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Single‐cell RNA sequencing
reveals characteristics of myeloid
cells in post-acute sequelae of
SARS-CoV-2 patients with
persistent respiratory symptoms
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Background: Although our understanding of the immunopathology and

subsequent risk and severity of COVID-19 disease is evolving, a detailed

account of immune responses that contribute to the long-term consequences

of pulmonary complications in COVID-19 infection remains unclear. Few studies

have detailed the immune and cytokine profiles associated with post-acute

sequelae of SARS-CoV-2 infection (PASC) with persistent pulmonary

symptoms. The dysregulation of the immune system that drives pulmonary

sequelae in COVID-19 survivors and PASC sufferers remains largely unknown.

Results: To characterize the immunological features of pulmonary PASC

(PPASC), we performed droplet-based single-cell RNA sequencing (scRNA-

seq) to study the transcriptomic profiles of peripheral blood mononuclear cells

(PBMCs) from a participant naïve to SARS-CoV-2 (Control) (n=1) and infected

with SARS-CoV-2 with chronic pulmonary symptoms (PPASC) (n=2). After

integrating scRNA-seq data with a naïve participant from a published dataset,

11 distinct cell populations were identified based on the expression of canonical

markers. The proportion of myeloid-lineage cells ([MLCs]; CD14+/

CD16+monocytes, and dendritic cells) was increased in PPASC (n=2) compared

to controls (n=2). MLCs from PPASC displayed up-regulation of genes associated

with pulmonary symptoms/fibrosis, while glycolysis metabolism-related genes

were downregulated. Similarly, pathway analysis showed that fibrosis-related

(VEGF, WNT, and SMAD) and cell death pathways were up-regulated, but

immune pathways were down-regulated in PPASC. Further comparison of

PPASC with scRNA-seq data with Severe COVID-19 (n=4) data demonstrated

enrichment of fibrotic transcriptional signatures. In PPASC, we observed

interactive VEGF ligand-receptor pairs among MLCs, and network modules in
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CD14+ (cluster 4) and CD16+ (Cluster 5) monocytes displayed a significant

enrichment for biological pathways linked to adverse COVID-19 outcomes,

fibrosis, and angiogenesis. Further analysis revealed a distinct metabolic

alteration in MLCs with a down-regulation of glycolysis/gluconeogenesis in

PPASC compared to SARS-CoV-2 naïve samples.

Conclusion: Analysis of a small scRNA-seq dataset demonstrated alterations

in the immune response and cellular landscape in PPASC. The presence of

elevated MLC levels and their corresponding gene signatures associated with

fibrosis, immune response suppression, and altered metabolic states

suggests a potential role in PPASC development.
KEYWORDS

SARS-CoV-2, long-COVID, post-acute sequalae of SARS-CoV-2 infection,
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Background

Three years have passed since the outbreak of the novel

coronavirus disease 19 [COVID-19], caused by severe acute

respiratory syndrome virus 2 [SARS-CoV-2] (1). COVID-19 is a

global public health crisis and has had profound impacts on

economic growth and social structures (2–4). The advent of

COVID-19 vaccines has effectively reduced the risk of SARS-CoV-

2 infection and prevented death and severe illness following acute

infection (5, 6). However, approximately 10-30% of COVID-19

survivors experience chronic health conditions (‘sequelae’) that

persist longer than 3 months and develop within 28 days of acute

illness (7–10). These ongoing health problems are termed Long

COVID or Post-COVID Syndrome, but also referred to as “post-

acute sequelae of SARS-CoV-2” (PASC). PASC symptoms reported

by survivors vary, but common symptoms include fatigue, insomnia,

dyspnea, and coughing (11). A subset of PASC continues to

experience persistent pulmonary symptoms even after recovery

from the acute infection (described hereafter as PPASC [pulmonary

PASC]) (11). Recent large cohort studies demonstrated that COVID-

19 survivors have a greater risk of developing comorbidities,

particularly diabetes (12), as well as cardiovascular (13) and kidney

(14) diseases. Considering the global prevalence of PASC cases (15–

17) and the impact of sequelae on COVID-19 survivors’ quality of life

and disability-adjusted life years (18–21), PASC continues to present

a significant global burden to healthcare infrastructure.

The etiology of PASC, and therefore PPASC, is not yet known,

but ongoing studies have provided risk factors and potential

predictors of PASC development. Factors, such as female sex, age,

comorbidities, smoking, and social determinants of health (low

socioeconomic status and racial/ethnic minority) are associated

with an increased risk of PASC development (22–24). While the

severity of COVID-19 is suspected to be a risk factor for PASC (25),

evidence continues to present mixed conclusions (26–32).
02
Investigations into the immunopathology associated with PASC

have revealed that aberrant cellular and humoral immune responses

are drivers of PASC (33–36). Comparison of the circulating

proteome between individuals with acute COVID-19, COVID-19-

recovered, and PASC demonstrates no significant differences in

most cytokines related to inflammation, nor a disease-specific

signature among the groups (33, 37). However, a consensus of

studies has demonstrated that IL-6, TNF, and IL-1b are commonly

elevated in individuals with PASC (38–40), suggesting a pro-

inflammatory etiology.

Cellular metabolic dysregulation is one of the major features of

SARS-CoV-2 infection and a key determinant of disease severity (41,

42). Furthermore, epidemiological observations demonstrated that

individuals who had metabolic comorbidities, such as diabetes

mellitus, hyperglycemia, or obesity, were at a significantly increased

risk of severe COVID-19 (43). Lung epithelial cells and monocytes

infected with SARS-CoV-2 demonstrate lipid dysregulation with

excessive lipid droplet accumulation within the cells (44–46).

