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Regulatory T cells are associated
with the tumor immune
microenvironment and
immunotherapy response in
triple-negative breast cancer

Pengfei Huang1†, Xinyue Zhou2†, Minying Zheng3, Yongjun Yu3,
Gongsheng Jin1* and Shiwu Zhang 3*

1Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu,
Anhui, China, 2Graduate School, Tianjin Medical University, Tianjin, China, 3Department of Pathology,
Tianjin Union Medical Center, Tianjin, China
Introduction: Triple-negative breast cancer (TNBC) is the most aggressive

subtype of breast cancer with a high risk of distant metastasis, an extremely

poor prognosis, and a high risk of death. Regulatory T cells (Tregs) contribute to

the formation of a tumor immunosuppressive microenvironment, which plays an

important role in the progression and treatment resistance of TNBC.

Methods: A public single-cell sequencing dataset demonstrated increased

infiltration of Tregs in TNBC tissues relative to normal breast tissue. Weighted

gene co-expression network analysis was used to identify Treg infiltration-

related modules for METABRIC TNBC samples. Subsequently, we obtained two

Treg infiltration-associated clusters of TNBC by applying consensus clustering

and further constructed a prognostic model based on this Treg infiltration-

associated gene module. The ability of the selected gene in the prognostic

model, thymidine kinase-1 (TK1), to promote the progression of TNBC was

evaluated in vitro.

Results: We concluded that two Treg infiltration-associated clusters had

different prognoses and sensitivities to drugs commonly used in breast cancer

treatment, and multi-omics analysis revealed that the two clusters had different

copy number variations of key tumor progression genes. The 7-gene risk score

based on TNBC Treg infiltration was a reliable prognostic indicator both in the

training and validation cohorts. Moreover, patients with TNBC with high Treg

infiltration-related scores lacked the activation of immune activation pathways

and exhibited resistance to anti-PD1 immunotherapy. Knocking down TK1 led to

impaired proliferation, migration, and invasion of TNBC cells in vitro. In addition,

specimens from patients with TNBC with high TK1 expression showed

significantly higher Treg infiltration in tumors. Results of spatial transcriptome

analysis showed that TK1 positive cells mainly localize in tumor area, and Treg cell

infiltration in TNBC tissues was associated with high expression of TK1. Pan-

cancer analysis also demonstrated that TK1 is associated with poor prognosis and

activation of proliferation pathways in multiple cancers.
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Discussion: We established a prognostic model related to Treg infiltration and

this model can be used to establish a clinically relevant classification of TNBC

progression. Additionally, our work revealed the underestimable potential of TK1

as a tumor biomarker and immunotherapeutic target.
KEYWORDS

triple-negative breast cancer, regulatory T cells, tumor microenvironment, single-cell
RNA-sequencing, prognostic signature
Introduction

Breast cancer is the most frequently diagnosed type of cancer in

women and is the primary cause of cancer-related deaths (1). Triple-

negative breast cancer (TNBC) accounts for 10–20% of patients

diagnosed with breast cancer each year and generally affects young

females, particularly those of African descent (2). Breast cancers are

classified as triple negative, luminal (ER/PR receptor positive), and

HER2/neu based on gene expression profiles. This classification

scheme has been documented to have prognostic significance and

treatment response implications (3–6). TNBC refers to breast cancer

that is negative for estrogen receptor (ER), progesterone receptor

(PR), and human epidermal growth factor receptor expression

(HER2) (5). As the most lethal breast cancer subtype, TNBC is a

highly aggressive endocrine malignancy associated with high rates of

recurrence and distant metastasis (7). To date, there are no specific

treatment guidelines for TNBC. Despite advances in chemotherapy

and neoadjuvant immunotherapy to improve patient prognoses,

many patients continue to develop chemoresistance (8). The

possibility of chemoresistance in patients with TNBC varies. One

speculation is that it is closely associated with the tumor

microenvironment (TME).

The TME is crucial to the development and progression of

cancer. In contrast to other subtypes, TNBC features a distinctive

TME to stimulate progression (9). The role of the TME in anti-

tumor responses is reflected in its ability to induce proliferation and

angiogenesis, inhibit apoptosis, suppress the immune system, and

evade immune surveillance (10). The composition of the TME

includes transformed extracellular matrix (ECM), soluble cytokines,

immunosuppressive cells, epigenetic modifications, and
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reprogrammed fibroblasts (9). Cancer-associated fibroblasts play

an important role in the TME. Biglycan, a cancer-associated

fibroblast-specific secreted factor, can be applicable in clinical

practice and serve as a therapeutic target for immunotherapy

resistance in breast cancer (11). Tumor-associated macrophages

(TAM) have an essential role in the progression of TNBC, including

driving the aggressive cellular phenotype in various cancers.

Macrophages are functionally malleable and can switch their

polarization state from M1 to M2 to adapt to varying

physiological conditions (12). The TME creates a favorable

environment for cancer cells to interact with the surrounding

endothelial cells, immune cells, and fibroblasts (13).

As a specialized subset of T cells, T-regulatory cells (Tregs) can

suppress anti-tumor immune responses and protect against

autoimmunity by restraining T-cell proliferation and cytokine

production (14). TME-infiltrating Tregs can create an

immunosuppressive environment by activating immune-

inhibitory and pro-tumorigenic signaling, which contributes to

reducing the impact on chemotherapy and radiotherapy

responses (15). Breast cancer cells secrete chemokines that bind

to Treg surface receptors to trigger Treg expansion (16). The

potential role of Tregs in the TME and potential therapeutic

targets of Treg cells may provide novel interventions for tumor

immunotherapy in TNBC.

