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The gut is colonized by many commensal microorganisms, and the diversity and

metabolic patterns of microorganisms profoundly influence the intestinal health.

These microbial imbalances can lead to disorders such as inflammatory bowel

disease (IBD). Microorganisms produce byproducts that act as signaling

molecules, triggering the immune system in the gut mucosa and controlling

inflammation. For example, metabolites like short-chain fatty acids (SCFA) and

secondary bile acids can release inflammatory-mediated signals by binding to

specific receptors. These metabolites indirectly affect host health and intestinal

immunity by interacting with the intestinal epithelial and mucosal immune cells.

Moreover, Tryptophan-derived metabolites also play a role in governing the

immune response by binding to aromatic hydrocarbon receptors (AHR) located

on the intestinal mucosa, enhancing the intestinal epithelial barrier. Dietary-

derived indoles, which are synthetic precursors of AHR ligands, work together

with SCFA and secondary bile acids to reduce stress on the intestinal epithelium

and regulate inflammation. This review highlights the interaction between gut

microbial metabolites and the intestinal immune system, as well as the crosstalk

of dietary fiber intake in improving the host microbial metabolism and its

beneficial effects on the organism.
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1 Introduction

The intestine is widely recognized as the body’s foremost immune organ, with its role in

communicating with food, symbiotic microbial communities, and external pathogens. To

facilitate these vital connections, the gut has evolved into a highly dynamic structure with

the ability to regulate both innate and adaptive immunity (1). However, changes in diet and

lifestyle have caused extraordinary rates of gastrointestinal health issues, increasing the

incidence of inflammatory bowel disease (IBD) worldwide (2–4).
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The host and intestinal flora maintain a reciprocal link when the

organism is stable. However, achieving this balance between the

commensal microbiota and mucosal immunity can be a challenging

task. The microbiota mainly resides in the colon, upper digestive

tract, saliva, and throat (5–7). Moreover, gut microbes play a vital

role in initiating immunological activation due to their abundance

when compared to human cells. The intestinal epithelium acts as a

physical and chemical barrier that protects the intestinal mucosa

and surrounding organs from harmful microorganisms. However,

prolonged interaction between the microorganisms and the

intestine may cause IBD. IBD is a chronic, recurrent

inflammatory condition caused by various factors such as

heredity and environmental factors. The pathology of IBD, with

its fluctuating periods of deterioration and remission (8, 9), presents

a significant challenge in developing specific treatments against the

disease (10).

There have been several studies confirming the impact of the

gut microbes on IBD (11, 12). The interaction between microbial-

derived metabolites, the intestinal mucosa, and diet plays a crucial

role in preventing and treating inflammatory diseases and

promoting a balanced host immunity (13–15). These microbial-

derived metabolites, also known as gut microbial metabolites, act as

messengers, providing information to the host about the

microbiome composition, the presence of pathogens, or other

environmental challenges (16). Moreover, recent research has

highlighted the significant influence of diet on the composition of

the gut microbiota, ultimately affecting host health by regulating

intestinal permeability and modulating both the innate and

adaptive immune systems (17).

This review aims to detail the interactions between microbial

metabolites and the intestinal mucosa, and highlight the

implications of these interactions on the human immune system.

Specifically, we will examine how dietary habits can promote the

production of microbial metabolites, thus preventing intestinal

inflammation. Additionally, this article aims to provide insights

into basic research in this field.
2 Gut microbiota and host immunity

The gut microbiota is a diverse ecosystem comprising various

microorganisms, such as bacteria, archaea, phages, eukaryotic

viruses, and fungi (18). While bacteria have received significant

attention, it is worth noting that fungal communities also play a

crucial role in this ecosystem. Although they constitute only around

1% of the human gut, fungi have been found to be actively involved

in the development of diseases and can significantly influence the

host’s immune response (19). It is interesting to note that more than

1000 bacteria that colonize the gastrointestinal tract belong to the

Firmicutes and Bacteroidetes phyla, which make up approximately

90% of the entire microbial community (20). The mechanisms by

which the intestinal mucosa adapts to the various flora have not

been extensively explored, but it is already highly adaptive. The

developmental processes of the immune system are driven by

microorganisms, and in turn, the immune system influences the

composition of the gut microbiota, and changes in microorganisms
Frontiers in Immunology 02
indirectly affect host immunity (21, 22). Infants have very little

intestinal flora before birth (23), and after birth the microorganisms

gradually colonise the intestines due to the influence of the mother

and the surrounding environment (24), and ultimately the

microorganisms reach a steady state in the host, which affects the

health of the host (25–27).

Early in life, specific gut bacteria work in tandem with immune

tissue surrounding the intestinal mucosa (28). Failure to form an

appropriate microbiota at this stage can weaken the immune

system, potentially leading to adverse outcomes later in life.