Inhibition of lipid droplet biogenesis was demonstrated to inhibit

the proinflammatory response and replication of SARS-CoV-2 within

infected monocytes (44), suggesting a metabolic rearrangement

toward lipid use for viral replication. Investigations into glycolysis

metabolic pathways reveal a strong propensity for upregulation

within macrophages, monocytes, and T cells, consistent with

altered cell activation and attenuated T cells’ effector functionality

(47, 48). Recent evidence demonstrates a metabolic shift toward a

pro-resolution and remodeling phenotype in macrophages isolated

from PASC patients (49), indicating changes in plasma metabolites

after SARS-CoV-2 infection led to profound and prolonged cellular

metabolic disruption and subsequent cell dysfunction.

The persistence of SARS-CoV-2 protein and RNA in both

immune cells and tissues (50, 51) has arisen as potential factors

for PASC development (52). The persistence of viral components is

well documented to have prolonged impacts on immune cell
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functionality and polarization (53–55) and, therefore, likely

influences PASC etiology. It is likely a combination of a multitude

of the aforementioned factors driving PASC development. As such,

each avenue of investigation remains a viable option for discovery,

with the goal of predictive and/or therapeutic intervention

innovations for PASC.

Recent single‐cell RNA sequencing (scRNA‐seq) data has

demonstrated profound phenotypic alteration of immune cells in

COVID-19 convalescents with persistent symptoms. Innate and

adaptive immune cell perturbations are evident by 12 weeks post-

infection and sustained within individuals who develop PASC (56).

Another large-scale scRNA-seq endeavor revealed the predictive

value of cortisol levels as well as circadian rhythm-related gene

signatures as predictive of PASC development (57). Although

ongoing PASC studies are focused on advancing our understanding

of its' pathophysiology, the mechanisms underlying persistent

pulmonary sequelae secondary to SARS-CoV-2 infection remain

largely unexplored. The mechanism in which key immune cell

subsets change their functionalities in PASC with sustained

pulmonary symptoms has remained undefined. Therefore, the

identification of primary cell types associated with PPASC and

signaling pathways mediated by immune cell alteration and

activation are crucial to obtaining insights into immune cell

perturbation that contributes to prolonged pulmonary sequelae

in PASC.

In this study, we analyzed Peripheral blood mononuclear cells

(PBMC) PBMC from individuals who had developed PPASC after

SARS-CoV-2 infection and uninfected controls. The immune

profiling and transcriptomic data revealed alterations of myeloid

lineage immune cells, notably monocytes and dendritic cells in

PPASC. We further explored individual cell-cell interactions on

immune cell types and performed metabolic analyses,

demonstrating a profound association with fibrosis, vascularization,

and characteristics of a reparative immune environment. Together,

our results provide evidence that perturbations undergone within the

myeloid lineage of immune cells are likely associated with ongoing

pro-fibrotic processes that may therefore be contributing specifically

to PPASC development. This provides valuable insight into the utility

of targeting immune cell populations to ameliorate pulmonary

sequelae among PPASC individuals.
Methods

Peripheral blood mononuclear
cell isolation

Human venous peripheral blood samples were taken at the

state’s main tertiary care hospital-Ambulatory Post-COVID Clinic

(Queen’s Medical Center, Honolulu, Hawaii) and collected in

ethylenediaminetetraacetic acid (EDTA) tubes (BD, Vacutainer)

by venipuncture. In brief, venous blood was diluted with an equal

volume of phosphate-buffered saline (PBS) and layered on top of

Ficoll-Paque Plus (GE Healthcare Biosciences, Piscataway, NJ)

following the manufacturer’s protocol. PBMC were separated by

centrifugation at 400 × g for 30 minutes at room temperature (RT).
Frontiers in Immunology 03
PBMCs were collected from the buffy coat, red blood cells were

lysed, and the remaining pellet was washed twice in PBS

supplemented with 2% fetal bovine serum (FBS). Cells were then

counted, viability determined, and cryopreserved at 5 million cells/

vial. One participant naïve to SARS-CoV-2 infection and two

participants with prolonged COVID-19 pulmonary symptoms,

confirmed via pulmonary function tests (PFTs), were selected for

single-cell sequencing analysis. This study was approved by the

Queen’s Medical Center Research & Institutional Review

Committee RA-2020-053 and by the University of Hawaii

Institutional Review Board 2020-00406. Written informed

consent was obtained from all participants and all assays were

performed according to institutional guidelines and regulations.
Pulmonary function tests

PFTs was performed on individuals with PPASC. All PPASC

participants underwent PFTs (Vyaire) with the measurements of

forced vital capacity (FVC), forced expiratory volume in 1 second

(FEV1), total lung capacity (TLC), and diffusion capacity corrected

for hemoglobin percent predicted (DLCOc%) interpreted in

accordance with American Thoracic Society (ATS) guidelines (58).
Fluorescence-assisted cell sorting

For live PBMC purification for scRNA-seq, PBMC were stained

with BV711-CD45 (Clone H130, 1:200 dilution, Biolegend, San

Diego, CA) for 30 minutes at RT after adding Human TruStain FcX

(1:200 dilution, Biolegend, San Diego, CA) for 15 minutes.

Propidium iodide (PI) was added just before cell acquisition to

assess cell viability. UltraComp eBeads Compensation Beads

(Thermo Fisher Scientific, 01-2222-42) were used for

compensation. Approximately 98-99% of total PBMC were

identified as live and CD45+ and were sorted into 1% bovine

serum albumin (BSA) in DPBS by a FACSAria IIu Cell Sorter

(BD Biosciences, Franklin Lakes, NJ). Sorted cell suspensions were

pelleted at 350 x g for 5 minutes at 4°C, and cells were resuspended

in 0.1% BSA in Dulbecco's Phosphate Buffered Saline (DPBS) to

approximately 1,000 cells/ml.
Single-cell RNA-sequencing

Cell concentration and viability were confirmed using an

automated cell counter Countess II (Thermo Fisher Scientific)

with 0.4% trypan blue solution and samples with viability > 70%

were further processed. To obtain single-cell gel beads-in-emulsion

(GEM), cell suspension was pelleted by 400 x g for 5 minutes at 4°C,

and cells were resuspended at a concentration of 1,000 cells/ml in
0.1% BSA in DPBS. scRNA-seq libraries were prepared using

Chromium Next GEM Single-Cell 5’ Reagent Kit (10x Genomics).