Weighted gene co-expression network analysis was utilized to

identify modules related to Treg infiltration in METABRIC TNBC

samples. Subsequently, a prognostic model was developed based on

the modules associated with Treg infiltration. Patients in the

METABRIC cohort were divided into high- and low-risk groups

based on the risk score associated with Treg infiltration. In this

study, we conclude that one of the main reasons for the lower

overall survival (OS) of patients in the high-risk group is the

extensive infiltration of Tregs and the disturbance of immune

response pathways. Thymidine kinase-1 (TK1), lysyl oxidase

(LOX), lysine demethylase 5B (KDM5B), proteasome 26S subunit

non-ATPase 4 (PSMD4), and nuclear factor erythroid 2-like 3

(NFE2L3) genes are implicated in relapse and poor prognosis of

patients with breast cancer. Among these genes, TK1 was found to

have significant prognostic value in TNBC. As a cell cycle-

dependent kinase, TK1 can regulate cellular proliferation through

restoration of the nucleotide thymidine in the DNA repair pathway

(17). There is much research on the role of TK1 as a diagnostic

biomarker for several cancer types including chronic lymphocytic
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https://doi.org/10.3389/fimmu.2023.1263537
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2023.1263537
leukemia (CLL), glioma, and others (18). Elevated serum TK1 levels

have been shown to predict CLL disease progression and enable

medical workers to identify patients with CLL at high risk of rapid

progression and early stage (19). Single-cell functional analysis

revealed that TK1 expression positively correlated with the

proliferation, cell cycle, DNA repair, DNA damage, and

epithelial-mesenchymal transition of glioma cells. TK1 is

expressed at high levels in gliomas, and the general survival is

worse in patients with high TK1 expression (20). Serum TK1

concentration also indicates the prognostic potential of patients

with malignant tumors. TK1 expression is barely detectable in

normal serum but is variably high in malignant tumors,

depending on the type, stage, growth rate, and treatment of

malignant tumors (21–23). Overall, Treg infiltration-associated

gene module can be used to establish a clinically relevant

classification of TNBC progression. Our work revealed the

underestimable potential of TK1 as a tumor biomarker and

immunotherapeutic target. The overall design of this study is

illustrated in Figure 1.
Methods

Dataset source and data pre-processing

Gene expression and clinical data of 1,904 patients with breast

cancer from the Molecular Taxonomy of Breast Cancer

International Consortium (METABRIC) dataset were downloaded

from cBioPortal (https://www.cbioportal.org/). Additionally,

clinical and transcriptome data of two other breast cancer

datasets were downloaded from the Gene Expression Omnibus

(GEO), including GSE58812 and SCAN-B. After excluding patients

who were positive for ER, PR, and HER2, 298 patients in the

METABRIC dataset, 333 patients in SCAN-B, and 107 patients in

GSE58812 were included for further analysis. For the single-cell

RNA sequencing (scRNA-seq) dataset, GSE161529 raw data were

downloaded from GEO. scRNA-seq data processing was performed

using the R ‘Seurat’ package, as described in the tutorial. Briefly,
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cells with gene expression <300 or >6500 and mitochondrial gene

expression >10% were excluded. It applied the SCTransform

function to normalize and scale the raw counts before performing

a principal component analysis (PCA). The R “Harmony” package

was used to remove batch effects from isolated scRNA-seq raw data.

Using unsupervised cluster analysis and unified manifold

approximation and projection (UMAP), we identified distinct

clusters of cells in each scRNA-seq dataset. Each cell cluster was

then annotated based on known cell type marker genes.
Weighted gene co-expression network
analysis (WGCNA)

Gene co-expression networks were constructed based on

METABRIC transcriptome data using the R ‘WGCNA’ package.

We calculated Pearson’s correlation coefficient between each pair

of genes to obtain a similarity matrix. ‘WGCNA’ has a power

function that can convert the similarity matrix into an adjacency

matrix. Among all soft thresholds (b) with R2 > 0.9, we chose the

automatic value of b (b = 5) returned by the WGCNA pick soft-

threshold function. According to the recommendations of the

‘WGCNA’ tutorial, the network merge height was chosen to be

0.25. Other WGCNA parameters used the default settings for

further analysis.
Gene set variation analysis (GSVA) and
estimation of immune cell infiltration

GSVA was performed using the R ‘GSVA’ package 16 to

calculate related gene set enrichment scores. High and low GSVA

scores were used to compare the enrichment of up- or

downregulated associated pathways in the high-risk score group

relative to the low-risk score group. All GSVA gene sets were

downloaded from MSigDB v7.4. Immune infiltration in the

METABRIC and GEO cohorts was quantified using the

CIBERSORT algorithm based on normalized expression data.
FIGURE 1

The workflow of this study.
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Treg cell infiltration-related
cluster acquisition

We selected a module associated with Treg cell infiltration and

then performed univariate Cox regression analysis on the genes in

this module. The 22 genes (P < 0.05) associated with survival in

univariate analysis were then input into the R ‘ConsensusClusterPlus’

package for consensus clustering of METABRIC patients. According

to the results of the cluster consensus value and cumulative

distribution function, the optimal K value was determined to be 2.
Development of the Treg-related
prognostic model

A Treg-related prognostic model was established based on three

TNBC cohorts, including METABRIC as the training dataset and

another two cohorts as validation datasets (SCAN-B and GSE58812).

