classification was founded upon the gene expression profiles

inherently exhibited by the cells within each designated cluster

(Figures 1B–D).
3.2 Cell scoring algorithm based on
disulfidptosis-related genes

In order to scrutinize the potential correlation between these

cellular entities and disulfide-mediated apoptosis (disulfidptosis),

an assessment was conducted to evaluate the degree of enrichment

pertaining to gene sets related to disulfidptosis across the

aforementioned six distinct cell types. This evaluation was

executed utilizing five distinct gene set scoring algorithms, namely

AUCell, UCell, singscore, ssGSEA, and Add (Figure 2A). The

subsequent phase involved the amalgamation and normalization

of the aforementioned scoring outcomes, as visualized in Figure 2B.

The heatmap representation facilitated the observation of the

expression patterns of genes associated with disulfidptosis within

the aforementioned six cell types (Figure 2C). Ultimately,
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discernment emerged, showcasing that gene sets correlated with

disulfidptosis exhibited a notable enrichment pattern within

epithelial cells and endothelial cells (ECs) situated within tumor

tissues, alongside macrophages present within normal tissues

(Figure 2D). It is noteworthy to emphasize the pivotal role

assumed by ECs in the context of tumor development (18, 19).

Further investigations, utilizing the CellChat tool, unearthed

substantial disparities inherent in the intercellular communication

network between normal and tumor tissues (Figure 2E). These

findings pointed towards noteworthy alterations in both the

strength of interactions and the composition of cell types involved.
3.3 Validation and creation of a prognostic
signature associated with disulfidptosis

The interplay between tumor cells and ECs results in

vasculature formation, a pivotal factor in tumor initiation and

advancement. Moreover, EC-driven metabolic pathways

effectively meet the escalated energy demands of tumors, thus

facilitating swift tumor proliferation. (20). Consequently, for a

deeper exploration of disulfidptosis, we focused on ECs. We

initiated our investigation by conducting a differential analysis of

endothelial cell subpopulations between tumor and normal tissues,

employing GSE149655, which yielded 1713 DEGs. To assess the

potential impact of these disulfidptosis-related genes on the survival

outcomes of LUAD patients, we leveraged the TCGA-LUAD

dataset to execute univariate Cox regression analysis on the

intersecting genes. As demonstrated in Figure 3A, a noteworthy

correlation was identified between 256 disulfidptosis-related genes

and Overall Survival (OS) in LUAD patients.
B

C D

A

FIGURE 1

Analysis utilizing single-cell sequencing. (A) Unified Manifold Approximation and Projection (UMAP) depictions demonstrating the outcomes of
dimensionality reduction and clustering. (B, C) Graphical representations illustrating the mean expression levels and relative prevalence of marker
genes within the 17 discerned clusters. (D) UMAP plots elucidating the six distinct cell types, namely epithelial cells, Natural Killer (NK) cells, T cells,
macrophages, endothelial cells (ECs), and smooth muscle cells.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1278496
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


He et al. 10.3389/fimmu.2023.1278496
Subsequently, through the application of LASSO-Cox

regression, we successfully identified a cluster of nine genes that

collectively constitute a disulfidptosis-associated prognostic

signature (DRPS). These genes consist of TLE1, LDHA, SHC1,

EMC6, HTATIP2, JAG1, EPHX1, MYO6, and HERPUD1, as

visually depicted in Figure 3B. The corresponding LASSO-Cox

regression coefficients affiliated with these nine genes are visually

summarized in Figure 3C. Within this gene ensemble, TLE1,

LDHA, SHC1, EMC6, HTATIP2, and JAG1 were discerned as

unfavorable prognostic biomarkers (cox coefficient > 1), whereas

EPHX1, MYO6, and HERPUD1 manifested as favorable prognostic

biomarkers (cox coefficient < 1), as illustrated in Figure 3D.

Next, the risk score for every cancer sample was computed

utilizing the subsequent equation: riskscore=(0.386×TLE1exp.)+
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(0.321 × LDHA exp.)+ (0.309 × SHC1 exp.)+ (0.253× EMC6

exp.)+ (0.213 × HTATIP2exp.)+ (0.752 ×JAG1 exp.)+(-0.121 ×

EPHX1 exp.)+ (-0.203× MYO6 exp.)+ (-0.304 × HERPUD1 exp.).