Research has demonstrated that gut microbes can affect the

recruitment of immune cells and elicit inflammation, as seen in

IBD (29, 30). Thus, the maintenance of intestinal immune

homeostasis largely relies on the interactions between the

microbiota and the intestinal epithelium. Larsen et al. conducted

a study which indicated that treatment with lysozyme from the

basophilic Acremonium alcalophilum during enteritis suppressed

inflammation and reversed inflammation-induced changes in the

intestinal microbiota. However, this protection was diminished in

mice with depleted microbiota treated with antibiotics, suggesting a

dependence on the microbiota for lysozyme’s anti-inflammatory

impact (31). Additionally, Wu et al. found that Lactobacillus reuteri

treatment in TNF (Tumor necrosis factor)-induced intestinal

inflammation led to a decrease in TNF production, repaired gut

damage by activating the Wnt/b-catenin signaling pathway, and

increased intestinal epithelial proliferation and differentiation,

thereby strengthening the intestinal mucosal barrier against

inflammation (32).

Recent studies in mice have shown that the fatty acid oxidation

pathway is enhanced during a 24-hour fasting period, resulting in

improved activity of intestinal stem cells (33). Fasting cycles have

been found to alleviate intestinal inflammation and increase gut

stem cells and probiotics, leading to an improvement in the

inflammation-related phenotype of IBD (34). The therapeutic

effect of probiotics on intestinal inflammation has been confirmed

by multiple studies (35, 36). For instance, Xiang et al. demonstrated

in a mouse model of DSS (dextran sodium sulfate)-induced enteritis

that treatment with Bifidobacterium breve strains H4-2 and H9-3

significantly ameliorated colon length shortening, attenuated

inflammatory damage to the colon, and restored the number of

mucus-secreting goblet cells (37). Another study investigated the

effects of Bifidobacterium adolescentis treatment in mice with colitis

and found that gavage administration of B. adolescentis induced the

secretion of anti-inflammatory factors while reducing pro-

inflammatory factors, effectively al leviating intestinal

inflammation compared to the untreated mice with colitis.

Furthermore, 16S rRNA sequencing of mouse feces revealed a

decrease in the abundance of harmful pathogens Akkermansia

and Escherichia-shigella in the B. adolescentis-treated mice (38).

The interaction between the host and gut microbes is essential

for establishing immune tolerance and preventing harmful foreign

microbes (39). An essential component of this interaction is the

mucus layer produced by intestinal epithelial cells, which acts as a

physical barrier separating the intestinal lumen from the underlying

tissue (40). This mucus barrier regulates the immunogenicity of

intestinal antigens and supports the anti-inflammatory properties of
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dendritic cells, contributing to immune homeostasis (41).

Wimonrat et al. found that gavage administration of Candida

resulted in more severe intestinal leakage, higher serum endotoxin

levels, and dysbiosis of the intestinal microbiota in mice.

Additionally, Candida administration significantly increased

serum levels of pro-inflammatory factors IL-6 (Interleukin-6) and

TNF-a, and exacerbated intestinal inflammatory damage, which

were effectively mitigated by administration of Lactobacillus

rhamnosus L34 (42). Moreover, a study demonstrated that

colonisation of Escherichia coli 541-15 in mice with enterocolitis

effectively attenuated enterocolitis injury, decreased intestinal

permeability, reduced centriole clusters in the lamina propria and

epithelium, and reduced the expression of pro-inflammatory

markers, lipocalin-2 and myeloperoxidase, as found in the faeces

of mice colonised with E. coli 541-15. This bacterium was able to

prevent colitis through inducing IL-10 (Interleukin-10) production

in targeted intestinal epithelial CX3CR1+ macrophages (43). Casitas

B-lineage lymphoma (c-Cbl) is deficient in bone marrow-derived

dendritic cells, mice with dendritic cell-specific deletion of c-Cbl

exhibit increased susceptibility to DSS-induced colitis (44).

Furthermore, activation of c-Cbl by intestinal fungus leads to

enhanced resistance against colitis. The protective effects of

commensal fungi can be attributed to c-Cbl-mediated induction

of IL-10 production by dendritic cells. The role of Secretory

immunoglobulin A (SIgA) in regulating intestinal fungal

symbiosis and providing protection to patients with ulcerative

colitis has been demonstrated (45). SIgA, an antifungal antibody

produced in the gut, functions by encapsulating virulence-

associated fungal morphotypes. This protective mechanism helps

maintain a balanced fungal community within the intestines and

contributes to the overall regulation of intestinal health in patients

with ulcerative colitis.

Wang et al. discovered that zearalenone (ZEN), a fungal

mycotoxin produced by Fusarium and known to cause

reproductive immunotoxicity in farm animals while also posing a

threat to human health through the food chain. The researchers

found that recombinant Bacillus subtilis 168-expressing ZEN-

degrading enzyme effectively inhibits ZEN. This inhibition leads

to an increase in the production of the microbial metabolite called

butyrate and a decrease in lipopolysaccharide (LPS) production. As

a result, the ZEN-induced intestinal barrier toxicity is counteracted,

thereby enhancing the defence mechanisms of the reproductive

immunity axis (46). Wu et al. discovered that dietary

supplementation of chickens with Enteromorpha prolifera (EP)

and yeast glycoprotein (YG) not only increased the concentration

of short-chain fatty acids but also elevated the abundance of

beneficial bacteria in the chicken cecum. Furthermore, the

researchers observed an increase in dopamine concentration

specifically in the EP+YG-treated group. This finding suggests

that EP + YG modulates metabolites associated with

neurotransmitters and immune responses, indicating a potential

role in enhancing both neurological and immunological

functions (47).