Briefly, GEMs were generated in Chromium Controller by

combining barcoded Single-Cell VDJ 5’ Gel Beads v1.1, a Master

Mix with mixture of single cells, and Partitioning Oil on Chromium
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1268510
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yoon et al. 10.3389/fimmu.2023.1268510
Next GEM Chip G. To achieve single-cell resolution, cells were

delivered at a limiting dilution, such that the majority (~90-99%) of

generated GEMs contains no cell, while the remainder largely

contain a single cell.

Immediately following GEM generation, the Gel Beads were

dissolved and any co-partitioned cell was lysed. Oligonucleotides

containing (i) an Illumina R1 sequence (read 1 primer sequence),

(ii) a 16 nucleotide (nt) 10x Barcode, (iii) a 10 nt unique molecular

identifier (UMI), and (iv) 13 nt template switch oligo (TSO) were

released and mixed with the cell lysate and a Master Mix containing

reverse transcription (RT) reagents and poly(dT) RT primers,

resulting in full-length cDNA from poly-adenylated mRNA.

GEMs were broken and pooled after GEM-RT reaction mixtures

were recovered. Silane magnetic beads were used to purify the 10x

Barcoded first-strand cDNA from the post-GEM-RT reaction

mixture, which includes leftover biochemical reagents and

primers. After cleanup, 10x Barcoded, full-length cDNA was

amplified via PCR with primers (Forward primer [P5]: 5’-

AATGATACGGCGACCACCGAGA-3’ and Reverse primer [P7]:

5’-CAAGCAGAAGACGGCATACGAGAT-3’against common 5’

and 3’ ends added during GEM-RT). Amplification generated

sufficient material to construct 5’ Gene Expression libraries.

Enzymatic fragmentation and size selection were used to optimize

the cDNA amplicon size prior to the 5’ Gene Expression library

construction. P5, P7, a sample index, and Illumina R2 sequence

(read 2 primer sequence) were added via End Repair, A-tailing,

Adaptor Ligation, and Sample Index PCR. The final libraries

contain the P5 and P7 priming sites used in Illumina sequencers.

Library quality and size distribution were confirmed on Agilent

Bioanalyzer High Sensitivity DNA chips (Agilent). Library

quantification was performed with qPCR using the KAPA Library

Quantification Kit for Illumina Platforms (KAPA/Roche). Libraries

were normalized, denatured, and diluted to obtain 1.5 pM molarity.

Libraries were sequenced on the NextSeq500 instrument at a depth

of a minimum of 20,000 reads/cell using 26 x 91 bp read settings.
scRNA data merge and integration analysis

The scRNA-seq raw fastq files were aligned to the human

reference genome (ver. GRch38) using the Cell Ranger pipeline

(59) to generate a raw gene-by-cell count matrix. To integrate

scRNA data generated from different batches, Harmony (60) was

used to mitigate batch effects by merging and integrating the data.

We chose a publicly available scRNA-seq dataset (GSM4509024)

(61) that contained SARS-CoV-2 naïve and Severe COVID-19

PBMC samples with the study participants of similar age to our

own samples. Our scRNA-seq data of PBMC (PPASC; n=2,

Control; n=1) or PPASC data were combined with a naïve

participant and then severe COVID-19 patients (n=4).

DropletUtils was utilized to assess deviations from the ambient

cell profile and empty droplets were identified (62), and cells with

an FDR < 0.01 were considered statistically significant and retained

as “real cells,” while those with an false discovery rates (FDR) > 0.01

were deemed “empty droplets” and removed. The Scater package

was used for the calculation of quality control (QC) metrics,
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visualized through principal component analysis (PCA) (63). A

total of 34,139 cells passed quality control (QC) for the integrated

data of PPASC and Controls. A total of 34,070 cells passed QC for

the integrated data of PPASC and Severe (QC; Removing empty

droplets, cells with low UMI/feature counts, high mitochondrial

gene expression indicative of dying cells). Via these methods, 5,861

cells were removed (Supplementary Figures 1-4). The Seurat

package’s merge function was used to combine individual samples

and remove cell-specific biases. The scran package’s quickCluster

function was utilized for grouping cells. Cell-specific size factors

were calculated using the computeSumFactors function within

scran. Raw counts of each cell were normalized by cell-specific

size factor and log2-transformed with a pseudo-count of 1; highly

variable genes (HVG) were defined based on the variance of the log

expression profiles of each gene for decomposed technical and

biological components by fitted mean-variance trends through the

modelGeneVar function within scran. HVG were defined as those

with FDR < 0.05. Downstream analysis involved computing 20

principal components (PCs), constructing a shared nearest

neighbor (SNN) graph, and performing cell clustering using the

Seurat package. Batch effects in the combined individual samples

were addressed by applying 50 PCs and the RunHarmony function

from the Harmony package. The detailed pipeline code is available

on GitHub (https://github.com/lagom2728/PPASC-SARS-CoV-2-

Paper-2023).
Cell type identification

Cells were identified based on differential expressions of canonical

marker genes and clustered accordingly (64). Additionally, cell types

were confirmed by visual confirmation of the average expression values

of canonical marker genes (64). Cell proportions were confirmed by

generating cell type percentages, followed by a permutation test and

bootstrapping to validate the statistically significant differences in

proportions. As a result, cells were categorized into statistically

significant groups based on an increase or decrease in the proportion

of cells meeting the following criteria: relative differences in cell

proportions for Log2 Fold Distribution (FD) in each group > 0.3,

Log2FD < -0.3, and FDR < 0.05.
Differentially expressed gene analysis

To assess the differential gene expression in the scRNA data of

two groups (each PPASC and Control), we conducted differential

expressed gene analysis with the built-in framework of MAST (65).

