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Regulatory T cells (Treg), as members of CD4+ T cells, have garnered extensive

attention in the research of tumor progression. Treg cells have the function of

inhibiting the immune effector cells, preventing tissue damage, and suppressing

inflammation. Under the st imulat ion of the tumor inflammatory

microenvironment (IM), the reprogramming of Treg cells enhances their

suppression of immune responses, ultimately promoting tumor immune

escape or tumor progression. Reducing the number of Treg cells in the IM or

lowering the activity of Treg cells while preventing their reprogramming, can

help promote the body’s anti-tumor immune responses. This review introduces a

reprogramming mechanism of Treg cells in the IM; and discusses the regulation

of Treg cells on tumor progression. The control of Treg cells and the response to

Treg inflammatory reprogramming in tumor immunotherapy are analyzed and

countermeasures are proposed. This work will provide a foundation for

downregulating the immunosuppressive role of Treg in the inflammatory

environment in future tumor immunotherapy.
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1 Introduction

With the successful implementation of immune checkpoint

inhibitors, such as those targeting cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4) and programmed death receptor 1

(PD-1), immunotherapy has become a pivotal cornerstone in the

realm of cancer treatment (1–3). The immune system consists of

various immune cells, among which T cells are the main cell types

exerting anti-tumor effects during the adaptive immune phase (4–6).

T cells are divided into CD4+ T cells (also known as helper T cells)

and CD8+ T cells, primarily located in lymph nodes and serving

patrol and surveillance functions. Once activated by antigen-

presenting cells, CD4+ T cells can quickly differentiate into

different subtypes, among which those with immunosuppressive

and pro-tumoral functions are referred to as regulatory T cells

(Treg) (7–9). CD4+ T cells can differentiate into various subtypes,

including Th1 and Th2 cells, known for secreting interferon-g and

interleukin, respectively.CD4+ T cells that can secrete interleukin-17

are referred to as TH17. Activated immune cells and tumor cells share

similar metabolic pathways and can undergo a phenomenon termed

“metabolic reprogramming” (10–12). The tumor microenvironment

(TME) shows varying degrees and types of immune cell infiltration.

The high metabolism of tumor cells and the disordered vascular

system within the TME lead to nutrient exhaustion and hypoxic

conditions, setting upmetabolic competition between tumor cells and

infiltrating immune cells (13–15). The activation process of immune

cells requires a substantial amount of energy and metabolic

intermediates to meet the needs of biosynthesis, thereby completing

proliferation, differentiation, and execution of effector functions (12,

16). The nutrient exhaustion caused by tumor cells and immune

cells competing for the same energy sources, along with the

inflammatory microenvironment in the TME promoting Treg cell

reprogramming, ultimately leads to immune escape and tumor

progression (17, 18).

Inflammation has long been a significant factor in the

occurrence and development of cancer. Hanus’s study (19)

suggests that cancer incidence is closely related to the levels of

inflammatory cytokines and the compositional structure of immune

cells. The relationship between cancer incidence and immune cell

composition is based on studies suggesting that the type and

abundance of immune cells within the tumor microenvironment

can influence various aspects of cancer development, including cell

proliferation, angiogenesis, and metastasis (20, 21).. In inflamed

tissues, immune cells and cytokines have a regulatory role in

preventing excessive tissue damage (22–24). When immune cell

function is abnormal, it may promote “inflammation-to-cancer

transformation.” Zhu’s study (25) elucidates potential interactions

among immune cells in the tumor microenvironment during cancer

development and progression, including changes in cell ratios,

crosstalk, and changes in the plasticity of immune cell

phenotypes. Among these immune cells, the reprogramming of

Tregs is an important regulatory factor in immune responses and
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inflammatory diseases. Naive CD4+ T cells bind to the major

histocompatibility complex II (MHC II) expressed by innate

immune cells, regulating helper T cell (Th) differentiation via co-

stimulatory molecules and the release of inflammatory cytokines

(26–28). Typically, Tregs undergo reprogramming under the

induction of the inflammatory environment and suppress anti-

tumor immune responses (29, 30). This article will delve into the

reprogramming of Tregs in an inflammatory environment and their

role in tumor occurrence and development. Additionally, it will

analyze how to avoid the impact of Treg reprogramming under

inflammatory conditions in immunotherapy, based on

this mechanism.
2 Location and physiological
regulation of Treg cells

Tregs primarily comprise two groups: thymus-derived natural

Tregs (nTregs), which originate in the thymus during T cell

development, and peripherally induced Tregs (pTregs), which are

generated in peripheral tissues. Tregs suppress the function of

effector T cells via multiple pathways, including the production of

immunosuppressive cytokines, such as TGF-b and IL-10. Through

interactions with effector T cells or antigen-presenting cells (APCs)

and other immune cells, they play a crucial role in establishing and

maintaining immune tolerance. nTregs typically appear in

peripheral blood and can mitigate graft-versus-host disease

(GVHD) and autoimmune diseases (31–33).