Based on this equation, it becomes feasible to compute an individual

risk score for each patient. Subsequently, patients within distinct

cohorts can be segregated into high- and low-risk categories based on

the median value. Kaplan-Meier survival curves eloquently depicted

that individuals situated in the high-risk cohort exhibited notably

inferior OS outcomes compared to their counterparts in the low-risk

cohort (p < 0.001). (Figure 4A). We evaluated the predictive capacity

of our developed features using a time-dependent ROC analysis. The

AUC values for 1-, 3-, and 5-year survival rates were 0.76, 0.73, and

0.70, respectively (Figure 4A). Additionally, we assessed the stability

of the prognostic risk features across five internal validation sets:
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FIGURE 2

Cell scoring algorithm based on disulfidptosis-related genes. (A) Violin plots depicting the enrichment status of disulfidptosis-related gene sets
within six distinct cell types situated in both tumor and normal tissues. This assessment is executed employing diverse gene set scoring algorithms.
(B) Violin plots elucidating the amalgamated and standardized outcomes stemming from the utilization of the five gene set scoring algorithms. (C) A
heatmap representation, visualizing the expression levels of genes linked with disulfidptosis across the spectrum of six cell types. (D) Violin plots
illustrating the disparities within Scoring scores for gene sets correlated with disulfidptosis within the context of the six cell types, differentiating
between tumor and normal tissues (*p< 0.05 and ****p<0.0001). (E) Depiction of a cell-cell interaction network. The colors of arrows and edges
provide directional cues. The thickness of edges denotes the magnitude of interactions between cell groups. Loops signify autocrine circuits.
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GSE68465, GSE50081, GSE37745, GSE31210, and GSE3141. The

outcomes revealed a substantial discrepancy in Overall Survival (OS)

between patients categorized as high-risk and those designated as

low-risk (p=0.00059, p=0.0031, p=0.00075, p<0.0001, and p=0.0012)

(Figures 4B–F). The AUC for the GSE68465 risk profile stood at 0.76

for 1 year, 0.67 for 3 years, and 0.62 for 5 years (Figure 4B).

Correspondingly, the AUC for the GSE50081 risk profile was 0.61

for 1 year, 0.65 for 3 years, and 0.66 for 5 years (Figure 4C). The

GSE37745 risk profile exhibited an AUC of 0.56 for 1 year, 0.69 for 3

years, and 0.67 for 5 years (Figure 4D). On the other hand, the

GSE31210 risk profile demonstrated an impressive AUC of 0.92 for 1

year, 0.77 for 3 years, and 0.82 for 5 years (Figure 4E). Similarly, the

GSE3141 risk profile showcased an AUC of 0.60 for 1 year, 0.72 for 3

years, and 0.83 for 5 years (Figure 4F). Notably, these internal

validation sets consistently exhibited commendable AUC

performance (Figures 4B–F).
3.4 Independent analysis of prognostic and
clinicopathological features

We assessed the predictive significance of DRPS and various

clinical factors using both univariate and multivariate Cox regression

analysis. The prognosis of LUAD was significantly associated with

tumor stage, T stage, N stage, and risk score according to the results of

univariate Cox regression analysis (Figure 5A). The risk score remained
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an independent prognostic factor in LUAD patients, as demonstrated

by multivariate Cox regression analysis (Figure 5B). Using clinical data

from the TCGA-LUAD dataset, we created a nomogram that displays

scores and clinical variables based on DRPS (Figure 5C). The

calibration curves further revealed satisfactory concordance between

observed and projected survival rates at 1-, 3-, and 5-year intervals.

(Figure 5D). For a more comprehensive assessment of the nomogram’s

effectiveness, we juxtaposed it with other prognostic variables. The

decision curve analysis demonstrated that our nomogram yielded the

most favorable net benefit in comparison to the clinical factors.

(Figure 5E). Furthermore, ROC curves illustrated that the Area

Under the Curve (AUC) of both the nomogram and risk score

outperformed other clinical attributes, reaching the highest values

(Figure 5F). After a more in-depth investigation and examination of

the clinicopathological features of LUAD patients in the TCGA dataset,

the differences between the high-risk score group and the low-risk score

group in terms of gender, T stage, N stage, M stage, tumor stage, and

age were as follows: There were no significant disparities in gender, T

stage, M stage, and age (Figures 6A, B, D, F), but there were notable

differences in the N stage and tumor stage (Figures 6C, E).
3.5 Functional analysis

To explore DRPS-related biological functions and pathways, we

detected DEGs between high- and low-risk groups, resulting in 610
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FIGURE 3