In conclusion, intestinal microorganisms are able to have a

positive impact by interacting with the intestinal mucosa as well as

intestinal immune cells, with probiotics strengthening the host’s
Frontiers in Immunology 03
intestinal immune function, while harmful pathogens enter the

surrounding tissues or bloodstream through the leaky gut and have

a negative impact on the organism.
3 Gut microbial metabolites

Gut microbe-derived metabolites play a crucial role as

mediators in affecting the growth and operation of the immune

system. Additionally, these metabolites interact with intestinal

immune cells to mediate immune homeostasis in the gut (48).

Small molecule metabolites of a microbial origin have been

discovered over the past ten years. These metabolites can be

categorized into three main categories: Second, there are

metabolites produced by the diet. Third, there are metabolites

that are produced by the body and then modified by intestinal

bacteria. Finally, there are metabolites that are formed

autonomously by intestinal bacteria (see Figure 1) (49).
3.1 Short-chain fatty acid

3.1.1 Dietary fiber catabolism
Dietary fiber can be partially broken down by microorganisms

in the large intestine but is not digested and absorbed in the small

intestine. In the complex ecosystem of the gut, these

microorganisms convert the sugars in food into metabolites that

can have different health effects (50). The human digestive tract

lacks the enzymes necessary to break down dietary fiber and

polysaccharides, so it relies on specific bacteria in the colon to

perform this task. The main bacterial groups responsible for

breaking down dietary fiber are the thick-walled and

actinomycete phyla, and only a few enzymes are involved in

initiating the degradation process (51).

The definition of dietary fiber, as delineated by the Codex

Alimentarius, characterizes it as a polymer derived from natural

carbohydrates inherent in cereals and fruits or acquired through

physicochemical processes involving raw materials (52, 53). A

distinctive feature of dietary fiber lies in its solubility, playing a

pivotal role in the formation of intestinal gels. Conversely, cellulose,

hemicellulose, and lignin are classified as insoluble dietary fibers.

For example, many soluble dietary fibers (pectin and guar gum) can

be found in plant cell walls. They are the main source of energy for

the microorganisms of the gastrointestinal tract. Numerous soluble

dietary fibers, such as pectin and guar gum, are present within plant

cell walls.

Dietary fibre intake affects the composition of microorganisms to

some extent, which is related to the type of food consumed, and this

change affects the production of metabolites by microorganisms (54).

Meals that have a high carbohydrate content but low dietary fiber

content are linked to a higher risk of inflammation. On the other

hand, people on a predominantly high dietary fiber diet have a much

a lower risk of developing inflammatory diseases (55). Furthermore, it

has been demonstrated that dietary fiber has a positive impact on

maintaining the immune system of the intestine. The protective effect

of dietary fiber is mainly attributed to the short-chaini-inflammatory
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effects by inhibit fatty acids (SCFA) produced by fermentation, which

are known to act on activating or inhibiting inflammation (Figure 2)

(52). It is important to note that inflammation and autoimmune

illness can result from dysfunction of the intestinal barrier (56).

SCFA are created when components like inulin and wheat are

fermented by bacteria, and resistant starch is the main raw material

for butyrate production (10). Bacteroidetes create acetate and

propionate, while Firmicutes control the formation of butyrate.

Lactic acid is produced by Bifidobacterium, a type of actinomyces,

during the breakdown of dietary fiber. Butyrate, an anti-

inflammatory substance, has a powerful ability to reduce the

production of pro-inflammatory cytokines (57). Additionally,

butyrate enhances intestinal integrity and barrier function by

inducing the relocation of ZO-1 (Zonula Occludens-1) and

occludin in the cell membrane and increasing the expression of

claudin-1 (tight junction protein 1) (58).

3.1.2 SCFA and receptors
Of the SCFA produced by the fermentation of dietary fiber,

acetate, propionate, and butyrate are the predominant SCFA,

accounting for approximately 95% of the total SCFA

concentration (59). These SCFA serve as a source of energy for

colon cells and also play a crucial role in regulating cholesterol

synthesis and glucose metabolism (60). Moreover, SCFA have been

found to improve intestinal barrier function through various

mechanisms such as inhibiting pathogen development, reducing

intestinal inflammation, and modulating the structure of Tight
Frontiers in Immunology 04
junctions (TJ) (61, 62). SCFA facilitates the formation of TJ

proteins and enhances the intestinal epithelial barrier function (63).

SCFA is detected by a broad collection of human genes that

encode protein receptors called GPCRs (G protein-coupled

receptors). These receptors include GPR41 (FFAR3), GPR42,

GPR43 (FFAR2), GPR109A (HCAR2), GPR164 (OR51E1), and

OR51E2 (64). The GPCR family of receptors inhibits the

activation of NF-kB in immune cells and intestinal epithelial cells

(65). Among the GPCRs, FFAR2 receptors are involved in the b-
inhibitor-protein-2 mediated signalling pathway and generate anti-

inflammatory effects by inhibiting NF-kB (66). In addition, GPR41

and GPR43 play a crucial role in monitoring immunity to

microorganisms in the intestinal mucosa, while GPR109A, which

is a tumor suppressor, inhibits the activation of NF-kB (67). TNF-a
levels or a reduction in the presence of butyric acid-producing

bacteria could be the result of the downregulation of MCT1

(Monocarboxylate transporter 1) expression in the mucosa of

patients with ulcerative colitis (68). This indicates that butyric

acid reduces GPR109A-mediated expression of IL-8 (Interleukin-

8) (69). Moreover, GPR43 regulates immune cells, and NLRP3

(NOD-like receptor thermal protein domain associated protein 3)

inflammatory vesicles are activated through GPR41 and GPR43,

resulting in IL-1b (interleukin-1b) and IL-18 (interleukin-18)

secretion that influences inflammation (70).