The 22 prognosis-related genes described above were further screened

for key genes related to Treg cell infiltration and patient prognosis

using two machine learning methods, least absolute shrinkage and

selection operator (LASSO) logistic regression and random forest.

First, 17 prognostic genes were selected using the R ‘glmnet’ package

to perform LASSO regression with 10-fold cross-validation.

Subsequently, 13 prognostic-related features were screened using the

random forest algorithm in the R ‘randomForestSRC’ package. Finally,

seven common genes (TK1, SRM, PSMD4, NFE2L3, LOX, KDM5B,

and RITA1) were obtained to build the multivariate Cox regression

models (both using stepwise regression). The risk score was calculated

as follows:0.236∗(TK1 expression) + 0.321∗(SRM expression)-0.512∗
(PSMD4 expression)-0.124∗(NFE2L3 expression)+0.292∗(LOX

expression)+0.463∗(KDM5B expression)+0.457∗(RITA1 expression).

The samemodel score threshold was used to calculate the risk score in

the METABRIC and validation cohorts. Patients were divided into

low- and high-risk groups according to the median risk score cutoff,

and differences in OS were compared using the R ‘survival’ package.

We calculated the area under the curve (AUC) using the R ‘timeROC’

package to assess prognostic model accuracy.
Nomogram construction

We created a nomogram including the risk score and tumor size

using the regplot function in the R ‘rms’ package. A receiver

operating characteristic (ROC) curve was plotted to check the

accuracy of our predictive model. We also plotted calibration and

decision curve analysis (DCA) curves to illustrate the discrepancy

between our model and actual observed patient survival.
Chemotherapeutic response prediction

The chemotherapeutic response for each cluster was predicted

based on the largest publicly available pharmacogenomics

database (Genomics of Drug Sensitivity in Cancer [GDSC],
Frontiers in Immunology 04
https://www.cancerrxgene.org/). Four chemotherapeutic drugs

commonly used in the treatment of TNBC, including

Doxorubicin, Gefitinib, cisplatin, and gemcitabine, were selected

for further analysis. The prediction process was conducted using the

R ‘pRRophetic’ package. The half-maximal inhibitory concentration

(IC50) of samples was estimated using ridge regression, and

prediction accuracy was assessed by 10-fold cross-validation

based on the GDSC training set. All parameters were set to

default values, except for tissue type as ‘breast’.
Spatial transcriptomics sequencing
data analysis

The publicly available Spatial Transcriptome Dataset used in

this study is available from the Gene Expression Omnibus

(accession numbers GSE210616). All details of spatial

transcriptomics data processing and analysis performed in this

work are referred to the Seurat website tutorial (https://

satijalab.org/seurat/articles/spatial_vignette.html). To integrate the

data, the spatial transcriptome data were pre-processed by the

“SCTransform” function and PCA analysis. Additionally, the

robust cell type decomposition (RCTD) approach (https://

github.com/dmcable/spacexr) was used to infer the cell type

composition at each spatial location. A published scRNA-seq data

(GSE176078) was used as a reference panel for RCTD fitting.
Pan-cancer analysis

The normalized mRNA expression and clinical information of

TCGA pan-cancer cohorts (Supplementary Table 1) were download

from the UCSC Xena Browser (https://xenabrowser.net/

datapages/).
Data and code availability

Public data used in this work can be download from the UCSC

Xena (xenabrowser.net/datapages/) database and Gene Expression

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/). The essential

analysis script is available from GitHub at https://github.com/

TNBC222/TNBC_Tregs and 10.6084/m9.figshare.23750538.
Cell culture

Two TNBC cell lines, BT-549 and MDA-MB-231, were

obtained from the American Type Culture Collection (ATCC;

Manassas, VA, USA). BT-549 cells were cultured in Roswell Park

Memorial Institute-1640 medium (1×) (Gibco, Thermo Fisher

Scientific, Suzhou, China) supplemented with 10% fetal bovine

serum (FBS; Gibco, Life Technologies, New Zealand), 1%

penicillin-streptomycin (Gibco, Life Technologies, USA), and

insulin. MDA-MB-231 cells were maintained in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 10% FBS
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and 1% penicillin-streptomycin. The cells were incubated at 37°C in

a humidified atmosphere containing 5% CO2.
Transient small interfering RNA
(siRNA) transfection

TK1 was knocked down using transient small interfering RNA

(siRNA) transfection. siRNA oligonucleotides were synthesized by

Gene-pharma (Shanghai, China), including three siRNA

interference sequences (S248, S363, and S683), one positive

control sequence (GAPDH), one negative control sequence (NC),

and one mock control sequence (MC) with only transfection

reagents. TK1-248 and TK1-683 were demonstrated to have

significant inhibitory effects on TK1 expression and were used in

this study.
Western blot analysis

The control and TK1-siRNA (TK1i)-transfected BT-549 and

MDA-MB-231 cells were collected and lysed. The protein samples

were loaded onto 10% sodium dodecyl sulfate-polyacrylamide gels

and separated by electrophoresis. Subsequently, the separated

proteins were transferred to polyvinylidene fluoride (PVDF)

membranes. The PVDF membranes were then soaked in 5% skim

milk for approximately 1 h at room temperature. The membranes

were incubated with the first antibodies at 4°C overnight

(Supplementary Table 2). Then, the membranes were further

incubated with the secondary antibody at room temperature for

at least 1 h the next day. b-actin (Sigma-Aldrich) was used as a

loading control. All western blotting results were duplicated at least

three times. Protein expression was detected using a Bio-Rad

imaging system and ImageJ software.
Plate colony formation assay

The proliferative ability of cells was evaluated using a plate

colony formation assay. Three groups of both TNBC models were

cultured with 30, 60, or 120 cells in 12-well plates at 37°C with 5%

CO2 for 2 weeks. When visible cell clones appeared in the 12-well

plate, incubation was terminated, the cells were fixed with absolute

methanol for 30 min, and the cell colonies were stained with 0.1%

crystal violet for 30 min. The number of cell colonies was counted

under a microscope, and a single colony was defined as a cluster

containing at least 50 cells.
Wound-healing assay

A wound-healing assay was performed to evaluate the

migration ability of different cell groups (TK1 knockdown and

control). Each cell line had one control group and two knockdown

groups. The cells were cultured in a 6-well plate. When confluency

reached approximately 95%, wound tracks were created at the back
Frontiers in Immunology 05
of the plate by scraping the cell monolayer with sterile pipette tips.