Immune cells Th17 and Treg both originate from naive CD4+ T

cells and can be induced to differentiate by TGF-b. However, they
express different gene transcription factors and have distinct effector

functions. Tregs and Th17 are generally considered to play opposing

roles in immune regulation, with key transcription factors being the

decisive elements in guiding the differentiation of CD4+ T cells into

Tregs and Th17 (34, 35). Mickael etal’s study (36) indicates that the

transcription factor Foxp3 is pivotal in Tregs exerting

immunosuppressive functions. It can inhibit the expression of Th17’s

transcription factors, retinoic acid receptor-related orphan receptor gt
(RORgt), and RORa, thus promoting Treg differentiation. As shown in

Figure 1, several pro-inflammatory factors, including IL-1, IL-2, and IL-

17, have been associated with promoting Th1, Th2 and Th17

differentiation, under certain conditions, can influence Treg

reprogramming and affect the expression of FOXP3. Tregs residing

in tissues, such as tumor microenvironments, can exert intricate

regulatory effects that differ from their counterparts circulating in

peripheral blood. Tissue-resident Tregs are poised to modulate

localized immune responses, impacting tumor progression and

inflammation, whereas circulating Tregs may play broader systemic

roles. The tumor microenvironment exerts a multifaceted influence on

Treg reprogramming through a combination of cytokine signaling,

metabolic competition, exosome-mediated communication, hypoxia-

induced stabilization, and interactions with other immune cells.
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Understanding these dynamic interactions provides a deeper insight

into how Tregs adapt to and modulate the TME, ultimately

contributing to tumor immune escape and progression. In the

differentiation process of Tregs and Th17, the discovery of new

subgroups also provides important insights for disease exploration

(37–39). For instance, IL-17+FOXP3+ T cells produced in chronic

inflammatory environments can express FOXP3 and secrete IL-17

simultaneously. Multiple clinical studies have found that in

autoimmune diseases, allergies, tumors, and other diseases, the

reprogramming of Tregs under an inflammatory microenvironment

significantly impacts disease progression and prognosis (40–42).
3 Mechanism of Treg
reprogramming under
inflammatory microenvironment

FOXP3 is a Treg cell-specific transcription factor that plays a

critical regulatory role in the development and function of Tregs. The

immune regulatory function of Tregs mediated by FOXP3 is achieved

through the dynamic control of gene transcription by forming protein

complexes with several co-regulatory transcription proteins. In CD4+

T cells, the co-expression of FOXP3 and a series of its associated

proteins enables the cells to acquire a Treg phenotype (43–45).

However, the independent expression of any single protein does not

induce Treg-like gene expression, thereby demonstrating the

significance of the collaborative efforts of FOXP3 and its co-

regulatory molecules in cellular phenotype and function. FOXP3 can

also form different complexes with different transcription factors,

thereby affecting the specificity of Treg cell suppression function. In

the IM, FOXP3 in Treg cells can combine with T-bet, a key

transcription factor in Th1 cells, due to external environmental

stimuli, specifically enhancing the immunosuppressive function of

Tregs, which in turn promotes tumor progression (46–48).

The balance between lysine acetylation and deacetylation of the

FOXP3 protein in Treg cells can dynamically regulate its

immunosuppressive function. Under IM, histone acetyltransferases

(HATs) TIP60 and p300 can bind and acetylate the FOXP3 protein.

The acetylation-modified FOXP3 not only stabilizes the FOXP3

protein but also enhances its transcriptional activity and function,
Frontiers in Immunology 03
positively regulating the immunosuppressive activity of Treg cells (49–

51). Consequently, Tregs acquire enhanced immunosuppressive

activity after reprogramming, promoting tumor immune evasion or

tumor progression (52, 53).
4 Regulation of tumor
development by Treg infiltration
into cancer tissues under
inflammatory microenvironment

A study by Parajuli (54) indicates that an increase in Tregs

facilitates immune evasion by the tumor. Introducing T cells

without Tregs significantly improves the body’s anti-tumor

immune response. Simultaneously, the proliferation or activation

of FOXP3+ Tregs under IM severely inhibits tumor immunity.

Clinically, the increase of Treg cells in tumor microenvironments

such as lung adenocarcinoma, pancreatic cancer, and lymphoma

correlates with inflammatory reprogramming and poor prognosis

(55, 56). Mechanistically, Treg cells not only have the ability to

suppress a broad range of anti-tumor immune responses, but also

promote angiogenesis in the tumor microenvironment.