Neutrophils, which are a type of immune cell, are known for

their high levels of FFAR2 expression (71). In the context of IBD,

neutrophils play a role in its pathogenesis. They can migrate to the
A

B

FIGURE 1

Production of microbial metabolites in the gut. (A) Obtained from food. Microorganisms in the colon and cecum produce short-chain fatty acids by
fermentation of undigested dietary fibre. Tryptophan-derived metabolites are derived from the direct conversion of tryptophan by gut microbes.
(B) Synthesis of intestinal bacteria from scratch. Primary bile acids are produced in the liver, transported to the gut and then produced as secondary
bile acids by the action of gut microbes.
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lamina propria and epithelium to eliminate antigens, thus making a

contribution to intestinal homeostasis and the recovery from IBD

(10). The maintenance of immune homeostasis requires the

regulation of FFAR2, which is strongly expressed in colonic

epithelial cells and T regulatory (Treg) cells, by SCFA (72).

The role of SCFA in regulating glucose metabolism disorders is

also noteworthy. A study conducted on diabetic patients revealed

that long-term infusion of propionate into the colon was successful

in improving the weight of overweight adults and preventing

complications associated with insulin resistance (73).

Furthermore, the GPR43-mediated AMP-activated protein kinase

(AMPK) signaling pathway was found to increase AKT

(phosphokinase B) phosphorylation in specific hepatocytes, thus

influencing diabetes management (74).

The main source of energy is butyrate, which controls

inflammation and gene expression (50). A study has shown that

butyrate is beneficial to the lumen of the intestine at low

concentrations, while too high concentrations can damage the

intestinal barrier (75). Excessive concentrations of SCFA have

been found to cause mucosal damage in rats, but this damage

disappears with the maturation of the mucosa (76). It has been

proposed that high butyrate concentrations are harmful for the

formation of TJ and the intestinal barrier (77), whereas low butyrate

concentrations in Caco-2 cells (human colorectal adenocarcinoma

cells) make it easier for TJ to form during the AMPK-mediated

processes (62). The mechanism by which butyrate affects

inflammation involves histone acetylation (78). Butyrate is the
Frontiers in Immunology 05
most effective inhibitor of histone deacetylase (HDAC), which

also promotes the transcription of specific genes that support

intestinal homeostasis in the colon (79). Butyrate is taken up by

MCT1 and SMCT1 (Sodium-coupled monocarboxylate transporter

1) at the top of the intestinal epithelium or immune cells through

non-ionic diffusion (80).

SCFA mediate the inflammatory processes by interacting with

receptors. However, the effects of butyrate on mucosal homeostasis

can vary and are subject to context-dependent regulation. For

example, low concentrations of butyrate promote the formation

of TJ through AMPK-mediated processes. Conversely, studies have

shown high levels of butyrate can damage the intestinal barrier,

possibly by inhibiting the formation of tight junctions. Additionally,

it has been found that butyrate can regulate gene expression by

inhibiting HDAC. Overall, the interaction between SCFA and

mucosal immunity is complex and deserves further investigation

to gain insights into health and disease.
3.2 Bile acids

3.2.1 Bile acid metabolism
Bile acids (BA) are steroid molecules produced by cholesterol in

liver cells (81). These BA molecules are transported in the small

intestine and undergo uncoupling by microbial bile salt hydrolase

(BSH). Once uncoupled, the BA is reabsorbed in the ileum through

an apical sodium-dependent BA transporter protein (82). The
FIGURE 2

The role of intestinal microbial metabolites in the intestinal immune barrier. (1) Low ester pectin, a product of dietary fiber, binds to Toll like receptor
2 (TLR2) and suppresses TLR2 receptor activation, hence lowering NF-kB (Nuclear transcription factor-kB) activity. SCFA are produced by gut
microbes in response to dietary fiber stimulation, and these fatty acids stop histone deacetylases and pro-inflammatory mediators caused by NF-kB.
(2) Intestinal microbial-derived tryptophan metabolites, indoles maintain normal intestinal epithelial function via the pregnane X receptor (PXR), and
tryptophan metabolites are AHR ligands in innate lymphocytes that act with the AHR via transcription factors to stimulate IL-22 (Interleukin-22)
expression. Antimicrobial peptides promote expression through IL-22 and enhance mucin proliferation in goblet cells. (3) Bacterial bile acid
metabolites affect intestinal immunity in different ways, with secondary bile acids binding to FXR (Farnesoid X receptor) to protect intestinal integrity.
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conversion of primary BA to secondary BA primarily occurs

through the 7a-hydroxylation reaction, which is catalyzed by

bacteria like Clostridium perfringens and eubacteria (83, 84).