Detached cells were gently removed by washing three times with

PBS. Subsequently, cells were cultured in serum-free culture

medium at 37°C with 5% CO2 and photographed at 0 h and 24 h

under a microscope. The scratched area was measured using

ImageJ software.
Cell counting kit-8 (CCK8) assay

The viability of both BT-549 and MDA-MB-231 cells was

assessed by the CCK8 assay. Cells were seeded in a 96-well plate

at an appropriate density (2x103 cells per well) and were incubated

for different times (0h,24h,48h,72h,96h). CCK-8 solution (10%;

Dojndo, Japan) was added to each well and the plate was

incubated for 1–4 h. The absorbance of each well was measured

using a microplate reader.
Transwell assay

The migration ability was measured via transwell migration

assay using cell culture inserts. Cells (5×104 cells per insert) in 200

mL medium without FBS were seeded in the upper chamber while

600 µL medium containing 20% FBS was added to the lower

chamber. Then cells were cultured in a CO2 incubator for 24h.

After removing the medium, the cell culture inserts were fixed in

methanol for 30 min and stained with 0.1% crystal violet for 30 min.

Cells were counted from at least 5 different fields by ImageJ

software. Independent experiments were performed three times.
Human TNBC samples

Paraffin-embedded TNBC (n=31) tissue samples were collected

from the Department of Pathology in Tianjin Union Medical

Center. The Hospital Review Board of the Tianjin Union Medical

Center approved this study and the confidentiality of patient

information was maintained.
Multiplex immunofluorescence

Paraffin-embedded TNBC tissue sections were deparaffined in

xylene and rehydration with ethanol. Antigen retrieval was

performed with EDTA antigen repair solution. The slides were

blocked in 3% H2O2 for 30 min at room temperature. The tissues

were blocked with 10% goat serum for 30 min at 37°C and then

incubated with primary antibodies (Supplementary Table 2) at 4°C

overnight. The next day, the slides were incubated with secondary

antibody at for 45 min at 37°C. Finally, DAPI was used to stain the

nuclei and the slides were mounted with fluorescent sealer. These

slides were scanned and imaged, and then the mean fluorescence

intensities of TK1 and FOXP3 were calculated and statistically

analyzed. This analysis was based on the intensity of staining by

using Image J analysis software.
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Statistical analysis

Differences in survival between the groups were assessed using

Kaplan-Meier curves and the log-rank test. Correlation coefficients

were calculated using Pearson and Spearman correlation analyses.

Student’s t-test was used to compare continuous normally

distributed data, and the Mann-Whitney U test was used to

compare non-normally distributed data. For comparisons

between more than two groups, the Kruskal-Wallis test and one-

way ANOVA were used for nonparametric and parametric data,

respectively. All statistical analyses were performed using R

software (4.2.2), and P values < 0.05 were considered

statistically significant.
Results

scRNA-seq analysis of normal breast
epithelial and TNBC tissues

The scRNA-seq data of 21 samples were extracted and re-

analyzed from GSE125449. Of these samples, 13 were from normal

breast tissue and eight were from TNBC.We defined six cell clusters

using canonical markers: B_plasma, myeloid, NK_T, fibroblast,
Frontiers in Immunology 06
endothelial, and epithelial cells (Figure 2A). To explore the

heterogeneity of NK_T cells, we extracted the cells defined as

‘NK_T cells’ and re-clustered the data. Furthermore, these NK_T

cells were aggregated into five major populations, including naïve T,

regulatory T (Treg), cycling T, cytotoxic T, and NK cells based on

known cell markers (Figure 2B). Because Treg cells favor the

formation of a tumor-suppressive microenvironment, which

facilitates tumor progression and reduces the response to

immunotherapy, we explored changes in the infiltration of Treg

cells during tumor formation. Interestingly, we observed a

significantly increased infiltration of Tregs into TNBC tissue

compared to normal breast tissue (Figures 2C, D).
Stratification of TNBC tumors based on
Treg infiltration