In the analysis results, significant up- and down-regulated genes

were classified based on statistical criteria of avg_log2FC > 0.25, <

-0.25, and p-value < 0.05.
Gene set enrichment analysis

To conduct the analysis, Hallmark gene sets (H), Curated gene

sets (C2), and Ontology gene sets (C5) databases of MsigDB (66)
frontiersin.org
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were selectively used and analyzed (67). Significant regulated

pathways were categorized by their normalized enrichment score

(NES) as enriched (>0) or depleted (<0), and p-values < 0.05.
Transcription factor enrichment analysis

The DoRothEA database (68) was used to identify transcription

factors for differentially expressed target genes. The transcription

factors from DoRothEA are complemented by an empirical

measure of confidence, reflecting the certainty in their regulons.

This confidence level is categorized into grades ranging from A

(highest confidence) to E. In this particular benchmark, we

specifically considered only the transcription factors (TFs) with

confidence levels A and B, collectively referred to as DoRothEA

(AB), used for transcription factor enrichment analysis.

TF enrichment analysis was performed using the msviper

function within the viper package (69). Using the control patient

as a reference, genes that were differentially expressed in each cell

type via the Log2FD were identified and NES was calculated. TFs

were classified as statistically significantly upregulated or

downregulated according to the NES criteria and p-adjusted value

thresholds (NES > 0, < 0, p-value < 0.05).
Cell-to-cell interactions

The human ligand-receptor (only Secreted signaling) database

was used to analyze the ligand-receptor interaction between cells

(70). Cells expressing less than 5% of genes were excluded, and only

interactions with statistical significance (p-value < 0.05) among

autocrine or paracrine interactions were classified. To compare the

interaction signals between the two groups, the communication

probability value was calculated based on the geometric mean

expression level.
Pseudo-bulk differentially expressed
gene analysis

To make scRNA into pseudo-bulk RNA, we aggregated

transcript count tables of all single-cells per sample to verify

possible false positives in single-cell differentially expressed genes

(DEGs). Differential expression analysis was performed (71), and

genes satisfying LogFC > 0.25 or < -0.25, along with a p-value < 0.05

were classified as up- or down-regulated genes, respectively.
Single-cell correlation network analysis

Integrated scRNA data was utilized to calculate Pearson

correlation values (72). Subsequently, correlation networks were

created for specific cell types, and the identification and validation

of differentially expressed network modules were accomplished

through enrichment analysis (73).
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Metabolic analysis

For metabolic analysis, we utilized the pipeline provided by the

Compass package (74), specifically employing Single-Cell Flux

Estimation Analysis and Single-Cell Flux Balance Analysis. These

analytical tools were used to estimate cell-specific metabolic flux to

infer the metabolic states of immune cells. For analysis of metabolite

communication, we employed MEBOCOST (67). This model

estimates the relative abundance of metabolic products based on

the expression of genes encoding metabolic reaction enzymes. It

additionally identifies cell-to-cell communication of metabolites

and sensors by gathering enzyme-related genes from the Human

Metabolome Database (75) across different cells.
Results

Alteration of myeloid-lineage cells in
individuals with PPASC

Circulating immune cell levels and their functional status hold

promise as biomarkers for assessing the severity of COVID-19.

Analysis of blood immune cells in COVID-19 convalescents has

been used to provide insight into the long-term consequences of

host immune responses after SARS-CoV-2 infection. To explore

immune system alteration associated with persistent lung sequelae

after recovery from acute illness of SARS-CoV-2, we selected two

participants who had reduced DLCOc% (<80%) by PFT among

individuals with PPASC. They had persistent pulmonary symptoms

greater than 5 months after onset of SARS-CoV-2 infection, were

hospitalized for COVID-19 disease, and were fully vaccinated

against SARS-CoV-2 (Supplementary Table 1). PASC symptoms

included shortness of breath, chest pain, joint pain, brain fog, and

depression. As a comparator, an age-matched participant naïve to

SARS-CoV-2 infection (Control) was selected and confirmed

negative via a SARS-CoV-2 nucleocapsid antibody test

(Supplementary Table 1). Live CD45+ cells from two PPASC

patients and this SARS-CoV-2 naïve individual were subjected to

scRNAseq analysis utilizing the 10X Genomics Chromium system

which yielded an integrated object of 34,139 cells after QC.

We integrated our scRNA-seq data with a naïve participant

from a public scRNA-seq dataset (GSM4509024) (61) to compare

the transcriptome of PPASC (n=2) and controls (n=2). Each of the

four independent scRNA-seq samples was subjected to uniform

manifold approximation and projection (UMAP) based on RNA

expression (Figure 1A). A total of 11 cell types were identified,

including CD4+/CD8+ T cells, natural killer (NK) and natural killer

T (NKT) cells, CD14+ and CD16+ monocytes, dendritic cells,

platelets, hematopoietic stem cells (HSC), B cells, and

erythrocytes (Figure 1A). Canonical marker genes of known cell

types were enriched in each cluster and the marker expressions were

used to annotate the clusters (Figure 1B). All identified immune cell

populations were present in both SARS-CoV-2-infected and naïve

participants (Supplementary Figure 5), albeit in differing

proportions between PPASC and controls (Figure 1C). We
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FIGURE 1