BA metabolism involves two main pathways, the ‘classical’ and

‘alternative’ pathways (85). In the ‘classical’ pathway, cholesterol-

7a-hydroxylase (CYP7A1) converts cholesterol to 7a-OH-

cholesterol. In the ‘alternative ’ pathway, cholesterol is

hydroxylated by sterol 27 hydroxylase (CYP27A1) (86). The main

mode of microbial BA conversion in humans is the conversion of

primary BA to secondary BA via 7a-hydroxylation reactions (87).

These pathways ultimately produce two primary BAs: bile acid and

Chenodeoxycholic acid (88). BA and Chenodeoxycholic acid

further form conjugated bile salts by combining with glycine or

taurine (89). Ultimately BAs affect host immunity, as shown in

Figure 3 (90).

BA bound to glycine or taurine is amphiphilic, meaning that it

has both hydrophilic and hydrophobic regions. This quality helps to

increase the susceptibility of dietary triglycerides to lipase and

thereby promotes efficient fat absorption in the small intestine

(91). Although a minor portion of the BA enters the colon, where

it is digested and regulated by intestinal microbes for BA

production, the majority of the BA is absorbed in the ileum and

circulates to the liver (92). Importantly, the daily BA production in

a healthy human body is diet-dependent, and BA levels normally
Frontiers in Immunology 06
remain stable between 200-600 mg (93). Despite this, the link

between BA and certain diseases has led to increased attention on

gut microbe-mediated BA metabolism (94).

Many bacteria play a role in the uncoupling of BA, but BSH-

encoding species are limited to lactobacillus, bifidobacterium,

Bacteroides, and clostridium (95). The abundance of BSH in

gram-positive bacteria is particularly noteworthy. The close

correlation between gut microbial BA metabolism and

gastrointestinal health has gained significant research attention.

Therefore, scholarly interest to investigate the connection between

microbes and BA will contribute to a better understanding of liver

and colonic diseases.

3.2.2 Secondary BA and receptors
FXR, the vitamin D receptor (VDR), and PXR are powerful

secondary BA receptors that can bind secondary BA. The activation

of microbial G protein-coupled BA receptors 1 (TGR5) by

secondary BA has been found to be involved in the regulation of

BA synthesis and metabolism (96). Although TGR5 is expressed in

a variety of cells, it is mainly found in macrophages and monocytes

(97, 98), and it is activated by bacterial antigens (99). In the absence

of the BA-activated receptors FXR, TGR5, PXR, and VDR, the

intestinal barrier becomes compromised and disturbed, allowing

the translocation of bacteria (100). Thus, investigating the interplay
FIGURE 3

BA metabolism affects host immunity. (1) In the classical pathway, CYP7A1 converts cholesterol to 7a-hydroxy-cholesterol, which is then further
converted to hydroxy-4-cholesten-3-one through the action of Steroid dehydrogenase. Another enzyme, CYP8B1, hydroxylates hydroxy-4-
cholesten-3-one to produce CA. CA binds to taurine, resulting in the formation of TCA. (2) In the alternative pathway, cholesterol is converted to
27-hydroxycholesterol by CYP27A1, followed by the production of CDCA through the action of CYP7B1. CDCA then binds to glycine to form
GCDCA. Both TCA and GCDCA are transported through the bile to the intestine, where they undergo dehydroxylation and deamination by
microorganisms. This microbial action leads to the production of secondary bile acids, LCA, and DCA. LCA and DCA interact with TGR5 and FXR
present on macrophages and dendritic cells, leading to the inhibition of pro-inflammatory factor secretion. Furthermore, these bile acids play a
crucial role in maintaining intestinal epithelial barrier function and exert immunoprotective effects. CYP8B1, sterol 12a-hydroxylase; CA, cholic acid;
CDCA, chenodeoxycholic acid; TCA, taurocholic acid; GCDCA, glycochenodeoxycholic acid; LCA, lithocholic acid; DCA, deoxycholic acid.
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between the BA-activated receptors and bacteria may provide

insights into intestinal permeability and dysfunction, as well as

immunological and metabolic diseases.

The BA metabolism of FXR involves the inhibitory effect of BA

synthesis inhibition, which is mediated by CYP7A1. This step takes

place in the hepatocellular bile salt export pump and induces small

heterodimeric chaperone (SHP) expression (101). SHP inactivates

liver homologous receptor-1 (LRH-1), which represses CYP7A1

expression. Additionally, LRH-1 can inhibit CYP7A1 expression

(102). Thus, the interaction between these molecules plays a crucial

role in BA metabolism. Moreover, gut immune responses driven by

gut microbes are modulated by FXR in response to inflammation.

These immune responses may be associated with dysbiosis or

dysregulation of BA metabolism (103). Further investigation into

the relationship between bile acid metabolism and gut immune

responses may provide insights into the mechanisms underlying

these complex processes.