A large body of literature indicates a correlation between Treg

accumulation in tumor tissues and poor prognosis, but some reports

associate Tregs with better prognosis in diseases such as hepatocellular

carcinoma and colon cancer (57). The functional heterogeneity of

tumor-infiltrating Tregs, the site of infiltration, and detection methods,

as well as factors such as levels of CD8+ cytotoxic T cells, tumor cell

immunogenicity, and inflammatory infiltration of the tumor

microenvironment, can explain these seemingly contradictory results.

Sakowska etal’s study (58) points out that a class of prostaglandin E2

(PGE2)-secreting pTregs can proliferate extensively under the

stimulation of tumor antigens and secrete inhibitory cytokines to

suppress anti-tumor immune responses. At the same time, in tumors

with inflammatory infiltration, this type of iTreg can downregulate

inflammatory responses, thereby preventing tissue damage and tumor

development. In a study of patients with lung adenocarcinoma, it was

found that the number of Tregs infiltrating the para-cancerous tissues

was positively correlated with tumor development, while patients with

Tregs infiltrating the cancerous tissues had a better prognosis (59, 60).
FIGURE 1

The process of Treg cell reprogramming and the influencing factors suffered.
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5 Addressing Treg proliferation and
inflammatory reprogramming in
tumor immunotherapy

Under IM, tumor-infiltrating Tregs and their inflammatory

reprogramming in the inflammatory milieu contribute to tumor

immune evasion, making Tregs an important target in tumor

immunotherapy. The currently employed methods are primarily

focused on eliminating Tregs; blocking chemokines or their

receptors to prevent the migration of Tregs towards the

inflammatory tumor microenvironment; abolishing the IM to

inhibit the induction of Tregs’ inflammatory reprogramming;

obstructing key surface markers of Tregs such as immune

checkpoints to reduce the suppressive function of Tregs (61–64).
5.1 Reducing the immunosuppressive
function of Tregs

As shown in Figure 1, Cytotoxic T-Lymphocyte Associated

Protein 4 (CTLA-4) is a marker expressed on the surface of

activated T cells that transmits inhibitory signals during immune

responses. CTLA-4 is constitutively expressed on the surface of

Tregs, and its expression is upregulated after TCR stimulation.

Some study has proven that CTLA-4 can reduce the

immunosuppressive activity of Tregs. The humanized anti-CTLA-

4 monoclonal antibody, Ipilimumab (Yervoy), is currently used to

treat advanced metastatic melanoma.Furthermore, it’s important to

note that CTLA-4, while expressed on Tregs, also has implications

for conventional T cells. CTLA-4 engagement suppresses the

activation and effector functions of conventional T cells, thereby

contributing to overall immune regulation (65, 66).

OX40, a costimulatory molecule of the TNF receptor family, is

transiently expressed on the surface of activated T cells and

constitutively expressed on the surface of Treg cells. Activating

the OX40 signaling pathway with anti-OX40 monoclonal

antibodies in an inflammatory microenvironment can reduce the

immunosuppressive activity of Tregs, thereby reducing their

immunosuppressive function (67, 68).

Programmed death receptor 1 (PD-1) negatively regulates the

activation status of T cells. PD-1 promotes the development of

Tregs and is mainly highly expressed on the surface of T cells that

cannot effectively participate in the anti-tumor immune response.

Although the main purpose of PD-1 ligand blockade is to reverse

the exhaustion state of T cells, PD-1 ligand blockade can also hinder

the development of Tregs and prevent Treg reprogramming under

inflammatory conditions. So far, the anti-PD-1 monoclonal

antibody Pembrolizumab has been used to treat lung cancer,

gastric cancer, and cervical cancer (69, 70).

GITR, a member of the TNF receptor family, is expressed at low

levels in CD4+FOXP3- T cells and constitutively at high levels in

Treg cells. When Tregs infiltrate tumors, the expression level of

GITR is even higher. GITR ligands can specifically reduce Tregs in

the tumor, increase the ratio of effector T cells to Tregs, and thereby

decrease the immunosuppressive function of Tregs in the
Frontiers in Immunology 04
inflammatory microenvironment, improving the effects of

immunotherapy (18, 71).
5.2 Treg depletion

Treg depletion therapy has shown vast potential. This treatment

strategy primarily targets the IL-2 receptor chain, and the anti-

CD25 monoclonal antibody can block the IL-2 signaling pathway

by binding to CD25, thereby causing Treg cell death. Recombinant

immunotoxins (RITs), such as scFv-psm-ETA, can also cause

massive Treg depletion, thus affecting Treg function. However,

using RITs to deplete Tregs has strong side effects, as this

treatment method affects CD4+CD25hi effector T cells, further

weakening the body’s anti-tumor immunity and increasing the

risk of the patient developing autoimmune diseases (72, 73).