Cell type profile and differential cell type proportion analysis of PPASC and control participants. (A) scRNA data obtained from PBMCs with a total of
34,319 integrated cells within PPASC (n=2) and controls (n=2). The uniform manifold approximation and projection (UMAP) presentation of all
merged samples and 11 cell types were clustered by gene signature. Each dot corresponds to a single cell and is colored according to cell type.
(B) The annotation of clusters in the UMAP plot utilizing the expression of canonical marker genes from the Cell Marker Database 2.0. Dot plots
present the average expression levels and the percentage of cells expressing each marker gene within the labeled cell types. The rows in the dot
plots correspond to selected marker genes highly expressed in each cell cluster. (C) Cell type proportions for each cell type were manually
calculated from samples of PPASC (n=2) and control (n=2) groups. The results were visualized through pie charts. (D) To detect statistical differences
in cell proportions, a permutation test and bootstrapping approach were employed to compare the proportions of each cell type between the
PPASC (n=2) and control (n=2) groups. The dot plot illustrates statistically significant relative differences in cell proportions, presenting the
distribution of Log2FD in PPASC compared to controls.
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further attempted to determine a vital feature for reflecting immune

cell alterations associated with PPASC via the relative proportions

of peripheral immune cells. We observed significant increases in

myeloid cells (CD14+/CD16+ monocytes and dendritic cells), and

NKT cells and B cells, whereas the proportions of NK cells, HSC,

and erythrocytes were significantly decreased in PPASC compared

to controls (Figure 1D).
Identification of dysregulated genes and
pathways related to PPASC

To explore the characteristics of immune cells and identify the

molecular changes associated with PPASC, we performed a detailed

analysis of the DEGs of immune cells from PPASC compared with

those from the controls. Our scRNA-seq analysis identified

pronounced alterations in myeloid cells. Furthermore, we found

that elevated circulating monocyte levels and their activation were

observed in COVID-19 convalescents (76). Thus, we focused our

attention on myeloid cells, particularly CD14+ and CD16+

monocytes, as well as dendritic cells, for downstream analysis

hereafter referred to as myeloid-lineage cells (MLCs). We found a

total of 872 DEGs in monocytes and dendritic cells: CD14+

monocytes (228 upregulated and 132 downregulated), CD16+

monocytes (303 upregulated and 226 downregulated), and

dendritic cells (332 upregulated and 217 downregulated)

(Supplementary Figures 6A, B). In addition, we demonstrated

shared DEGs across three cell types (118 upregulated and 54

downregulated) (Supplementary Figures 6A, B). Interestingly, our

data showed that genes known to be associated with pulmonary

fibrosis (ANKRD11, CTNNB1, CXCR4, HIF1A, HMGB1, ITSN2,

LITAF, NEAT1, VEGFA, and DSE) (77–84) were upregulated in

MLCs. However, genes associated with glycolytic metabolism

(ALDOA, PGK1, TPI1, and MYL6) were downregulated in these

cell populations (Figures 2A, B).

Next, we performed gene set enrichment analysis (GSEA) across

each cell type and conducted direct comparisons of the PPASC versus

the control groups, respectively. Overall, compared to controls,

PPASC displayed upregulated pathways related to pulmonary

fibrosis, such as VEGF, WNT, and TGF-b and cell apoptosis, while

pathways related to cytokine/inflammation (including interferon)

were downregulated in MLCs (Figure 2C). The VEGF pathway was

upregulated in CD14+ monocytes and dendritic cells, while theWNT

pathway was upregulated only in CD16+ monocytes (Figure 2C).

To identify potential direct targets involved in the induction of

profibrotic features in myeloid cells, we performed transcription

factor enrichment analysis (TFEA) to identify transcription factors

inferred from the perturbation of gene signatures between PPASC

and controls. We found that a total of 27 transcription factors were

significantly dysregulated in individual cell types between groups

(Figure 2D). Consistent with earlier analyses, we found that the

downstream transcription factors of VEGFR (HIF1A; CD14+

monocytes) and TGFBR (SMAD and STAT3; CD14+ monocytes

and dendritic cells, ATF2; CD14+/CD16+ monocytes and dendritic

cells) signaling were upregulated in MLCs (Figure 2D). These
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observations demonstrate that PPASC display enriched genes

driving pulmonary symptoms and profibrotic features in MLCs

and that increased MLC proportions and the altered gene signatures

likely contribute to development of pulmonary sequelae after SARS-

CoV-2 infection.
Fibrotic transcriptional signatures are
significantly enriched in MLCs from PPASC

We were intrigued as to how our findings in PPASC patients,

who had recovered from acute COVID-19 disease and suffered

ongoing symptoms, compared with patients who suffered severe

COVID-19. We integrated a publicly available scRNA-seq dataset

from severe COVID-19 patients, hereafter referred to as severe

COVID-19 (n=4) (Supplementary Figures 7A-F) and observed 10

of the previously identified cell types via UMAP visualization of the

combined dataset; however, HSCs were unidentifiable

(Supplementary Figures 8A, B). The cell proportion makeup

differed drastically between PPASC and severe COVID-19, with

CD16+ monocytes and dendritic cells found to be significantly

increased and CD14+ monocytes significantly decreased in PPASC

compared to severe COVID-19 (Supplementary Figures 8C, D).

MLCs demonstrated an up-regulation of fibrosis-associated genes,

such as VEGFA and HIF1A in PPASC compared to severe COVID-

19 (Supplementary Figure 9A). However, genes involved in glycolytic

metabolism were not found to be downregulated in PPASC,

compared to severe COVID-19 (Supplementary Figure 9B).

Pulmonary fibrosis-related pathways and cell apoptosis and stress-

related pathways were found to be upregulated in PPASC compared

to severe MLCs (Supplementary Figure 9C). Immune response

pathways were found to be downregulated in CD14+ monocytes

but not in CD16+ monocytes or dendritic cells in PPASC compared

to severe COVID-19 (Supplementary Figure 9C). TF enrichment

analysis revealed upregulation of fibrotic-associated ATF2, STAT3,

and SMAD family TFs across MLCs in PPASC compared to severe

COVID-19. STAT3 was specifically upregulated in CD16+

monocytes, while ATF2 was upregulated in CD14+ monocytes

(Supplementary Figure 9D). DEGs in MLCs of PPASC compared

to the severe COVID-19 demonstrated a larger overlapping

proportion of up-regulated genes (Supplementary Figure 10A). Few

overlapping downregulated DEGs were noted in MLC populations

(Supplementary Figure 10B) and were not inclusive of glycolytic

genes as found in PPASC vs control MLCs (Data not shown).