It has been shown that PXR acts as a sensor for LCA and can

reduce the gene expression of LCA to minimize damage to the host,

which is necessary to balance the intestinal barrier and

inflammatory homeostasis (104). Patients suffering from intestinal

inflammation exhibit lower levels of bile salts as well as lower

secondary and higher BA levels in the organism compared to

normal subjects (105). To further understand the impact of

secondary BA deficiency on enterocolitis, experiments conducted

by Sidhartha R et al. demonstrated that patients with ulcerative

colitis have significantly lower expression of BA-inducible genes,

these genes are responsible for the critical 7a-hydroxylation
reaction, which converts primary BA to secondary BA (106).

Additionally, Wang et al. conducted a study on the effect of a

high-fat diet (HFD) on colitis in wild-type mice. They found that

the HFD increased levels of goose deoxycholic acid, leading to

macrophage activation and the initiation of colonic inflammation

(107). In a mouse model of colitis, the mRNA expression of FXR, a

key regulator of BA metabolism, was found to be downregulated in

the intestinal mucosa of mice with an inflammatory phenotype.

This demonstrates a potential association between FXR and the

onset of IBD (99). Moreover, the deletion of FXR in mice prevents

remission of enteritis due to the accumulation of inflammatory

cells, as well as the stimulatory effect of NF-kB on intestinal

microbial-lipopolysaccharide (108).

Gut microbes can activate TGR5, which impacts the expression

of enteroendocrine cells involved in immune regulation and anti-

inflammation (109). This, in turn, directly influences macrophage

polarization and the subsequent inflammatory response. Activation

of TGR5 also leads to the production of the hormone glucagon-like

peptide-1 (GLP-1) and controls glucose metabolism. Once TGR5 is

activated, BA suppress the production of inflammatory cytokines

such as IL-1 (Interleukin-1), IL-6, and TNF-a (110). The pro-

inflammatory properties of TGR5 can be modulated by BSH-

containing bacteria that cause the dissociation of taurine or

glycine from BA (52).Additionally, both vitamin D deficiency and

down-regulation of VDR expression are risk factors for the

increased incidence of intestinal inflammation (111).
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3.3 Tryptophan-derived metabolites

3.3.1 Tryptophan catabolism
Tryptophan, an essential amino acid, is naturally found in a

variety of foods including poultry, milk, tuna, fish, cheese, bread,

oats, plums, chocolate, and peanuts. Upon ingestion, tryptophan

undergoes catabolism through three distinct pathways: the indole

pathway, created by microorganisms in the intestine; the 5-

hydroxytryptamine pathway, produced by chromophores in the

intestine; and the kynurenine pathway, produced by immune cells

and the intestinal mucosa (112).

In mammalian cells, the kynurenine pathway is initiated via

tryptophan-2,3-dioxygenase (TDO) and indoleamine 2,3-

dioxygenase (IDO1) (113). IDO1 is abundantly expressed in the

gut and is connected to immune control, making it the most

important tryptophan metabolizing enzyme for immune function

(114). IDO1 activation is induced by the body’s inflammatory

response and the release of inflammatory cytokines (115). This

activation acts to prevent excessive inflammatory responses (116).

Upon initiating the kynurenine synthesis pathway, IDO1 and TDO

produce formylkynurenine, which is then converted to kynurenine

by kynurenine formamidase (112). Kynurenine itself can be further

transformed by kynurenine transaminase into kynurenic acid, by

kynureninase into anthranilic acid, or by kynurenine

monooxygenase into 3-hydroxykynurenine (3-HK) (112).

Impaired canine urine pathways have been found to be

associated with immune disorders (115). The conversion of

tryptophan to serotonin is catalyzed by the enzyme tryptophan

hydroxylase (TPH), followed by the conversion of 5-

hydroxytryptophan to serotonin by 5-hydroxytryptophan

decarboxylase, the specific mechanism is shown in the Figure 4

(117). Monoamine oxidase (MAO) then changes serotonin to 5-

hydroxyindoleacetaldehyde, which is further converted to 5-

hydroxyindoleacetic acid (118).

The gut microbiota can convert tryptophan into various

metabolites, including indole, tryptamine, indole ethanol, indole

propionic acid, indole lactic acid, indole acetic acid, faecal odorant,

indole aldehyde, and indole acrylic acid (119). The production of

these metabolites is dependent on the presence of specific catalytic

enzymes unique to different bacterial species. Bacteria interact with

each other to generate these metabolites, as demonstrated in Table 1

(135, 138).

Bacteria such as Enterococcus faecalis and E. coli have the ability

to convert tryptophan into indole, which is essential for biofilm

formation and can also regulate bacterial motility. Additionally,

these bacteria can generate resistance to non-indole-producing

species (139). In the intestines, the conversion of tryptophan by

intestinal bacteria results in the production of tryptamine, indole

pyruvic acid, indole-3-glyoxylic acid, and indole-3-lactic acid (140).

Specifically, indole can be produced by thick-walled phyla like

Enterobacter aerogenes and E. coli, as well as some members of

the phylum Bacteroidetes (52).

Tryptophan metabolites produced by bacteria show limited

affinity for AHR. Among them, indole, fecal odorant, tryptamine,
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indolepropionic acid (IPA), and indole-3-acetamide have the

highest affinity (141). Reduced dietary intake of tryptophan leads

an increased susceptibility of mice to adverse effects of

inflammation induction (142). Furthermore, Tryptophan also

exhibi ts regulatory funct ions in organ development ,

neurophysiology, and metabolic disorders (143). Tryptophan

metabolites play an important role in host immunoprotection as

shown in Figure 5 (144).