Construction and validation of disulfidptosis-related prognostic model. (A) Volcano plot illustrating the results of univariate Cox regression analysis
for the intersecting genes. (B, C) Nine disulfidptosis-related genes exhibiting the strongest associations with survival status, identified via LASSO-Cox
regression. (D) LASSO-Cox regression coefficients representing the nine identified genes.
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DEGs (Figure 7A). Subsequently, we performed GO and KEGG

enrichment analysis on these DEGs. The analysis revealed

significant enrichment in cell cycle-related pathways like nuclear

division and chromosome segregation (Figures 7B, C). Additionally,

we conducted GSVA enrichment analysis for the nine prognostic

genes. The analysis indicated strong associations of these genes with

signaling pathways including huntington’s disease, propanoate

metabolism, oxidative phosphorylation, metabolism, cell cycle,

and the p53 signaling pathway (Figure 7D). Expression patterns

of these prognostic genes within these pathways were depicted using

a heatmap (Figure 7E).
3.6 Mutation frequency and instability
measures of prognostic genes

To gain deeper insights into the mechanistic underpinnings

through which the DRPS risk score signature effectively gauges

patient prognosis, we delved into the mutational landscape of the

nine prognostic genes. Employing the Maftools R package, we

scrutinized the mutation status of these genes, and the analysis

revealed several intriguing findings (Figure 8A). Among the

identified mutations, we observed that the five most commonly

mutated genes were JAG1, EPHX1, MYO6, TLE1, and LDHA.

These mutations highlight the potential relevance of these genes in

the context of LUAD. Additionally, we investigated Copy Number

Variation (CNV) events within the nine prognostic genes and found

that SHC1 exhibited significant CNV gain, while MYO6 and EMC6
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displayed noteworthy CNV loss (Figure 8B).Upon assessing the co-

occurrence and mutually exclusive interactions among the top 19

mutated genes within the high- and low-risk groups, we observed a

prevalent pattern of gene mutation co-occurrence involving

numerous genes. Notably, the most prominent of these

interactions was the mutual exclusion between TP53 and KRAS

mutations, as prominently depicted in Figure 8C. This observation

could have important implications for understanding tumor

biology and treatment response in LUAD. The recurrent

mutations in the TP53 gene, which serve as a hallmark of LUAD

and signify elevated genome instability, were also noteworthy.

These mutations may contribute to tumor development and

progression, potentially affecting patient prognosis and treatment

outcomes. (6, 21). Taking into account the fact that increased tumor

mutational burden in hereditary LUAD isn’t linked with heightened

immune activity in the tumor microenvironment, our exploration

extended to other indicators of instability that could impact the

immune response in LUAD. Utilizing iAtlas, we delved into various

markers of genomic instability within LUAD. Interestingly, our

findings unveiled a positive correlation between LDHA, SHC1, and

MYO6 with aneuploidy score, while JAG1 and HERPUD1

displayed a negative correlation (Figure 8D). SHC1, TLE1, and

EMC6 displayed positive correlations with homologous

recombination defects and nonsilent mutation rate, whereas

JAG1, EPHX1, and HERPUD1 exhibited significant negative

correlations with these factors (Figure 8D). Furthermore, in terms

of fraction altered, SHC1, HTATIP2, MYO6, and EMC6

demonstrated positive correlations, while JAG1 and EPHX1
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FIGURE 4

Validation of the risk signature. (A–F) Kaplan-Meier analysis demonstrating the Overall Survival (OS) disparity between high- and low-risk groups
across the TCGA-LUAD, GSE68465, GSE50081, GSE37745, GSE31210, and GSE3141 datasets. Corresponding datasets were utilized for ROC analysis
to gauge predictive efficiency.
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displayed significant negative correlations (Figure 8D). Similarly,

SHC1, HTATIP2, and EMC6 exhibited positive correlations with

the number of segments, whereas JAG1 and EPHX1 displayed

significant negative correlations (Figure 8D).

These findings collectively suggest a link between genomic

instability and patients’ survival risk scores. However, the

relationship between measures of genomic instability and tumor

immune activity is intricate and necessitates further exploration.
3.7 Immune landscape analysis