Specifically, via analysis of cell-to-cell interactions in MLCs, we

found that VEGF-VEGFR interaction was only found in PPASC

but not in severe COVID-19 (Supplementary Figure 11A). VEGFA

and its ligand expression was minimal in CD14+ and CD16+

monocytes in the severe COVID-19 but was over 40% in dendritic

cells (Supplementary Figure 11B). Pseudo-bulk DEG revealed no

differential expression of VEGF in CD16+ monocytes but confirmed

up-regulation of VEGF in CD14+ monocytes and dendritic cells in

PPASC (Supplementary Figure 11C). These data suggest that VEGF

expression patterns in MLCs clearly distinguished PPASC from

severe COVID-19.
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Gene modules predict variable expressions
and functionalities of monocytes in PPASC

To gain a comprehensive view of how the inferred targets may

interact regarding PPASC development, we then identified potential

cell–cell interactions and differential ligand-receptor interactions

that are conserved in PPASC. The pathway of VEGF interaction

(VEGFA-FLT1/KDR) was increased among MLCs, compared to

controls (Figure 3A). We observed high-fidelity communications
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via VEGF pathways in MLCs via an autocrine or paracrine manner

(Figure 3A). Furthermore, using pseudo-bulk single-cell data, we

validated the expression of genes identified from ligand-receptor

interaction analysis. VEGFA percent expression was increased in

MLCs from PPASC compared to those cells from controls

(Figure 3B). Notably, VEGFA was highly expressed in CD14+ and

CD16+ monocytes, as well as dendritic cells (Figures 3B, C).

Within the monocyte clusters (CD14+ and CD16+ monocytes),

we further sub-grouped the signatures into gene correlation based
A

B

DC

FIGURE 2

Differential gene expression, pathway enrichment, and transcription factor enrichment analysis of PPASC compared to controls. (A) Differentially
expressed and upregulated genes with selective labeling of fibrosis-related genes in CD14+ and CD16+ monocytes and dendritic cell populations in
PPASC (n=2) compared to controls (n=2), visualized as scatter plots. (B) Differentially expressed and downregulated genes with glycolysis-related
genes in CD14+ and CD16+ monocytes and dendritic cell populations in PPASC compared to controls, visualized as scatter plots. Statistically
significant up-regulated genes are illustrated with red dots and statistically significant down-regulated genes are illustrated with blue dots for both
(A, B). (C) Comparative analysis of functional pathways between PPASC and control groups. Gene set enriched pathways in PPASC compared to
controls across all immune cell types visualized by dot plot and grouped by selective pathway category. Up-regulated pathways are represented by
red dots and down-regulated pathways by blue dots (D) Inferred differentially enriched transcription factors in PPASC compared to control groups
across all cell types based on DoRothEA’s target genes database, visualized as a heatmap (Red; up-regulation, Blue; down-regulation). Transcription
factors related to fibrosis that were found consistently enriched in MLCs are highlighted in red.
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on network modules (Figure 4A). Within CD14+ monocyte

populations, network module 5 (Net-M5) was specifically found

to be upregulated, while CD16+ monocyte demonstrated an

upregulation of network module 4 (Net-M4) (Figure 4B). To

identify the organizing hub genes in Net-M4 and M5, the top 60

genes with high eigengene-based connectivity (kME) values were

selected (Supplementary Figure 12). In the Net-M4, genes involved

in VEGFA-VEGFR2 signaling (NR4A1, TPM3, FAM120A, and

NUMB) and WNT signaling (HHEX and APC) were identified.

The Net-M5 detected genes involved in lung fibrosis (CXCL8 and
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IL1B), VEGFA-VEGFR2 signaling (NR4A1 and CBL), and TGF-b
signaling (JUNB and ATF3) (Supplementary Figure 7).

Furthermore, the pathway enrichment analysis of Net-M4 and

Net-M5 revealed that the CD16+ M4 module was associated with

WNT, VEGF, and TGF-b-signaling pathways (Figure 4C). The

CD14+ M5 module was associated with COVID-19 adverse

outcome linked pathways as well as fibroblast growth factor

stimulation pathways. Interestingly, this same module in CD14+

monocytes revealed increases in pathways for fibroblast-specific

apoptosis and general apoptotic pathways (Figure 4C).
A

B

C

FIGURE 3

VEGF signaling, cell to cell interactions, and pathway enrichment analysis in PPASC compared to controls. (A) Geometric expression in cell-cell
ligand-receptor interactions and VEGF signaling interactions were calculated between CD14+ and CD16+ monocytes and dendritic cells in PPASC
(n=2) and control (n=2) groups. Statistically significant and comparable cell-cell interaction geometric expressions are shown on the x-axis, with ‘P’
and ‘C’ denoting the PPASC and control groups, respectively. (B) Single-cell details include average and percent expression of VEGF ligand-receptor
genes in CD14+ and CD16+ monocytes and dendritic cells in PPASC and control groups. A high expression is denoted by red, and proximity to a
circular form signifies a high percent expression in the cell type cluster. (C) For validation, aggregated single-cell expression data were processed as
pseudo-bulk, and differentially expressed tests were conducted on VEGF ligand genes in CD14+ and CD16+ monocytes and dendritic cells in PPASC
compared to control groups (Red; up-regulation, Blue; down-regulation).
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PPASC display transcriptome alterations
indicative of metabolic perturbations in
myeloid subsets

