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The adaptive immune responses induced by inactivated COVID-19 vaccine has

been extensively studied. However, few studies have analyzed the impact of

COVID-19 vaccination on innate immune cells. Here in this study, we recruited

62 healthcare workers who received three doses of CoronaVac vaccine and

longitudinally profiled the alterations of peripheral monocytes and NK cells

during vaccination. The results showed that both the monocyte and NK cell

subsets distribution were altered, although the frequencies of the total monocyte

and NK cells remained stable during the vaccination. Additionally, we found that

both the 2nd and 3rd dose of CoronaVac vaccination elicited robust IFN-g-
producing NK cell response. Our data provided necessary insights on innate

immune responses in the context of three homologous CoronaVac dose

vaccination, and supplied immunological basis for the future design of

inactivated vaccines against SARS-CoV-2 or other viruses.
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Introduction

Highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

caused global pandemics of coronavirus disease 2019 (COVID-19) that lead to a huge

impact on human physical and mental health (1, 2). COVID-19 vaccination, such as

mRNA, adenoviral-based and inactivated vaccines, has allowed the containment of SARS-

CoV-2 infection and mortality (3). Owing to their widespread use, numerous scholars have

conducted extensive research on the adaptive immune responses mediated by T and B cells

after vaccination (4–10). By contrast, little is known about the innate immune responses

affected by vaccination.

The innate immune system constitutes the first-line responder to virus invasion, in

which NK cells and monocytes are two important innate immunocytes. Using a systems
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vaccinology approach, Arunachalam et al. reported that, following a

second dose of Pfizer/BioNTech BNT162b2 mRNA vaccination, a

notably expansion of CD14+ monocytes in a group of 56 healthy

volunteers (11). Moreover, the monocyte-related gene signatures

were found to be associated with neutralizing antibody titers (11).

Consistently, it was further discovered the convergence of

monocyte and natural killer (NK) cell subsets during vaccine-

induced responses. CD16+ NK cells, CD56high NK cells, and non-

classical monocytes inversely correlated for the magnitude of

neutralizing antibody responses (12). In addition, multiple

evidences have indicated that regulating NK cells may contribute

to improve vaccine efficiency (13). However, a detailed map of the

monocytes and NK cell landscape elicited by CoronaVac inactivated

vaccine, following the second and third vaccine booster, has not yet

been established.

In this research, we evaluated the CoronaVac vaccine-mediated

long-term effects on innate immune responses by analyzing

monocyte and natural killer subsets in peripheral blood, as well as

IFN-g production after SARS-CoV-2 spike peptide pool

stimulation. Analyses were performed at pre-vaccination baseline

(T1), 1 week post the primary dose (T2), 2 weeks post the 2nd dose

(T3), 6-8 months post the 2nd dose (T4), and 2 weeks post the 3rd

booster dose in a group of healthcare workers who had never been

SARS-CoV-2-infected.
Materials and methods

Study population

In this study, we longitudinally collected the peripheral blood of

62 healthcare workers from Affiliated Hospital of Jiangnan

University. According to the national vaccination scheme, all

these participants received 2-3 doses (0.5 mL per dose) of the

inactivated CoronaVac vaccine (Sinovac Life Sciences, Beijing,

China) through intramuscular regimens from December 2020 to

November 2021 (Table S1). EDTA blood was collected from all of

the subjects at the following five time points: pre-vaccination

baseline (T1), 1 week post the primary dose (T2), 2 weeks post

the 2nd dose (T3), 6-8 months post the 2nd dose (T4), and 2 weeks

post the 3rd booster dose (T5). These healthy subjects ranged in age

from 28 to 67 (median age 47), including 33 males and 30 females.

All the individuals have no SARS-CoV-2 exposure or other virus

infection, with no autoimmune disease, immunodeficiency disease,

allergic diseases or any other diseases during the vaccination.

This study was approved by the medical ethical committee of

the Affiliated Hospital of Jiangnan University (LS2021004).