To elucidate the intricate relationship between DRPS and the

tumor microenvironment, we leveraged the ESTIMATE algorithm to

assess the influence of the nine prognostic genes. The outcomes

underscored the positive correlation of JAG1 and HERPUD1 with

StromalScore, ImmuneScore, and ESTIMATEScore. Conversely,

EPHX1, HTATIP2, and EMC6 demonstrated negative correlations

with these scores (Figures 9A, B). Furthermore, SHC1 exhibited a

notable negative correlation with ImmuneScore and ESTIMATEScore

(Figure 9B). Intriguingly, our investigation revealed that individuals

categorized in the low-risk group exhibited greater tumor purity in

comparison to those in the high-risk group. Moreover, the proportions

of immune cells and stromal cells within tumors of low-risk group
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patients surpassed those in the high-risk group (Figure 10B). Given the

pivotal role of immune score in prognosis assessment, we conducted an

in-depth investigation to ascertain whether the survival discrepancy

between high-risk and low-risk patients could be attributed to the

immune microenvironment within tumors. Consequently, we

scrutinized the infiltration of 28 distinct immune cell types across the

immune microenvironment in tumors from both high- and low-risk

patient groups. The findings unveiled that compared to the low-risk

group, individuals in the high-risk group exhibited diminished counts

of activated B cells, NK cells, eosinophils, mast cells, monocytes, and

plasmacytoid dendritic cells within their tumors. Conversely, the high-

risk group displayed heightened presence of cells like activated CD4 T

cells, dendritic cells, and neutrophils (Figure 10A). The majority of

functional immune cell infiltrations were observed within the low-risk

group (Figure 10A), indicative of an association between the risk score

and the immune microenvironment. Additionally, our findings

indicated that in the high-risk group, the expression of immune

suppression-related genes such as CD276, CD70, CD80, and

TNFSF9 was significantly elevated compared to the low-risk group.

Conversely, the high-risk group displayed decreased expression of

immune activation-related genes like CD28, CD48, TNFSF14, and

others (Figure 10C). This holds promise for predicting potentially

responsive drugs in high-risk patients. The tumor immune response

stands pivotal in immunotherapy. Given the positive correlation
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FIGURE 5

Independent prognostic analysis of DRPS. (A, B) Univariate and multivariate Cox analyses were conducted to assess the independence of risk score
and clinicopathological attributes. (C) Construction of nomograms integrating risk scores and clinical variables to predict 1-, 2-, and 5-year survival.
(D) Calibration curves gauging the alignment between observed outcomes and the predicted outcomes at 1-, 2-, and 5-year intervals. (E) Decision
curve plot showcasing normalized net benefit: the y-axis represents standardized net benefit, while the x-axis delineates the threshold probability
spectrum. (F) AUC values for nomogram, risk score, and each clinical feature.
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between the TIDE predictive score and tumor immune evasion, the

TIDE prediction score emerges as an effective tool for evaluating tumor

immune escape within high- and low-risk groups. In the TCGA-LUAD

dataset, we observed that the TIDE score was notably higher in the

high-risk score group than in the low-risk score group (Figure 10D).

Meanwhile, aside from Interferon gamma (IFNG) which showed no

significant difference between the two groups (Figure 10E), there were

distinct disparities between the groups in terms of T cell dysfunction

score, T cell exclusion score, TAM M2, and MDSC cell proportions

(Figures 10F–I). These collective findings suggest that patients with a

high-risk score may have limited benefits from immunotherapy.
3.8 Predictive value of DRPS
in immunotherapy

To bolster the robustness of DRPS’s predictive potential, we

subjected it to external validation using the IMvigor210 dataset to

assess patients’ responsiveness to immunotherapy. This validation

aligns with prior findings, as the Kaplan-Meier analysis once again

affirmed that individuals in the high-risk group faced less favorable

overall survival (OS) in contrast to those in the low-risk group

(Figure 11A). Furthermore, our investigation unveiled that patients

who exhibited positive responses to immunotherapy (CR/PR)

demonstrated notably lower risk scores in comparison to those who

did not respond as favorably (SD/PD) (Figure 11B). As illustrated in

Figure 11C, the response rate to immunotherapy was significantly
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higher within the low-risk group than in the high-risk group (31%

versus 15%, respectively). In addition, for a more comprehensive

assessment of DRPS's predictive capabilities, we conducted Kaplan-

Meier analysis on patients with clinical stages I-II (Figure 11D). This

not only further reinforces the resilience of DRPS but also underscores

its substantial predictive utility in guiding clinical treatment decisions.
3.9 Pseudotime analysis