Reports of the metabolic impacts of SARS-CoV-2 infection and

association with chronic fatigue and diabetic-like events during

Long-COVID are well documented (85). These observations
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aligned with our findings of downregulated genes associated with

glycolytic metabolism (Figure 2B) and prompted us to determine

the impact of PASC on immunometabolism in individuals with

persistent pulmonary sequelae. Using Gene Set Variation Analysis

(GSVA) based on non-parametric unsupervised learning to infer

the variability of gene set enrichment related to gluconeogenesis/

glycolysis, we observed that the average score of glycolysis-related
A

B C

FIGURE 4

Monocyte gene modules in PPASC group suggest a pro-fibrotic skewing in CD14+ monocytes. (A) Gene correlation networks were constructed for
CD14+ and CD16+ monocytes in PPASC (n=2) and control (n=2) groups. Cells were clustered into network modules using the UMAP clustering
dimension reduction method in each correlation network. Each network module was formatted into five clusters. (B) Differential expression tests
were performed using the Wilcoxon statistical framework in each network module for CD14+ and CD16+ monocytes in the PPASC and control
groups. (C) Enriched pathway tests were conducted in the differentially expressed network modules 4 and 5. The results were visualized as dot plots,
with selective pathway categories highlighted as functionally enriched pathways. Red dots signify up-regulation and blue dots signify down-
regulation, with the size of the dot demonstrating the log fold change of the combined score.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1268510
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yoon et al. 10.3389/fimmu.2023.1268510
pathways in MLC populations was lower in PPASC than in controls

(Figure 5A). The inferred metabolic state of individual cells using a

database of integrated metabolic networks and metabolic flux

balance analysis demonstrated that MLCs of PPASC exhibited

downregulation of gluconeogenesis/glycolysis metabolic reactions

compared to the control group (Figure 5B). Furthermore, inference

of intercellular metabolite communication based on estimated

metabolite scores and averaged sensor gene expression values by

cell group demonstrated that the metabolite, D-Glucose, was

directly associated with gluconeogenesis/glycolysis metabolism.

Furthermore, these inferred interaction scores revealed decreased

mean abundance values in MLCs of PPASC compared to the

control group (Figure 5C). The calculated communication scores

for metabolite-sensor partners revealed statistically significant

interaction scores in MLCs of the control group but not in

PPASC (Figure 5D). This suggests a lack of gluconeogenesis/

glycolysis-related metabolite interaction or a diminished

interaction in PPASC. In summary, these metabolic analysis

observations suggest a decreased regulation of glucose-specific

metabolic pathways in MLCs of PPASC.
Discussion

Long-term perturbation of immune regulation and altered

cytokine networks have been identified in COVID-19 convalescents

and individuals with PASC tended to showmore dysregulation of the

immune system (34, 56). This evidence supports the hypothesis that

an altered immune system after recovery against SARS-CoV-2

infection contributes to the development of PASC. While the

epidemiological and clinical studies of pulmonary sequelae among

PASC individuals are relatively advanced, mechanistic insights into

the pathophysiological underpinnings of this condition are still

limited. In this study, we performed scRNA-seq of the PBMCs

from two PPASC patients and a naïve control with the inclusion of

an integrated analysis with a published scRNA-seq control dataset

(61). We revealed that the enrichment of myeloid-specific cellular

subsets, CD14+ and CD16+ monocytes, and dendritic cells had

increased profibrotic signatures in PPASC. We further explored

cellular metabolism by analyzing metabolic reactions, metabolic

pathway scoring, and cell-cell metabolite interactions from scRNA-

seq data. We also compared the scRNA-seq data from our PPASC

patients to a publicly available scRNA-seq dataset from PBMC

obtained from patients who experienced severe COVID-19. To the

best of our knowledge, this case study provides the first evidence for

metabolic alterations in MLCs with a skewing toward decreases in

gene expression of glycolysis and glucose utilization in PASC

individuals with persistent pulmonary symptoms.

We recently reported persisting elevation of circulating

monocytes in COVID-19 convalescents and cell activation was

negatively correlated with lung function in individuals with

PPASC (76). Consistent with this finding, our scRNA-seq data

demonstrate continued dysregulation of the peripheral immune

system, particularly MLCs, months after acute infection. Ryan et al.

reported alterations of the blood transcriptome at 12-, 16-, and 24

weeks post-infection with SARS-CoV-2 when compared to naïve
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controls (56). Indeed, transcriptional dysregulation persisted in

individuals with PASC compared to those who had completely

recovered, until at least 24 weeks. Immunophenotyping results of

PBMC demonstrated that specific subsets of CXCR3+ monocytes

were increased in COVID-19 convalescents, but total monocytes

were comparable between groups (56). None of the participants

who were referred to the long-COVID clinic underwent PFTs nor

were they classified as pulmonary long-COVID. The heterogeneity

in PASC symptoms mirrors the existence of different pathological

subgroups, suggesting that increased monocytic populations

observed within our study may be in relation to pulmonary-

specific immunopathology. In addition, PASC individuals with

pers is tent pulmonary sequelae may have a se lect ive

immunological response that differs from the immunological

response generated for other sequelae. Thus, more studies are

essential for a better understanding of the pathophysiologic

mechanisms underlying diverse spectrums of PASC symptoms.

An evolving body of evidence demonstrates heightened levels of

plasma monocyte/macrophage‐related markers associated with

proinflammation and fibrosis in COVID-19 convalescents (86). In

concordance with our observed upregulation of gene expression

related to pulmonary symptoms/fibrosis, these cell types could

engage in sustaining the fibrotic process that may fuel pulmonary

sequelae. Findings of fibrosing phenotypes in the lungs of post-

COVID-19 patients have been demonstrated via histopathologic

analysis (86). Examination of the lungs after 7 days of

hospitalization revealed an increase in VEGFA and fibrotic

pathology akin to organizing pneumonia (87). Interestingly, we

observed upregulation of VEGF specifically in MLCs in PPASC

compared to controls, but the patterns of up-regulation of VEGFA

were more obvious when compared with severe COVID-19. CD14+

monocytes are known to differentiate into pro-fibrotic, fibroblast-

like cells known as fibrocytes (88). Fibrocytes are known to migrate

via CXCR4-CXCL12-mediated activity during fibrotic remodeling

(89), and we found that this receptor was significantly upregulated

in CD14+ monocyte populations in PPASC but not in severe

COVID-19. TGF-b-signaling pathways are canonically known to

skew and activate these CD14+-differentiated cells, and

upregulation of TGF-b was also observed in MLCs from PPASC.