All individuals included in the study provided written

informed consent.
Preparation and storage of peripheral
blood mononuclear cells

The peripheral blood samples were collected in EDTA-2K tubes

(BD Biosciences) and processed within 4 hours. As previously
Frontiers in Immunology 02
reported (14), blood samples were diluted with phosphate buffer

saline (PBS) (1:1), and then slowly added on the prepared Ficoll-

Hypaque (GE Healthcare Life Sciences) for density gradient

centrifugation (450 g, 25 min, 20°C, without brake). PBMC layers

were carefully collected and washed twice with PBS. After

centrifugation, the washed PBMCs were resuspended in the cell

cryopreservation solution (fetal bovine serum with 10% dimethyl

sulfoxide), and total living cells were counted. Aliquots of 2.5 x 106

cells were first transferred to a freezing container (Corning

Incorporated) at -80°C overnight, then cryopreserved in liquid

nitrogen until further use.
Immunophenotyping using flow cytometry

Surface staining and multiparametric flow cytometry analysis

were performed under the same conditions. Briefly, cells were

washed with FACS buffer (PBS with 2% FBS) and incubated with

Fc-receptor block (Mitenyi Biotec) to block non-specific staining.

Cells were then stained with a mixture of monoclonal antibodies,

including CD3-AF532 (Clone: UCHT1), CD19-Super Bright 436

(Clone: HLB19), CD16-eFlour 450 (Clone: CB16), CD56-BV711

(Clone: HCD56), HLA-DR-APC/Fire 750 (Clone: L243), CD14-PE-

Cy5 (Clone: 61D3), CD38-PerCP-eFluor 710 (Clone: HB7), CD161-

Brilliant Violet 785 (Clone: HP-3G10) (Table S2). After incubation

in the dark at 4°C for 30 minutes, cells were resuspended in FACS

buffer and kept on ice until acquisition by Cytek™Northern Lights.

Dead cells were routinely excluded from the analysis by staining

with 7-AAD (eBioscience).

Monocytes were identified as CD3-CD19-CD14+ cells.

Monocyte subpopulations were analyzed by CD14 and CD16 (12,

15): classical (CD14+/CD16-), intermediate (CD14+/CD16+), and

non-classical (CD14low/CD16+) monocytes. The expression of

HLA-DR on CD14+ total monocytes was determined using the

median fluorescence intensity (MFI) for protein expression. For NK

cells, we selected CD3-CD19- live lymphocyte population according

to 7-AAD. NK cells were divided into 6 subsets according to the

intensity of CD56 and CD16 (16–18): (1) CD56brightCD16neg; (2)

CD56b r i g h tCD16d im / b r i g h t ; ( 3 ) CD56d imCD16n e g ; ( 4 )

CD56dimCD16dim; (5) CD56dimCD16bright; (6) CD56negCD16bright.
IFN-g secretion assay

The levels of IFN-g secretion by NK cells were measured by the

following procedures. Around 1×106 cells/well thawed PBMCs were

plated in U-bottom 96 well plate containing complete RPMI-1640

medium (Gibco) with 5% heat inactivated FBS (Gibco). Cells were

cultured in medium alone (unstimulated) or stimulated with SARS-

CoV-2 spike peptide pools (S1 + S2, 2 µg/mL respectively,

SinoBiological) for 24h at 37°C and 5% CO2. After 24 hours of

culture, Brefeldin A (1:1000, eBioscience) was added to the culture

for an additional 4 hours. Next, cells were harvested and stained

with a mixture of surface antibodies, including CD3-AF532, CD19-

Super Bright 436, CD16-eFlour 450 and CD56-BV711. Fc-receptor

block (Miltenyi Biotec) was added simultaneously to incubate in the
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dark at 4°C for 30 minutes. After the surface staining, cells were