To identify the key marker genes associated with infiltration of

Tregs, Treg infiltration was quantified using the CIBERSORT

algorithm, and WGCNA was used to detect the gene module

related to Treg infiltration. To build a scale-free WGCNA

network, we chose a soft-threshold power of b = 5

(Supplementary Figures 1A, B). Ten gene modules were identified

in the METABRIC cohort, among which the blue gene module was
A B

DC

FIGURE 2

scRNA-seq analysis of normal breast epithelial and TNBC tissues. (A) UMAP visualization maps of various cell clusters in normal breast epithelial and
TNBC tissues by single cell RNA sequencing analysis. (B) UMAP visualization maps of re-clustering annotated NK_T cells in Figure 2A. (C) The
difference in heterogeneity of NK_T cells between normal breast epithelial and TNBC tissues. (D) Differences in the proportions of different subtypes
of NK_T cells in normal breast epithelial and TNBC tissues.
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positively correlated with Treg infiltration (r = 0.29, P = 5e-07) and

negatively correlated (r = 0.12, P = 0.03) with patient survival status

(Figure 3A). We further investigated the correlation between

module membership and gene significance for Treg cells, and the

results showed that the blue module was highly correlated with Treg

cell infiltration (Supplementary Figure 1C). Using the survival data

available in the METABRIC cohort and the expression values of the

blue module genes, we performed survival analysis using a
Frontiers in Immunology 07
univariate Cox proportional hazards model and identified 22

prognostic genes associated with Treg infiltration. We then

performed unsupervised clustering of patients in the METABRIC

cohort based on the expression values of these 22 genes. A total of

298 patients in the METABRIC cohort were divided into two

groups: 174 patients in Cluster1 and 124 patients in Cluster2

(Figure 3B; Supplementary Figures 2A, B). PCA also showed that

the two groups were distinct (Figure 3C). The heatmap (Figure 3D)
A B

D E

F

G

C

FIGURE 3

Stratification of TNBC tumors based on Treg infiltration. (A) Analysis of correlation coefficients between different phenotypes and co-expression
modules. The genes in the blue module positively correlated with Treg infiltration. (B) Consensus clustering plot showing METABRIC samples
classified into two clusters. (C) Principal component analysis of two clusters. (D) Heatmap of expression patterns of 22 genes in two clusters. (E)
Doughnut diagrams of survival status, tumor grade, and tumor stage of two clusters. (F) Kaplan-Meier survival analysis shows the difference in OS
between the two clusters. (G) Differences in chemotherapy responsiveness between the two clusters.
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also showed that the expression patterns of these 22 genes differed

between Cluster1 and Cluster2. Furthermore, the chi-squared test

indicated that patients in Cluster2 exhibited higher tumor grade,

stage, and worse survival status than patients in Cluster1

(Figure 3E). Survival analysis also showed that the Cluster2 group

had a poorer prognosis than the Cluster1 group (Figure 3F).

Considering that patients with TNBC can develop resistance to

multiple chemotherapy drugs, we evaluated the response of these

two clusters to four TNBC chemotherapy drugs: gemcitabine,

doxorubicin, gefitinib, and cisplatin. We trained the predictive

model using ridge regression on the GDSC cell line dataset and

evaluated it using 10-fold cross-validation for satisfactory predictive

accuracy. We estimated the IC50 for each sample in the

METABRIC dataset based on the prediction models for these four

chemotherapeutic drugs. The results showed that patients in

Cluster1 were more sensit ive to these four common

chemotherapies (Figure 3G). We also investigated the differences

in copy number variation (CNV) changes between patients in

different clusters using the METABRIC database. Compared with

Cluster1, Cluster2, with poorer prognosis, had chromosomal

amplification of various tumor-promoting gene loci, such as

E2F3, MYC, and GATA3, and partial or complete deletion of the

chromosome where the tumor suppressor gene PTEN and RB1 loci

are located (Supplementary Figure 3).
Construction and validation of Treg
infiltration-related prognostic model

To facilitate the clinical application of Treg infiltration-related

genes in prognosis, we employed two machine learning algorithms

to screen key genes from all 22 Treg infiltration-related genes.

Seventeen and 13 key genes were identified by LASSO and random

forest (Supplementary Figures 4A, B), respectively. Then, the seven

intersected genes, including TK1, spermidine synthase (SRM),

PSMD4, NFE2L3, LOX, KDM5B, and RBPJ interacting and

tubulin associated 1 (RITA1), of the two algorithms were selected

to construct a multivariate Cox regression model (Figures 4A, B).

Correlations between each model gene were investigated

(Supplementary Figure 5). Their respective influence on OS time

was explored using Kaplan-Meier survival analysis (Supplementary

Figure 6A). The Wilcoxon test was applied to explore their

expression levels between normal and TNBC tissues in the

training cohort (Supplementary Figure 6B). The expression of all

model genes was notably different, and KDM5B, LOX, SRM, and

TK1 were significantly related to prognosis. Patients in the

METABRIC cohort were then divided into two groups according

to median risk scores, and patients with higher Treg infiltration-

related risk scores had poorer OS (Figure 4C). In addition, the time

ROC curve showed that the risk score had good predictive

performance on the OS of patients within 5 years, and the AUC

was approximately 0.7 (Figure 4F). To validate the prognostic

significance of the risk score, we used the same formula to obtain

the Treg infiltration-related risk score in two cohorts (GSE58812

and SCAN-B). The risk score had similar prognostic value in these

two validation cohorts and good predictive performance for OS
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(Figures 4D, E, G, H). Moreover, multivariate Cox analysis

suggested that the Treg infiltration-related risk score could be

used as an independent prognostic factor for TNBC

(Supplementary Table 3).
Differences in immune-related
characteristics between high- and
low-risk score groups

To reveal the difference in pathway activation for each risk score

group, we calculated the GSVA score based on KEGG pathway gene

sets. As shown in Figure 5A, patients with high-risk scores had

higher activation of metabolism-related pathways, such as lipid and

amino acid metabolism-related pathways, which was consistent

with the reported metabolic properties of Treg cells. However,

patients with a high-risk score showed lower activation of

immune-related pathways, such as the T- and B-cell receptor

signaling pathways (Figure 5A). Furthermore, the results of the

CIBERSORT algorithm for the METABRIC cohort and SCAN-B

showed lower B-cell and CD8 T-cell infiltration but higher Treg-cell

and M2-macrophage infiltration in high-risk score patients relative

to low-risk score patients (Figure 5B; Supplementary Figure 7A).