In addition to depleting Tregs by targeting Treg-specific surface

markers, some chemotherapy drugs can also achieve Treg depletion

by reducing Treg prol i ferat ion. These drugs include

antimicrotubule agents, such as cyclophosphamide, docetaxel,

vincristine, and thalidomide analogs, as well as cyclooxygenase-2

(COX2) inhibitors. Cyclophosphamide can alkylate DNA, causing

DNA cross-linking and cell death. Reports have stated that Treg

cells are highly sensitive to cyclophosphamide-induced

apoptosis.Regarding T cell receptors (TCRs) of Tregs within

tumor tissues, an intriguing area of investigation emerges. Tregs

play a pivotal role in maintaining immune homeostasis and

preventing autoimmunity, and their presence in tumor

microenvironments raises questions about their TCR diversity

and specificity. TCRs on Tregs could potentially influence their

interactions with tumor antigens, other immune cells, and the

overall immunosuppressive milieu. Research into the TCR

profiles of Tregs within tumor tissues could shed light on their

potential dual role in dampening excessive immune responses while

also contributing to tumor immune evasion. Exploring the TCR

repertoire and antigen specificity of tumor-infiltrating Tregs may

uncover new avenues for immunotherapy strategies and further

enhance our understanding of the complex regulatory network in

the tumor microenvironment. A study by Jiang (74) has shown that

a single injection of cyclophosphamide can significantly reduce

tumor growth rate. Both docetaxel and vincristine can inhibit DNA

synthesis. A phase I clinical study showed that docetaxel can

increase CTL in colorectal cancer patients while simultaneously

reducing CD25+CD4+ T cells, thereby enhancing the body’s

antiviral response. On the other hand, vincristine can inhibit the

proliferation of IL-10 secreting Tregs ex vivo, while upregulating

antigen-specific CTL (75, 76). Thalidomide and its derivatives can

be used to treat multiple myeloma (77). Combinations of Treg-

depleting agents with immune checkpoint inhibitors or other

immunomodulatory therapies might create synergistic effects,

amplifying the anti-tumor immune response and potentially

reducing the doses of individual agents, thereby minimizing side

effects.In addition to the strategies for modulating Tregs, emerging

approaches like nanomedicine have shown promise in this realm

(78–80). Nanomedicine offers innovative tools for precise targeting

and modulation of immune cell populations, including Tregs,
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within the intricate tumor microenvironment. Leveraging these

advancements, future immunotherapy research could explore

novel ways to regulate Treg reprogramming and function, while

minimizing off-target effects and maximizing therapeutic impact.

As such, the integration of nanomedicine-based interventions to

selectively counteract Treg reprogramming could open new avenues

for enhancing the potency of cancer immunotherapy strategies. A

clinical trial for chronic leukemia showed that a thalidomide

derivative, lenalidomide, can significantly reduce the level of

Tregs in peripheral blood and increase the number of Th17 cells.

It is known that COX2 can affect tumor progression in many ways.

Research indicates that COX-2 inhibitors can reduce the proportion

and activity of Tregs in the IM, thereby achieving Treg depletion

and enhancing the effects of immunotherapy (81–84).
6 Existing issues and prospects

Although research on immunotherapy and Tregs has made

rapid progress in recent years, and the role and pathways of tumor-

infiltrating Tregs in the tumor progression under the inflammatory

microenvironment are continually being clarified, the current drugs

used for removing or inhibiting the function of Treg cells, or for

eliminating Tregs, generally have strong side effects or are less

effective. There is still a need to continuously search for or develop

new drugs that can suppress or eliminate Tregs, while having fewer

side effects and better efficacy.
7 Conclusion

In the inflammatory microenvironment (IM), the binding of

FOXP3 in Treg cells to T-bet leads to Treg reprogramming, which

specifically enhances the suppressive function of Tregs on immune

responses. In current cancer immunotherapy, Tregs have become

important targets. To prevent tumor progression and immune

evasion caused by Tregs, it is necessary to reduce the adverse

effects of Treg reprogramming under inflammatory conditions on

immunotherapy by reducing the immunosuppressive function of

Tregs and eliminating Tregs. However, current methods either have

strong adverse drug effects or are Less effective. Therefore, there is a

need to continually develop drugs that can better clear or suppress

Tregs with fewer s ide effect s , thereby reducing the

immunosuppressive effect of Tregs during the process

of immunotherapy.
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