fixed and permeabilized using BD Cytofix/Cytoperm Fixation and

Permeabilization Solution Kit, and stained with intracellular

antibody IFN-g-PE-Cy7 for 30 minutes at room temperature in

the dark. Stained cells were resuspended in FACS buffer and flow

cytometry was performed using a Cytek™ Northern

Lights instrument.
Statistical analysis

Data were analyzed using FlowJo 10.6.2. Statistical analyses

were performed in GraphPad Prism 9.2.0 software. Mann-Whitney

U test was used for the comparison of the frequencies of monocytes

and NK cell subsets between five time points. Wilcoxon matched-

pairs signed-ranks test was applied for paired comparisons of IFN-

g+ total NK and IFN-g+ NK subsets frequencies between different

time points. P values and all tests are two-sided. A P value of 0.05

was used to determine significance of differences. *P < 0.05; **P <

0.01; *** P < 0.001; **** P < 0.0001.
Frontiers in Immunology 03
Results

Alteration of monocyte frequencies and
subsets during CoronaVac vaccination

In this study, we longitudinally followed 62 healthcare workers

vaccinated with CoronaVac for over 300 days. This cohort has also

been previously described the longitudinal magnitude of antibody

response, as well as CD4+ and CD8+ T cell responses after

vaccination (9, 19, 20). Blood samples were collected at the

following five time points: pre-vaccination baseline (T1), 1 week

post the primary dose (T2), 2 weeks post the 2nd dose (T3), 6-8

months post the 2nd dose (T4), and 2 weeks post a 3rd booster dose

(T5). 260 PBMC samples were collected at these five time points

following three doses of CoronaVac vaccination (Figure 1A).

We first assess the effect of the CoronaVac vaccine on the

frequency of the total monocyte population. However, different

from the results from the ChAdOx1 nCoV-19 vaccine (21), we

observed that the frequency of total monocytes (CD14+) remained

stable during the vaccination (Figure S1A). Monocyte
B

C

A

FIGURE 1

Characterization of monocyte frequencies and subsets during CoronaVac vaccination. (A) Study design. T1: pre-vaccination baseline, T2: 1 week
post the primary dose, T3: 2 weeks post the 2nd dose, T4: 6-8 months post the 2nd dose, T5: 2 weeks post a 3rd booster dose. (B) Statistical analysis
of the frequency of polyclonal classical, intermediate and non-classical monocytes at five time points. (C) The median fluorescence intensity (MFI) of
HLA-DR expression on total monocytes at five time points. Histogram showing the HLA-DR expression on total monocytes at T1, T2, T3, and T5.
Each dot represents an individual subject. Bars in the figure represent the mean values with SEM. Mann-Whitney U test was used for the comparison
between time points (B, C). *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; ns, not significant.
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subpopulations can be identified as CD14+CD16- classical

monocytes, CD14+CD16+ intermediate monocytes and

CD14dimCD16+ non-classical monocytes (Figure S1B). When

evaluating the functional monocyte subpopulations, we found

that the CoronaVac vaccine induced an increased frequency of

CD14+CD16+ intermediate monocytes and CD14+CD16- classical

monocytes, together with a decreased frequency of CD14dimCD16+

non-classical monocytes (Figure 1B).
Expression of antigen presentation
molecule HLA-DR on monocytes during
CoronaVac vaccination

Antigen presentation by APCs such as monocytes to activate

effective T cell responses, which eventually leading to the

production of antibodies or long-term immunological memory, is

a crucial event in the vaccination process. There is evidence

indicating that high levels of HLA-DR expression on the surface

of monocytes associated with enhanced antigen presenting capacity

and immune activation, whereas the low levels associated with

immune suppression (22, 23). Therefore, we sought to evaluate the

effect of the CoronaVac vaccination on antigen presentation

capacity of monocytes by assessing the level of HLA-DR

expression. Expression of HLA-DR on CD14+ total monocyte was

significantly increased at all time points after vaccination (T2, T3,

T4, T5), compared with the pre-vaccination baseline (T1). Of note,

the expression of HLA-DR remained the relatively high level 6-8

months post the 2nd dose of vaccine (T4), with a continued increase

post the 3rd vaccination (T5) (Figure 1C). In addition, we found

that the expression of HLA-DR on classical, intermediate, and non-

classical monocytes also increased after vaccination, showing a

similar trend to that of total monocytes (Figure S1C). These data

suggested that the CoronaVac vaccine likely enhanced the antigen-

presenting ability of monocytes effectively.
Alteration of NK cell frequencies and
subsets during CoronaVac vaccination

The proportion of total NK cells in PBMCs remained rather

stable throughout the three-dose CoronaVac vaccination regimen,

resembling previous findings in mRNA vaccine (24) (Figure 2A).