Interestingly, the tumor mutational burden (TMB) level in the high-

risk group was lower than that in the low-risk group (Figure 5C).

Moreover, we identified the difference in immune checkpoint

expression between low- and high-risk score groups, showing

lower expression of immune checkpoint genes in patients with

high-risk scores than in those with low-risk scores (Figure 5D,

Supplementary Figure 7B). Finally, we calculated the correlation

between the risk score genes and immune cell infiltration. The

results showed that most of the genes were negatively correlated

with immune cell infiltration that promotes immunotherapy

response (B cells, CD8 T cells) and positively correlated with Treg

cell infiltration (Figure 5E).
Estimation of drug and
immunotherapy responses

The above results suggest that the Treg infiltration-related risk

score is associated with immunotherapy effectiveness. We collected

a dataset containing immunotherapy data for patients with TNBC,

GSE173839. Box plots showed higher risk scores in immunotherapy

non-responders than in immunotherapy responders (P = 0.023,

Figure 6A). The percentage of patients who failed to respond to

immunotherapy in the high-risk score group was higher than that

in the low-risk score group (82% VS 30%, Figure 6B). In addition,

ROC curve analysis indicated that the Treg infiltration-related risk

score had excellent performance in predicting immunotherapy

responsiveness (AUC = 0.796, Figure 6C). We employed two

different approaches to identify drug candidates with higher drug

sensitivity in patients with a high Treg infiltration-related risk score.

Analyses were performed using CTRP- and PRISM-derived drug

response data. First, a differential drug response analysis was

performed between the high Treg infiltration-related risk score
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and low Treg infiltration-related risk score groups to identify

compounds with lower estimated AUC values in the high Treg

infiltration-related risk score group (log2FC > 0.10). Next, we used

the Spearman correlation coefficient between AUC values and Treg

infiltration-related risk score to select compounds with negative

correlation coefficients (Spearman’s r < -0.50 for CTRP or -0.45 for

PRISM). These analyses yielded ten CTRP-derived compounds

(including SGX-523, DNMDP, tivozanib, AZD6482, BRD-

K04800985, PLX-4720, MK-0752, MI-1, BRD-K33199242, and

TG-100-115) (Figure 6Da) and four PRISM-derived compounds

(including uprosertib, NVP-BEZ235, BAY-87-2243, and

temsirolimus) (Figure 6Ea). All these compounds had lower

estimated AUC values in the high Treg infiltration-related risk

score group and were inversely correlated with the Treg infiltration-

related risk score (Figure 6Dd, Eb).
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Nomogram establishment and assessment

To enhance the predictive power of the above risk scores, risk

score and tumor size were combined to establish a nomogram

model using multivariable Cox regression analysis (Figure 7A).

Disease-specific survival (DSS) calibration curves at 1, 2, 3, and 5

years showed that predicted survival probabilities were in

accordance with actual survival, demonstrating the robustness of

this nomogram in predicting survival (Figure 7A). In addition,

DCA was performed, and the results showed that the prognostic

value of the nomogram was superior to that of the individual

variables (Figure 7A). Furthermore, the results of our study

showed that the AUC predicted by the nomogram exceeded that

of the risk score in both the training set and the test cohort

(Figures 7B-E).
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FIGURE 4

Construction and validation of Treg infiltration-related prognostic model. (A) Identification of seven genes in the intersection of the two machine
learning algorithms. (B) Forest plot shows the results of multivariable Cox proportional hazard regression analysis. (C-E) Kaplan-Meier survival
analysis shows the difference in OS between high-risk and low-risk score groups in the training and validation sets. (F-H) AUC of time-dependent
ROC curve for risk score in the training and validation sets.
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FIGURE 5

The difference in immune-related characteristics between high- and low-risk score groups. (A) Differences in pathway activities scored by GSVA
between high- and low-risk score groups. The red fonts emphasize the downregulated immune response-related pathways in patients with high-
risk score. (B) Differences in immune cell infiltration between high- and low-risk score groups. The red fonts represent enhanced infiltration of
immunosuppressive cells and decreased infiltration of tumor-killing immune cells, such as CD8+ T cell and B cell in the high-risk group. ‘*’ indicates
P -value ≤ 0.05, ‘**’ indicates P-value ≤ 0.01, ‘***’ indicates P-value ≤ 0.001. (C) Differences in tumor mutation burden between high- and low-risk
score groups. (D) Differences in expression of known immune checkpoint genes between high- and low-risk score groups. (E) Correlation of risk
score genes with immune cell infiltration.
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TK1 serves as a key risk score player and
tumor promoter in TNBC

Results of the spatial transcriptome analysis reveals that TK1-

positive expressed cells primarily localize in the tumor cells.