To unravel the malignant evolution pattern of endothelial cells

(ECs) within LUAD, we harnessed the Monocle R package for cell

trajectory analysis. Illustrated in Figure 12A are the cell trajectories for

fourteen distinct endothelial cell clusters, and the trajectory orientation

dictated by unsupervised pseudotime. This arrangement facilitated the

identification of branch points, multiple branches, and nodes that

permeate developmental trajectories, where cells within the same

branch reflected a shared state (Figure 12A). This progressive process

depicts the transformation of normal ECs into characteristic malignant

ECs characteristic of LUAD. Concurrently, alterations in the expression

levels of the nine prognostic genes transpired over pseudotime across

various cell clusters. Specifically, along the trajectory of pseudotime

progression, LDHA, EPHX1, and SHC1 exhibited gradual increases in

expression, while EMC6, HTATIP2, TLE1, MYO6, and JAG1

demonstrated diminishing expressions (Figure 12B). Expanding our

analysis to a single-cell RNA-seq dataset (GSE149655), we juxtaposed

the expression disparities of the nine prognostic genes in ECs between
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FIGURE 6

Clinicopathologic characteristics analysis. (A–F) The interrelations between risk signature and clinicopathologic parameters, encompassing gender,
T stage, N stage, M stage, tumor stage, and age.
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tumor tissues and normal tissues. Notably, LDHA, SHC1, and EPHX1

exhibited heightened expression levels in tumor tissues, while MYO6

and TLE1 displayed diminished expression compared to normal

tissues (Figure 12C).
3.10 Drug prediction and
qRT-PCR validation

We employed the CGP database and the pRRophetic R

package to anticipate the clinical responses of high- and low-

risk patients to a variety of compounds (Figure 13A). Applying the
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criteria of P < 0.05 and FDR > 0.05, we identified four compounds:

Shikonin, JNK.9L, AZD6244, and Nilotinib, which emerged as

sensitive drugs within the low-risk population (Figure 13B). To

reinforce the validity of our analysis, we assessed the expression

levels of the nine prognostic genes in human non-small cell lung

cancer cells (A549 and H1299) as well as human normal lung

epithelial cells (BEAS-2B). The qRT-PCR results unveiled

heightened expressions of EPHX1, LDHA, and SHC1 in A549

and H1299, whereas MYO6 and TLE1 exhibited lower expressions

in A549 and H1299 when compared to BEAS-2B (Figures 14A–E).

This outcome concurs with the trends identified in our

prior analyses.
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FIGURE 7

Functional analysis. (A) Volcano plot depicting DEGs between high- and low-risk groups. Red indicates up-regulated genes, blue indicates
down-regulated genes, and gray indicates genes with no significant difference. (B) Histogram presenting the outcomes of GO enrichment
analysis. (C) Histogram presenting the results of KEGG-based enrichment analysis. (D) Heatmap illustrating the relationship between prognostic
genes and hallmark pathways (*p < 0.05; **p < 0.01; ***p < 0.001). (E) Heatmap displaying the expression levels of prognostic genes within
hallmark pathways.
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3.11 Validation and impact of LDHA
knockdown on cellular proliferation

To further verify the validity of our model, we designed small

interfering RNA for LDHA and ascertained its ability to effectively
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knock down the target protein in A549, H1299 cells, (Figure 15A).

Subsequently, a CCK8 assay was conducted, and the results of the

experiment showed that the cellular proliferative vitality in the

LDNA knockdown group was significantly inhibited,

(Figures 15B, C).
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FIGURE 8

Mutation frequency and instability measures of prognostic genes. (A) Waterfall plot illustrating mutations within prognostic genes. (B) Heatmap
showcasing co-occurrence and mutually exclusive mutations among differentially mutated genes (*p < 0.01 and p < 0.05). (C) Frequencies of CNV
gain, loss, and non-CNV genes derived from LASSO regression. (D) Associations between DNA damage metrics and prognostic genes across various
genes. Heatmap presenting instability measures of prognostic genes for TCGA-LUAD (*p < 0.05, **p < 0.01, and ***p < 0.001).
BA

FIGURE 9

TumorPurity analysis. (A) Correlations between gene expression levels and ImmuneScore. (B) Correlations of the nine prognostic genes with
ImmuneScore, StromalScore, and ESTIMATEScore (*p < 0.05, **p < 0.01, and ***p < 0.001).
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4 Discussion

Lung adenocarcinoma (LUAD) stands as one of the most

widespread malignancies across the globe. The clinical

implementation of targeted therapy and immunotherapy has led

to noteworthy enhancements in the prognosis of individuals with

advanced stages of LUAD (6). Nevertheless, challenges persist in the

realm of LUAD diagnosis and treatment, including issues such as

delayed diagnosis, drug resistance, adverse events, and instances of

non-response. These challenges continue to present significant

hurdles in the clinical management of LUAD. (22). Hence, the
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identification and utilization of precise and responsive indicators

are vital for the detection and management of LUAD. Since the

complexity and heterogeneity of tumor tissue, bulk RNAseq dataset

alone cannot infer the interaction and specific mechanism between

cells in the tissue. By utilizing scRNA-seq dataset, correlative

investigations can offer fresh perspectives on the progression of

cancer, the diversity within tumors, and the microenvironment

surrounding the tumor. Furthermore, as LUAD is a solid neoplasm,

angiogenesis plays a crucial part in its progression, infiltration, and

spread. Endothelial cells (ECs), acting as stromal cells within solid

tumors, have a crucial function in the regulation of angiogenesis
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FIGURE 10