NK cells can be further divided into six subsets featured by the

differential expression of CD56 and CD16 (16–18): (1)

CD56br i gh tCD16neg ; (2) CD56br i gh tCD16d im/b r i gh t ; (3)

CD56dimCD16neg; (4) CD56dimCD16dim; (5) CD56dimCD16bright;

(6) CD56negCD16bright (Figure S2A, Figure 2B). We thus

wondered whether the frequencies of NK cell subsets were altered

during the study period. To address this issue, we analyzed the

blood NK subsets distribution by multicolor flow cytometry. As

expected, CD56dimCD16bright NK cells accounted for the majority of

total NK cells (Figure 2C). However, we discovered the alteration in

the proportion of NK cell subsets, resulting in a preferential

stimulation of CD56dimCD16dim NK cells and CD56dimCD16neg
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NK cells, together with a decreased frequency of CD56dimCD16bright

NK cells. Specifically, the frequency of CD56dimCD16dim NK cells

exhibited with a marked increase shortly after the 1st and 2nd dose of

vaccination (T2, T3), and with a further increase post 3rd dose of

vaccine (T5), as compared to baseline (T1), whereas the frequency

of CD56dimCD16bright NK cells showed the opposite trend

(Figure 2D). Additionally, we did not find any significant changes

in the frequency of other NK cell subsets (Figure S2B). Post 1st and a

2nd dose of CoronaVac, we observed comparable CD56dimCD16neg

NK cells in vaccinees, while this frequency of CD56dimCD16neg NK

cells were significantly increased after 6-8 months and maintained

at similar level upon a 3rd boost of CoronaVac vaccine (Figure 2D).

The kinetics and the rapid alterations of CD56dimCD16neg,

CD56dimCD16dim NK and CD56dimCD16bright NK cells following

each vaccine administration support that NK cells are initiated

effectively soon after vaccination and may trigger the subsequent

vaccine responses. Next, we analyzed the expression of activation

markers on NK cells, including CD38, CD161, and HLA-DR. The

results showed that compared to baseline (T1), the proportion of

NK cells expressing CD38, CD161, and HLA-DR significantly

increased after vaccination (Figure 2E), indicating that the

inactivated CoronaVac vaccine has the ability to induce NK

cell activation.
IFN-g production by spike-stimulated
NK cells

Several findings support IFN-g production as the key response

that governs neutralizing antibody responses elicited by mRNA

vaccines (11, 12, 25). Given that NK cells are both robust and early

source of IFN-g producers during an immune response, we

evaluated IFN-g-producing NK cells after stimulating PBMC

with SARS-CoV-2 spike peptides. The frequency of IFN-g-
producing NK cells increased significantly post 1st dose of

vaccine (T2), with a further increase post 2nd dose of vaccine

(T3). However, 6-8 months after the 2nd vaccine dose (T4), the

frequency of IFN-g-producing NK cells exhibited a deceased trend

comparing to that of 2 weeks after the 2nd vaccination (T3).

Notwithstanding, the IFN-g-producing NK cells still retained at

a relative high level and higher than that of in the baseline

(Figure 3A). With that being observed, a 3rd booster of

CoronaVac reinvigorated the IFN-g-producing NK cells

efficiently. The average frequency of IFN-g-producing NK cells

reached 6.488 at 2 weeks post dose 3 (T5), a 4.1-fold higher than

that at T4 and 11.3-fold higher than that at the baseline T1

(Figure 3A) . Next , through the analys i s of NK cel l

subpopulations, we further found that CD56brightCD16neg NK

cells, CD56dimCD16neg NK cells and CD56dimCD16dim NK cells

constitute the main subsets that produce IFN-g cytokines

(Figure 3B). The dynamic trends of these three NK cell subsets

producing IFN-g at different time points after CoronaVac

vaccination resembled the total IFN-g+ NK cells (Figure 3C).