3.3.2 Indoles and AHR
The tryptophan-AHR route is a mechanism in which indole can

bind to and activate AHR. AHR is a ligand-activated transcription

factor that functions as a receptor for many environmental toxins in

the immune system (145).

AHR plays a crucial role in immunity by interacting with

various regulatory and signaling proteins, such as PAS

heterodimerization partners, AHR nuclear translocator (ARNT),

and chaperone and immunophilin-like proteins, including Heat

Shock Protein-90 (HSP90) and AHR-Interacting Protein p23 (AIP)

(146). Upon binding with ligands in the cytoplasm, AHR undergoes

a conformational change which results in the exposure of a nuclear

localization signal (NLS). This change leads to the release of HSP90

from the complex and allows the receptor to translocate to the

nucleus, where it forms a heterodimer with ARNT (147). This
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activated heterodimer then binds to the xenobiotic response

element (XRE) and alters expression of genes controlled by

enhancer XREs. Once in the nucleus, AHR quickly forms a

heterodimer with ARNT and jointly regulates the expression of

downstream target genes, such as the drug metabolizing enzyme

cytochrome oxidase 450 1A1 (CYP1A1) (Figure 6) (145).

Tryptophan is produced through several metabolic pathways

and acts as a ligand for AHR. When these ligands bind to AHR, they

can activate downstream target gene expression, such as the

expression of IL-22 and IL-17 (Interleukin-17) (112).

The AHR is a vital regulatory protein that interacts with various

chaperone and immunophilin-like proteins to carry out its activity

(145). Once bound to a ligand, changes in the NLS activate the

AHR, prompting it to enter the nucleus. There, the activated AHR

binds to ARNT to form a heterodimer that controls the expression

of downstream target genes (148). Studies conducted in mice have

shown that macrophages from AHR-deficient animals express

lower levels of IL-10, while macrophages from AHR-

overexpressing mice produce much higher levels of IL-10 (149).

Activation of the tryptophan-AHR pathway is essential for

maintaining normal function of the intestinal mucosal barrier. In

colitis induced by DSS, expression of key TJ proteins, such as ZO-1,

claudin-1, and occludin, is dramatically reduced. However,

treatment with the endogenous AHR ligand, 6-formylindolo[3,2-
FIGURE 4

Synthesis and degradation of serotonin in enterochromaffin cells. Serotonin (5-HT) is synthesized by enterochromaffin cells (purple) in the GI tract
from L-tryptophan via the rate-limiting enzyme TPH-1.L-5-hydroxytryptophan is then converted into active 5-HT by L-aromatic acid decarboxylase
(L-AADC) and stored in enterochromaffin granules. Apically, enterochromaffin cells are stimulated to secrete 5-HT by GPCR in the colon and by
glucose-dependent in-sulinotropic peptide-1 in the small intestine, while 5-HT4R inhibits 5-HT release. Basolaterally, EC cells express muscarinic,
adrenergic, and 5-HT3 receptors, activation of which leads to 5-HT release, while activation of GABAA, nicotinic, somatostatin-R2,and 5-HT4R
inhibit 5-HT release. enterochromaffin cells or enterocytes (orange) can uptake 5-HT via the serotonin reuptake transporter (SERT)and degrade 5-HT
to 5-hydroxindole acetic acid via enzyme MAO (R, receptors).
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FIGURE 5

Effects of tryptophan-derived metabolites on host immunity. Tryptophan-derived metabolites can be produced through the direct conversion of
tryptophan by gut microbes. One such metabolite, 3-HAA, inhibits the PI3K/AKT/mTOR and NF-kB signaling pathways, leading to reduced
production of pro-inflammatory factors IL-6 and TNF-a in macrophages. Another metabolite, IPA, activates PXR and AHR, playing a crucial role in
regulating intestinal barrier function. Moreover, tryptophan-derived metabolites also impact T cells by releasing TGFb, IL-10, and IL-35, which
contribute to the suppression of tissue inflammation. Indole, another metabolite, modulates GLP-1 secretion in colonic enteroendocrine cells,
thereby stimulating insulin secretion from pancreatic b cells. 3-HAA, 3-Hydroxyanthranilic acid. TGFb, Transforming growth factor-b.
TABLE 1 Intestinal microflora metabolites and host effects.