Immune landscape analysis. (A) Boxplot illustrating scores of 28 immune cell types between high- and low-risk groups. (B) Boxplot demonstrating
ImmuneScore, StromalScore, and ESTIMATEScore differences between high- and low-risk groups. (C) Boxplot depicting the expression variation of
immune-related genes between high- and low-risk groups. (D–I) Boxplots illustrating differences in TIDE, IFNG, T cell dysfunction score, T cell
exclusion score, TAM M2, and MDSC cell proportions between high- and low-risk groups (*p < 0.05, **p < 0.01, and ***p < 0.001).
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FIGURE 11

Predictive value of DRPS in immunotherapy. (A–C) Investigating the efficacy of DRPS as a predictive indicator for immunotherapy using the
Imvigor210 dataset. (D) Based on the IMvigor210 dataset, Kaplan-Meier analysis was performed on the risk scores of clinical stages I and stages II
patients. (***p < 0.001).
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(23). Controlling endothelial cells to impact angiogenesis is a

primary area of focus in cancer research. Disulfidptosis, a novel

form of RCD, not only connects cellular metabolism to cellular

destiny but also has a significant impact on the immune response to

tumors (7, 8). Current studies related to disulfidptosis have

suggested its great value in LUAD.

This research combined single-cell RNA sequencing and bulk

RNA sequencing to provide a more comprehensive understanding

of the involvement of disulfidptosis in LUAD. Additionally, a DRPS

was developed for LUAD patients by identifying disulfidptosis-

related genes that were differentially expressed in ECs. Our

discovery revealed that the utilization of DRPS successfully

categorized individuals into high-risk and low-risk clusters. In

addition, our findings indicated that increased risk scores were

linked to worse prognosis, decreased immune infiltration, and

immunosuppressive condition. Hence, individuals with reduced

risk scores might require immunotherapy to a greater extent.

This study suggests a prognostic gene panel called DRPS, which

includes nine genes: TLE1, LDHA, SHC1, EMC6, HTATIP2, JAG1,

EPHX1, MYO6, and HERPUD1. Following the analysis of

bioinformatics data and subsequent in vitro experiments, we

observed notable disparities in the levels of EPHX1, LDHA, SHC1,

MYO6, and TLE1 expressions between LUAD and normal samples.
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EPHX1 encodes the microsomal epoxide hydrolase 1 (MEH1),

which has a twofold function in the reaction to carcinogenic

substances found in the environment. EPHX1 not only

metabolizes environmental carcinogens into trans-dihydrodiols,

which can have mutagenic, toxic, and carcinogenic effects, but

also generates substances necessary for detoxification processes

(24–26). According to reports, the presence of EPHX1 gene

polymorphisms has been linked to the susceptibility of different

types of cancers (26, 27). The low variety of EPHX1 genotypes may

reduce the risk of lung cancer (25). As one of the key enzymes of

glycolysis, LDHA (lactate dehydrogenase A) will preferentially

convert pyruvate into lactate under anaerobic conditions (28, 29).

LDHA (lactate dehydrogenase A), a crucial enzyme in glycolysis,

will primarily transform pyruvate into lactate. Cancer cells possess

significant metabolic flexibility, enabling them to choose substrates

depending on their accessibility. Tumor cells situated in areas with

low oxygen levels heavily rely on glucose-fueled anaerobic

glycolysis, leading to the oxidation of glucose into pyruvate or

lactate (29). O Metabolic reprogramming in response to hypoxic

stress, which is crucial for meeting proliferative demands, is

considered a key characteristic of malignancy (30). Thus, LDHA

can guarantee the metabolic flexibility of cancer cells, allowing them

to adjust to challenging conditions (31). At the same time, LDHA
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FIGURE 12

Pseudotime analysis. (A) Cellular trajectories for fourteen distinct endothelial cell subsets. Each dot corresponds to a cell, while the black line
denotes the slingshot trajectory. (B) Heatmap visualizing the expression of the nine prognostic genes (log-normalized counts, represented by color)
categorized by respective pseudotimes and cell clusters. (C) Violin plot illustrating the expression variance of the nine prognostic genes in
endothelial cells (ECs) between tumor tissue and normal tissue.
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not only provides energy for T cells, but also the acidic

microenvironment formed with lactic acid can also function as a

barrier for T cells (32, 33). Modulation of LDHA has considerable

potential value for T cell activation-based immunotherapy.