Furthermore, it demonstrates an elevated infiltration of Treg cells

in TNBC tissues with high expression of TK1 (Figures 8A, B). The

Treg marker-FOXP3 multiple fluorescent staining method was used

to evaluate 31 cases of patients with TNBC to detect the relationship

between TK1 expression and Tregs. As expected, TK1 expression

was positively correlated with the expression status of the Treg

marker Foxp3 (Figures 8C-E). This result suggested that patients

with higher TK1 expression exhibited more Treg infiltration.
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The relationship between TK1 and the Hallmark pathway in the

TCGA pan-cancer cohort was then analyzed. The results of this

study showed that TK1 was positively correlated with cell cycle- and

proliferation-related pathways, such as MYC target and MTORCI

signaling pathway, in multiple cancer types (Figure 9A). TK1

expression in tumor and normal tissues of 20 cancer types in the

TCGA cohort was analyzed; TK1 was upregulated in 70% of

tumors, including BLCA, UCEC, HNSC, PRAD, KIRP, COAD,

LUSC, KIRC, LIHC, BRCA, THCA, LUAD, CHOL, ESCA, and

STAD (Figure 9B). We analyzed the relationship between TK1 and

the survival prognosis of patients with 33 types of cancer, and the

results showed that high TK1 expression was associated with

impaired survival in more than 10 cancers (Figure 9C).
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FIGURE 6

Estimation of drug and immunotherapy responses. (A) Differences in risk score between response to immunotherapy and non-response to
immunotherapy. (B) Differences in proportion of patients who failed to response to immunotherapy between high- and low-risk score groups. (C) AUC
of risk score on predicting immunotherapy effectiveness. (D) Spearman correlation and differential response analyses of ten CRTP-derived compounds
(a), and the difference of AUC value between high- and low-risk score groups response to ten CRTP-derived compounds (b). (E) Spearman correlation
and differential response analyses of four PRISM-derived compounds (a), and the difference of AUC value between high- and low-risk score groups
response to four PRISM-derived compounds (b). ‘*’ indicates P-value ≤ 0.05, ‘**’ indicates P-value ≤ 0.01, ‘***’ indicates P-value ≤ 0.001.
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To verify the role of TK1 as a key player in the risk score as well

as a tumor promoter in TNBC, we performed several functional

experiments to detect the migration, invasion, and proliferation

abilities of the control and siRNA-mediated knockdown groups.

The HPA database shows that TK1 is highly expressed in cancer

tissues (Figure 10A). To explore the role of TK1 in TNBC

proliferation and migration in vitro, transient transfection

targeting TK1 was used to inhibit its expression (si-TK1-1 and si-

TK1-2). siRNA-mediated knockdown reduced TK1 expression in
Frontiers in Immunology 12
MDA-MB-231 and BT-549 cells (Figure 10B). The migration,

invasion, and proliferative abilities of TNBC cells decreased after

TK1 knockdown, and the differences were statistically significant.

Compared with those in the control group, the results of CCK-8

(Figure 10D) and colony formation assays (Figure 10E) showed that

silencing TK1 significantly reduced the viability and proliferative

ability of TNBC cells, respectively. Moreover, results of the wound-

healing assay and transwell assay also revealed that the migration

ability of cells after TK1 knockdown was decreased compared with
A
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FIGURE 7

Establishment and assessment of the nomogram model. (A) Nomogram based on Treg infiltration-related risk score and tumor size (left). Disease-
specific survival calibration curves at 1, 2, 3, and 5 years (right, up). Nomogram decision curve analysis, Treg infiltration-related risk score, and tumor size
(right, down). (B-E) Prognostic value of the nomogram in the training and validation sets. ‘*’ indicates P-value ≤ 0.05, ‘***’ indicates P-value ≤ 0.001.
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the control group (Figures 10C, F). In conclusion, these findings

collectively confirm that TK1 promotes the proliferation and

migration of TNBC cells.
Discussion

TNBC is known for its aggressive behavior, including early

recurrence and metastasis, and remains a lethal disease owing to its

high heterogeneity and limited treatment options (24). Currently,

chemotherapy remains the standard treatment for TNBC (25–27).

Unfortunately, patients often develop resistance to chemotherapy

(28), highlighting the urgent need to identify new therapeutic

targets for TNBC.
Frontiers in Immunology 13
In recent years, advances in omics technologies have revealed

the relevance of tumor microenvironment heterogeneity in TNBC

and uncovered its close dynamic relationship with cancer cell

characteristics (29). In our study, using scRNA-seq technology, a

powerful tool for investigating tumor heterogeneity and cellular

subpopulations (29), we observed a substantial increase in Treg

infiltration within TNBC tissue compared to normal breast tissue.

Furthermore, we revealed two Treg infiltration-related subtypes in

TNBC; Cluster1 tended to represent a more severe condition than

Cluster2. This finding is consistent with previous studies indicating

that Treg infiltration worsens TNBC progression, leads to poorer

prognosis, and contributes to immunotherapy resistance (30–38).

For example, Bai et al. demonstrated that high annexin-A1

expression in Tregs was associated with poor prognosis in TNBC,
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FIGURE 8

Multiplex immunofluorescence and spatial transcriptomics were employed to investigate the correlation between tumor cells expressing TK1 and the
infiltration of Treg cells. (A, B) The relationship between TK1-expressing tumor cells and Treg cell infiltration. (C-E) High TK1 expression associated
with increased Treg infiltration. Representative images of multiplex immunofluorescence in TK1-high (C) and TK1-low (D) human triple-negative
breast cancer tissues. (E) Statistical analysis of the mean fluorescence intensity of Foxp3 and TK1. Blue: DAPI; Magenta: TK1; Green: Foxp3. Scale bar
= 50 µm.
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and inhibiting the function of tumor-infiltrating Tregs could reduce

the size of TNBC tumors (39). Li et al. demonstrated that

chemokine (C-X-C motif) ligand 1 derived from tumor-associated

macrophages induces the establishment of an immune-suppressive

TME by recruiting naïve CD4+ T cells and promoting their

differentiation into Tregs (40). It is necessary to assess the risk

associated with Treg infiltration in TNBC and future research

should explore targeted modulation of Tregs to develop new

treatment options for patients with TNBC.