Collectively, these results indicate robust induction of IFN-g-
producing NK cells cell responses after vaccination.
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Discussion

Induction of effective adaptive immune responses including the

pathogen specific neutralizing antibodies and long-lived memory T

cell responses is the main goal of vaccine design, regardless the

platforms on which COVID-19 vaccines are based (26). A growing

body of evidence now indicating that the innate immune response is

critical to the orchestration of protective adaptive immune

responses after vaccination (21, 27). It is reported that after

vaccination with a single dose of ChAdOx1 nCoV-19, monocytes

exhibited enhanced antigen presentation function and cytokine/

chemokine profile, which is likely to facilitate adaptive memory

responses development (21). In addition, mRNA vaccines can also

stimulate modest innate immune responses after primary

immunization, while increase notably after the secondary

immunization (11, 17, 25). Together, these findings imply that

both adenoviral-based and mRNA-based vaccines have

heterologous immunological effects on innate responses.

However, how would vaccine-induced innate immune response
Frontiers in Immunology 05
evolve longitudinally has been, and remains, a major unknown for

inactivated vaccines. Given that monocytes and NK cells are two

main innate cell populations, both of which as important first-line

responders to viral infections, we here performed a longitudinal

assessment of the monocytes and NK cell responses, elicited by

CoronaVac inactivated vaccine in the circulation.

Monocytes can be phenotypically and functionally

characterized as classical (CD14+/CD16-), intermediate (CD14+/

CD16+), and non-classical (CD14low/CD16+) monocytes (28). They

played specific roles in the control and development of immune

processes. Classical monocytes participate in tissue repair,

inflammatory response, and induce adaptive immune response

(29, 30). In contrast, intermediate monocytes have been shown to

stimulate T cell proliferation and highly express MHC-II restricted

antigen presentation related genes (31, 32). Consistent with the

relevant results of the BNT162b1 mRNA vaccine research (17), we

found that CoronaVac vaccination significantly increased the

frequency of classical and intermediate monocytes. The

enhancement of these two subpopulations may imply that
B C

D

E

A

FIGURE 2

Alteration of NK cell frequencies and subsets during CoronaVac vaccination. (A) Statistical analysis of the frequency of polyclonal total NK cells in
PBMCs at five time points. (B) Representative FACS plots of six NK subsets defined by the density of CD56 and CD16. (C) The proportion of six NK
subsets (1: CD56brightCD16neg, 2: CD56brightCD16dim/bright, 3: CD56dimCD16neg, 4: CD56dimCD16dim, 5: CD56dimCD16bright, 6: CD56negCD16bright) in
total NK cells at five time points. (D) Longitudinal frequencies of polyclonal CD56dimCD16dim, CD56dimCD16bright and CD56dimCD16neg NK cells
measured by flow cytometry at five time points. (E) Statistical analysis of the frequency of CD38+, CD161+ and HLA-DR+ NK cells at five time points.
Each dot represents an individual subject. Bars in the figure represent the mean values with SEM. Mann-Whitney U test was applied for comparison
between time points (A, D, E). *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; ns, not significant.
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vaccination can induce strong antiviral responses and further

stimulate adaptive immune responses. According to the report,

CD14+ monocytes were increased up to 3 months after vaccination

with ChAdOx1 nCoV-19 (21). By contrast, the vaccination of three

doses of CoronaVac had little effect on the frequency of CD14+

monocytes. Next, we further discovered that, consistent with the

ChAdOx1 nCoV-19 vaccine (21), the inactivated vaccine also

markedly increased the expression level of HLA-DR in CD14+

monocytes, indicating that the immune activation and antigen

presentation abilities of monocytes were effectively enhanced over

a long period of time after CoronaVac vaccination.