According to reports, LDHA has the ability to enhance the

advancement of LUAD by controlling molecules associated with
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epithelial-mesenchymal transition (EMT) (34). Certain LDHA

inhibitors at the molecular level have notable impacts on tumor

load, metastasis, and cellular demise (32). Nonetheless, only a

limited number of studies have assessed alterations in immune

cell reactions towards LDHA inhibitors during cancer treatment

(32). Therefore, targeting LDHA can create new opportunities to
B

A

FIGURE 13

Drug prediction and qRT-PCR validation. (A) Histogram depicting the ratio of the median estimated IC50 of the high-risk group to that of the low-
risk group for each compound. (B) Boxplot illustrating the IC50 profiles of the four compounds across the high- and low-risk groups.
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FIGURE 14

(A–E) Histograms presenting qRT-PCR outcomes for EPHX1, LDHA, SHC1, MYO6, and TLE1, respectively. (*p < 0.05, **p < 0.01 and ***p < 0.001).
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fight cancer cells (31). SHC1 (SHC adapter protein 1) integrates and

transduces external stimuli into distinct signaling networks (35, 36).

Recent research has indicated that the SHC1 gene has a significant

impact on different types of tumors, including breast cancer and

gastric cancer (37, 38). Bioinformatics analysis revealed that

elevated SHC1 expression served as a prognostic indicator for

unfavorable outcomes in numerous cancer types (39–41).

According to reports, SHC1 has the potential to control the

signaling pathway of the epidermal growth factor receptor

(EGFR), subsequently triggering multiple downstream signaling

pathways like MAPK/ERK, PI3K/Akt, and STAT3. These

pathways play a crucial role in facilitating the metastasis of lung

cancer (42, 43). Nevertheless, additional investigation is required to

explore the relationship between SHC1 and EGFR.As a unique

member of the myosin superfamily, MYO6 (myosin VI) has a

unique orientation, which helps it play a key role in endocytosis,

vesicle trafficking, protein secretion and autophagosome

maturation (44, 45). According to reports, the excessive

expression of MYO6 has been linked to a malignant characteristic

in individuals diagnosed with different types of cancer, such as

prostate and gastric cancer (46, 47). The upregulation of MYO6 is

found to be associated with maintaining the cell cycle and cell

growth in lung cancer cells (48). Research has indicated that non-

coding RNA (miRNA) has the ability to impact the growth and

advancement of tumors by controlling the expression of MYO6.In

NSCLC cells, miR-5195-3p functions as a cancer inhibitor through

the direct regulation of MYO6 expression (49). Furthermore, TLE1

functions as a suppressor of numerous signaling pathways via

transcription factors, exerts control over the transcriptional

activity of diverse genes, and exhibits a range of physiological

roles (50). Notably, research has discovered that TLE1 has the

ability to facilitate the suppression of the E-cadherin gene, which is

a crucial controller of EMT in lung cancer cells. As a result, this

promotes the advancement of tumors (51). While the exact

mechanism is yet to be investigated, these findings indicate that

the aforementioned predictive genes have the ability to not just

monitor individuals with LUAD, but also have the potential to be

targeted for therapeutic purposes.

Furthermore, research indicates that EMC6, HTATIP2,

HERPUD1, and JAG1 also have a significant impact on the

formation and progression of tumors. Overexpression of EMC6, a

subunit of the protein complex found in the endoplasmic reticulum
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membrane, has been shown to suppress cancer cell growth and

trigger apoptosis. This gene is responsible for encoding autophagy-

related proteins (52–55). Tumor metabolic reprogramming is

regulated by HTATIP2, which functions as a tumor suppressor.

According to reports, when tumor cells experience hypoglycemic

conditions, the absence of HTATIP2 expression can enhance the

cells’metabolic adaptation to glucose limitation (56). The increased

sensitivity of LUAD to EMT processes activated by drug therapy

and the enhancement of tumor metabolic plasticity, regulation of

tumor adaptation to hypoxia, and promotion of an aggressive

tumor phenotype are consequences of the deficiency in HTATIP2

expression (57). HERPUD1, a crucial component of the

degradation complex involved in ER-associated degradation

(ERAD), has the ability to control ERAD (58). And not only that,

HERPUD1 plays a role in protein degradation and stress (59).