As both TGF-b and VEGF have been touted as targets to inhibit

lung fibrotic development and fibrotic processes systemically (90,

91), our findings suggest that circulating CD14+ cells from PPASC

preferentially acquire profibrotic features.

Interestingly, we also found that CD16+ gene module

interaction networks showed interactions with antigen-

presentation genes. Antigen presentation on different monocyte

subsets is well documented, with CD16+ intermediate and non-

classical monocytes being the most prominent antigen

presentation-capable monocytes (92). In line with their findings,

CD16+ monocytes were found to increase their expression of MHC

molecules, further promoted by stimulation of Th1 skewing

cytokines. We did not observe upregulation of any Th1 or Th2

skewing cytokines, suggesting that this process is contributing

toward our observed upregulation of MHC-2 molecules.

A recent study of plasma metabolomic profiles revealed

dysregulation of metabolites with the enrichment of pathways for
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1268510
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yoon et al. 10.3389/fimmu.2023.1268510
fatty acid metabolism and TCA cycles and high levels of fatty acid

metabolites (93). Advances in the field of immunometabolism have

demonstrated strong associations of specific metabolic pathways with

cellular phenotype. In addition, the metabolic and metabolite level of

investigation within a cell is considered the most accurate
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thermometer for cellular function as no processing or degradation

(RNA/protein) is yet to occur. Although common residual symptoms

of their study cohort were fatigue and brain fog, we observed similar

trends of cellular metabolic alteration, displaying the downregulation

of gluconeogenesis/glycolysis pathways in MLCs. Furthermore, in the
A

B

D

C

FIGURE 5

Metabolomic gene signatures in MLCs in Two PPASC individuals. (A) Gene set variation analysis (GSVA) was conducted using pathway signature gene
sets to score average pathway scores in each cell. Glycolysis-related pathways were selectively examined in CD14+ and CD16+ monocytes and dendritic
cells in PPASC (n=2) compared to control (n=2) groups. The results were split for each group and visualized as violin plots. (B) Measurement of
differential metabolic reactions in glycolysis was performed using Cohen’s D statistical framework in CD14+ and CD16+ monocytes and dendritic cells.
The results are visualized as a volcano plot with each dot representing a reaction in glycolysis metabolism. (C) Expression and abundance in glycolysis
metabolite interaction were measured and visualized as a violin plot, depicting metabolite abundance and sensor gene expression between MLCs.
(D) Inferred cell-to-cell glycolysis metabolite interactions in MLCs were scored and each communication between cells was visualized as a dot plot.
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CD16+ M4 module genes, suggesting a non-glycolysis-related

metabolic signature, like ACSL4, a long-chain fatty acid ligase

utilized for fatty acid beta-oxidation as well as OSBPL8, an

oxysterol-binding protein for intracellular lipid transport, were

identified. These results suggest that the downregulation of

gluconeogenesis/glycolysis pathways appeared to be associated with

a compensatory upregulation of genes associated with fatty acid

oxidation and amino acid-based metabolism. However, we did not

observe any DEGs related tometabolism between our PPASC and the

severe COVID-19 groups. Future in-depth experimental work is

required to understand whether metabolic reprogramming of

monocytes after SARS-CoV-2 infection favors them to use fatty

acid metabolism. Interestingly, the mean abundance of ATP was

relatively comparable between MLCs in both PPASC and controls,

suggesting that alternative metabolic pathways are pivotally

compensatory in MLCs from PPASC, given the similar ATP

production across the cell types.

A comprehensive review of PASC, particularly chronic fatigue

syndrome, corroborates many of the findings observed from

metabolic analyses of scRNA-seq in our study (27). Rewiring of

cellular metabolism is directly linked to cellular function. Within

monocyte populations, upregulation of glycolysis and glucose usage

correlates with activation and differentiation toward an M1, i.e., pro-

inflammatory monocyte/macrophage phenotype and functionality

(94). This phenotype is defined by its pro-inflammatory cytokine

production, such as IFN-g, and stimulation, while M2 relates to an

anti-inflammatory and regulatory role (95). The use of fatty acid

pathways and decreased glycolytic reliance suggests pro-resolution

(M2)-like phenotype and functionality within these monocytes. In

the future, it will be necessary to elucidate the role of monocyte

immunometabolism in the context of PPASC and whether metabolic

dysfunction is a predisposing risk factor for PPASC.

Our study was limited by a small sample size. One of our

control participants was from a matched, publicly available single-

cell sequencing dataset. The comparator scRNA-seq data were

further validated with a public dataset of other SARS-CoV-2

naïve single-cell sequencing data to ensure continuity. Although

we utilized Harmony’s basic pipeline to mitigate batch effects, this

small sample size predisposes variations within our data to have

larger impacts that an increased sample size would mitigate. The

inclusion of individuals who have fully recovered from COVID-19

would be informative to compare transcriptional changes of

immune cells in peripheral blood in COVID-19 convalescents

with/without residual symptoms. Also, this data would further

identify MLC signatures specific to PASC with pulmonary

sequelae. Further studies in large-scale cohort studies, specifically

targeting the pulmonary sequelae of long-COVID and recovered

survivors, are needed for data validation and enhancing our

understanding of PPASC immunopathology.
Conclusions

In conclusion, our analysis of scRNA-seq data reflecting

persistent pulmonary sequelae among PASC has revealed
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alterations of peripheral blood cells and associated gene

signatures. Collectively, our case study data demonstrate altered

MLCs with specific skewing toward a pro-fibrotic and long-lived

metabolic profile in PPASC. Such results will enable new insights

into ongoing pulmonary sequelae among PASC individuals and also

provide information into mechanisms underlying the

immunopathology linked to pulmonary sequelae of PASC.
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