Family Metabolites Diet Effects References

Rumenococcus
Rosebacter Shiba

Acetate Foods containing fibre
•Signalling molecules

•Source of energy for colon cells
(25, 120)

Megasphaera elsdenii,
Veillonella spp

Propionate Foods containing fibre
• Immunomodulation

• Maintenance of vascular function
(121, 122)

E. hallii, Eubacterium rectale Butyrate Foods containing fibre • Regulation of immune cell function (123, 124)

Eubacterium
Fusobacterium

BA Solid alcoholic foods
•Promotes lipid absorption

•Surfactants
(125, 126)

Escherichia coli
Proteus

Tryptamine High protein foods •Inflammatory regulators (127, 128)

Escherichia coli, Paracolobactrum coliforme Indole Fibre-rich foods
• Immunomodulation
• Signaling molecule

(113, 128)

Clostridium
Peptostreptococcus

Indolepropionic acid
(IPA)

Fibre-rich foods • Treatment of metabolic disorders (127)

Clostridium
Bacteroides

Indoleacetic acid (IAA) Dietary tryptophan
• Regulates intestinal homeostasis

• Suppressing Inflammation
(129–131)

Lactobacillus,
Leuconostoc, and

Weissella

Branched-chain amino acids
(BCAA)

Regular diet • Signalling molecules (132, 133)

Salmonella LPS Western-style eating • Inflammatory activation related (134)

Pseudomonas
fluorescens

‘Kynurenines’
(kynurenine and its

derivatives)
Regular diet

• Involvement in the immune response
• Regulates the gastrointestinal tract

(135, 136)

Turicibacter spp Serotonin Dietary intake • Promotes energy absorption and storage (135, 137)
F
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b]carbazole (FICZ), significantly elevates the expression of these TJ

proteins (150). FICZ is a tryptophan photochemical product that

activates AHR and promotes the synthesis of transforming growth

factor (TGF), IL-6, and IL-23 (Interleukin-23). These cytokines

enhance the release of IL-22, which plays a critical role in reducing

inflammation and differentiation of Th17 cells (145). Inflammatory

mediators, such as interferon (IFN) and TNF-a, which are linked to
the etiology of IBD, have an impact on the function of TJ (151).

However, activation of the tryptophan-AHR pathway prevents the

activation of myosin light chain kinase (MLCK) and

phosphorylated MLC (pMLC) signaling pathways, leading to the

elimination of TNF-a/IFN-g induced barrier dysfunction in the

intestinal mucosa (152).

The study by M. Jennis et al. showed that IPA improved the

impaired barrier function of monolayer intestinal epithelial cells in

humans (153). Additionally, it was found that IPA positively

influences the intestinal barrier, inflammatory response, and

differentiation of goblet cells in rodents (154). More recently,

Canaan M et al. conducted a study on mice with enteropathy,

where they found that administration of indole and indomethacin

reduced intestinal damage and maintained normal crypt depth and

submucosal thickness (155). Furthermore, they observed that the

administration of indole with indomethacin reduced the infiltration

of neutrophils and prevented the destruction of tryptophan

metabolites, resulting in attenuated changes in the pro-

inflammatory mucosal transcriptome. It has been shown that

bacteria deficient in metabolizing tryptophan affect the immune

regulation of IL-22, and the production of IL-22 in patients with

IBD is reduced. In studies of inflammatory patients, changes

affecting the IL-22 production pathway have been identified in

mice lacking the Card9 gene sensing C-type lectins, making them

prone to colitis (156).
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The above evidence suggests that the combination of indole and

AHR affects the immune process by activating target gene

expression and regulating inflammatory factors.
4 Conclusion

Gut microbes have been extensively studied and have been shown

to play a pivotal role in influencing gut health and organismal

immunity. To prevent and treat intestinal diseases more effectively, it

is essential to have a thorough understanding of the interactions among

gut microbial metabolites, the interacting receptors, and transcriptional

regulatory metabolites. The production of SCFA generated by the

fermentation of dietary fiber and the secondary BA that are produced

by bacterially catalyzed 7-hydroxylation reactions can effectively reduce

inflammation.Moreover, activation of the tryptophan-AHR pathway is

crucial for maintaining the normal functioning of the gut mucosal

barrier and significantly reduces its dysfunction caused by pro-

inflammatory factors. Additionally, a diet rich in dietary fiber plays a

vital role in preventing inflammatory diseases. Therefore, focusing on

these interactions can provide a potential for more in-depth

investigations to unearth mechanisms underlying gut microbial-

host interactions.

Although numerous studies have investigated the impact of gut

microbial metabolites on host immunity, much of this relationship

remains elusive. The precise mechanism by which SCFA promote

the formation of TJ proteins and enhance the function of the

intestinal epithelial barrier is still unknown. Additionally, the

underlying mechanisms through which IPA improves impaired

intestinal epithelial barrier function require further investigation. It

is worth noting that certain studies have indicated that high

concentrations of butyrate can be detrimental to the intestinal
FIGURE 6

The cellular AHR signaling pathway. Normally, AHR exists in a dormant state within the cytoplasm, bound to a complex of HSP90, XAP2 (X-
Associated Protein-2, also known as ARA9 and AIP), and HSP90 Co-chaperonep23. However, upon ligand binding, AHR undergoes a conformational
change that exposes a NLS, leading to the release of HSP90 from the complex. This allows the activated AHR to translocate into the nucleus, where
it forms a hetero-dimer with the ARNT. Together, the AHR-ARNT heterodimer binds to the XRE of target genes, inducing the expression of genes
like IL-22, CYP1A1, CYP1A2, and CYP1B1.
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barrier, while low concentrations of butyrate are beneficial for its

function. Consequently, it is essential to explore whether an excess

of SCFA in the intestine can indeed prove harmful to the intestinal

barrier, thus reconciling this apparent contradiction. Clarifying this

aspect would necessitate additional research efforts.
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