JAG1, a cell surface ligand of the Notch signaling pathway, is highly

expressed in numerous cancers that are closely associated with

tumor biology and is inversely associated with the prognosis of

these cancers (60–62). The primary reason for this is because JAG1/

Notch signaling governs malignant cellular processes and triggers

numerous cancer-causing elements that oversee functions like

spread of cancer, resistance to drugs, formation of new blood

vessels, and properties resembling stem cells via signaling

sequences (63, 64). Furthermore, there have been reports

indicating that JAG1 might be indicative of resistance to

immunotherapy in LUAD and is linked to a repressive immune

microenvironment (65). Pseudotime analysis revealed changes in

the expression of EMC6, HTATIP2, HERPUD1, and JAG1 in

various cell clusters during the progression of LUAD, although no

significant differences were observed in ECs between LUAD and

normal samples. Monitoring the patient’s condition and adjusting

the treatment plan can be done more effectively by detecting

these markers.

In conclusion, the CGP database predicted Shikonin,

Selumetinib, Nilotinib, and JNK.9L as potential drugs for the low-

risk score group. The primary ingredient of Comfrey, known as

Shikonin, acts as an inhibitor that effectively suppresses the key

enzyme pyruvate kinase M2 in glycolysis. It possesses diverse effects

including antioxidation, anti-inflammatory properties, and anti-

tumor activity (66–68). Numerous studies indicate that shikonin

has the ability to impact the invasion, proliferation, viability, and

drug resistance of lung cancer (69–71). AZD6244 (Selumetinib) is a
B CA

FIGURE 15

Knockdown of LDHA protein on cell proliferation viability. (A) Effective Knockdown of LDHA Protein in A549, H1299 Cells via siRNA. (B, C) Inhibition
of Cellular Proliferative Vitality in LDNA Knockdown Group by CCK8 Assay.
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mitogen-activated protein kinase 1 and 2 (MEK1/2) inhibitor for

the treatment of neurofibromatosis and various tumors (72).

Selumetinib has been extensively evaluated in patients with

NSCLC. Research conducted solely with this medication has not

shown its effectiveness in treating NSCLC. In patients with

chemotherapy-pretreated KRAS-mutant NSCLC, the response

rates and progression-free survival were enhanced by the

inclusion of Sbruumetinib, as shown in a phase II trial. However,

these findings were not validated in subsequent phase III studies

(73, 74). Hence, additional investigation is required to further

examine the impact of Selumetinib on LUAD. Nilotinib, as a

tyrosine kinase inhibitor, is a new type of targeted therapy drug

for chronic myeloid leukemia (75). The combination of Nilotinib

and PD-L1 inhibition can reverse T-cell dysfunction and effectively

prevent relapse in cases of acute B-cell leukemia (76). JNK.9L as a

JNK inhibitor affect tumors by regulating related pathways (77).

The exact effects of JNK.9L and Nilotinib on LUAD have not been

determined. There is still a need for further investigation in this

regard. Additionally, these findings imply that utilizing DRPS for

drug selection could potentially enhance precision medicine

for LUAD.
5 Conclusion

In this study, we have provided novel insights into the role of

disulfidptosis in LUAD by employing an integrated analysis of both

scRNA-seq and bulk RNA-seq data. Our findings shed light on the

intricate landscape of the tumor microenvironment and the

inherent heterogeneity within LUAD. By delineating the

differentiation trajectories of distinct endothelial cell subtypes

within LUAD, we have deciphered the shifts in expression

patterns of disulfidptosis-related genes throughout the course of

malignant transformation. Leveraging the shared genes between

endothelial cell differentially expressed genes and the disulfidptosis

gene set, we have formulated a prognostic risk signature (DRPS),

which holds the potential to offer multifaceted application in LUAD

ranging from diagnosis, treatment, prognosis prediction, and

association with immunotherapy response. The differential

expressions of gene panel in DRPS may serve as diagnostic

biomarkers for LUAD, providing more possibilities for early

screen. Several key signaling pathways associated with the

development of LUAD have been indicated via the DRPS, which

may contribute to personalized therapy. The DRPS is also able to

predict the prognosis of patients with LUAD, prioritizing clinicians

to identify potential high-risk individuals, we further demonstrate

that the DRPS can distinguish the individuals that are potentially

sensitive to immunotherapy. Additionally, DRPS may provide
Frontiers in Immunology 18
target information for the exploitation of RNA interference, small

molecule drug, and immunotherapy in LUAD.
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