NK cells are conventionally subdivided into the two well-

characterized functional CD56brightCD16- and CD56dimCD16+

subsets (33). The former subset is considered to be the cytokine-

producing NK-cell subset, while the latter subset is considered to be

the cytolytic NK-cell subset (33). However, this dichotomy has been

ended up with three additional different NK cell populations:

CD56brightCD16dim/bright, CD56dimCD16neg and CD56dimCD16dim

(18). CD56dimCD16dim NK subsets with lower maturity were

considered as the precursor cells of CD56dimCD16bright cells and

were functionally in the intermediate position between

CD56dimCD16neg cells and CD56dimCD16bright cells (16).

Understanding the evolution of NK cell subsets during

vaccination is helpful to fully understand the immune

mechanism of how the inactivated vaccine prevent virus

infection. Our results here revealed that the proportion of total
Frontiers in Immunology 06
NK (CD16+ CD56+) cell frequencies remained stable at all

timepoints, similar to the results observed in BNT162b2 mRNA

vaccine (24). However, our data showed an altered composition of

NK subpopula t ions wi th an increased f requency of

CD56dimCD16dim NK cells and a decreased frequency of

CD56dimCD16bright NK cells after the vaccination. The alteration

of CD56dimCD16dim and CD56dimCD16bright NK cells was similar

to that reported in BNT162b1 mRNA vaccine (17). A study on

COVID-19 convalescent patients revealed that the SARS-CoV-2

antigen peptide pools-activated IFN-g-producing NK cell counts

were correlated with the development of neutralizing antibodies, and

that synergistic humoral and cellular immune response could help the

effective eliminationof the virus (34). Inorder to further investigate the

functional characteristics of CoronaVac-induced CD56dimCD16dim

NKandCD56dimCD16negNKcells,wedetected the IFN-gproducedby
NK cell subsets. We found that the frequency of IFN-g-producing NK
cells increased after the 1st and 2nd vaccination, with an even more

significantly increase post the 3rd vaccination, indicating that the 3rd

booster dose of inactivated vaccine induced an enhanced innate

immune response. Due to the fact that CD56dimCD16dim NK cells

can produce more cytokines compared to CD56dimCD16bright NK

cells, we thus speculated that CD56dimCD16bright NK cells may

transform into the CD56dimCD16dim NK cells with higher levels of

IFN-g production after CoronaVac vaccination. These data, together,

indicates that the three-dose inactivated CoronaVac vaccination

elicited robust IFN-g-producing NK cell response.
B

C

A

FIGURE 3

IFN-g production by spike-stimulated NK cells. (A) Statistical analysis of the frequency of IFN-g production total NK cells stimulated with SARS-CoV-2
spike peptide pools at five time points. (B) Subset composition of IFN-g+ NK cells defined by CD16 and CD56. (C) Alteration of the frequency of IFN-
g+ CD56brightCD16neg NK, IFN-g+ CD56dimCD16neg NK and IFN-g+ CD56dimCD16dim NK cells at five time points. Each black dot represents an
individual subject. Statistics were calculated using Wilcoxon matched-pairs signed-ranks test for the comparison between time points (A, C) *, P <
0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; ns, not significant.
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This study has some limitations, including the relatively small

number of recruited individuals due to the difficulty of long-term

longitudinal follow-up. Additionally, we acknowledge that this work

was limited in the study of the very early innate immune responses,

since the samples were collected 1-2 weeks after each vaccine dose.

Nonetheless, our study revealed the alterations in the frequency and

function of monocytes and NK cell subpopulations at different time

points after inactivated vaccine administration, providing insights for

the evaluation of innate immune response during inactivated

CoronaVac vaccination. The advantage of this study is that, based

on the time points of sample collection, we can dynamically monitor

the activation of monocytes and NK cell subsets after each dose of the

inactivated vaccine to evaluate the effectiveness, robustness and

persistence of innate immune response after vaccination. In general,

the results of this study would provide necessary insights on innate

immune cells in the context of three dose inactivated CoronaVac

vaccination and supply immunological basis for the designment of

future vaccines against SARS-CoV-2 and other viruses.
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