Furthermore, the seven intersected genes were selected to

construct the multivariate Cox regression model. The algorithmic

analysis of the three cohorts revealed that Treg infiltration-related

risk scores categorized patients into high- and low-risk groups, with

the high-risk group exhibiting worse OS decreased infiltration of B

and CD8 T cells, and increased infiltration of Tregs compared to the

low-risk group. Numerous studies have demonstrated the

significance of T- and B-cell immune signaling pathways as

important features for predicting prognosis, which are associated

with favorable responses to immunotherapy and better clinical

outcomes. Tregs have been shown to suppress the cytotoxic

function of CD8+ T cells, support B-cell growth, and promote

cancer progression (41–45). This suggests that Treg infiltration,

along with the resulting lack of immune response pathways, is a

main reason for the inferior outcomes observed in the high-risk

group compared to the low-risk group. To explore the potential

mechanisms underlying the differences in survival between different
Frontiers in Immunology 14
risk groups, we further investigated a series of pathway enrichment

analyses and found that patients with high-risk scores showed

higher activation levels of metabolism-related pathways, such as

lipid and amino acid metabolism, which aligns with the reported

metabolic characteristics of Treg cells (46, 47).

Studies have shown that the prognostic model genes TK1, LOX,

KDM5B, PSMD4, and NFE2L3 are associated with breast cancer

progression, prognosis stratification, and clinical drug resistance

(48–58). Among these, TK1 exhibited the most significant

prognostic value in our study. TK1 is a cell cycle-dependent

kinase that catalyzes the addition of g-phosphate to thymidine

and participates in the pyrimidine nucleotide salvage pathway

(17). TK1 is universally recognized as a hallmark of cellular

proliferation and elicits oncogenic effects in diverse malignant

neoplasms. Our investigation elucidated the interrelationship

between TK1 and cell cycle-associated cascades, as well as

proliferation-linked pathways across a spectrum of cancer types

(59–62). As expected, we confirmed that TK1 was positively

correlated with cell cycle- and proliferation-related pathways,

such as MYC target and MTORCI signaling pathway, in multiple

cancer types. In addition, we also verified TK1 in vitro,

demonstrating that TK1 down-regulation can inhibit the

proliferation, migration, and invasion of TNBC cells. Meanwhile,

TK1 activity was found to be significantly higher in patients with

breast cancer (BC) than in healthy women (63–67). Nisman et al.

identified TK1 activity as an independent prognostic factor for
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FIGURE 9

Relationship between TK1 and Hallmark pathways in TCGA pan-cancer cohorts. (A) NES is the normalized enrichment score in the GSEA algorithm.
(B) Differential expression of TK1 in tumor tissue relative to normal tissue among 20 cancer types in the pan-cancer TCGA cohort. X-fold changes as
compared to normal tissue are shown. (C) Summary of the relationship between TK1 expression and OS across 33 cancer types in the TCGA pan-
cancer cohort. ‘*’ indicates P-value ≤ 0.05, ‘***’ indicates P-value ≤ 0.001, ‘****’ indicates P-value ≤ 0.0001.
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recurrence-free survival and found elevated TK1 levels in BC

tumors with increased proliferative activity (66). TK1 is associated

with aggressive tumor features such as advanced stage, high grade,

ER/PgR negative, tumor necrosis, and vascular invasion, suggesting

its central role as a BC proliferation marker (66). Fanelli et al.

proposed that using a 2.5% TK1 cutoff value could be a useful tool

for prognostic or predictive purposes in BC tissues (51). Therefore,

TK1 not only holds promise as a potential biomarker for TNBC

recurrence, treatment monitoring, and survival, but may also offer

advantages over current biomarkers.

FOXP3 is a transcription factor that inimitably defines Tregs

and is a requirement for Treg differentiation (68). FOXP3-

expressing Treg cells, which are characterized by FOXP3, play a

critical role in maintaining immune homeostasis by suppressing
Frontiers in Immunology 15
self-reactive T cells and other cells (69, 70). The ratio of FOXP3+ T

cells to CD3 or CD8+ T cells is inversely correlated with the survival

rate of multiple cancers (71–73). Studies have shown that a higher

number of FOXP3-positive Tregs identifies patients with BC with

no recurrence and shorter OS, suggesting that Tregs may impede

anti-tumor immune responses (33, 74, 75). Moreover, our study

revealed that TK1 expression was positively correlated with the

expression status of the Treg marker FOXP3, which means that

high TK1 expression in TNBC cells is positively correlated with the

risk of Treg infiltration. This suggests that stimulation of TK1

signaling in TNBC cells may promote Treg differentiation and

induction, indicating that Treg infiltration-related risk scoring can

serve as an independent prognostic factor in TNBC.

Comprehensive analysis demonstrated that Treg infiltration-
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FIGURE 10

Verification of TK1 for proliferation and migration in TNBC. (A) TK1 protein levels in normal breast and breast cancer were visualized by IHC in HPA.
(B) Construction and verification of siRNA specifically targeting TK1 (si-TK1-1, si-TK1-2). The biological functions of TK1 on TNBC cell lines were
verified via wound healing (C), CCK-8 (D), colony formation (E) and transwell (F) experiments. ‘*’ indicates P-value ≤ 0.05, ‘**’ indicates P-value ≤

0.01, ‘***’ indicates P-value ≤ 0.001, ‘****’ indicates P-value ≤ 0.0001.
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associated genes can be utilized to establish clinically relevant

TNBC progression classifications, and the evaluated Treg score

can function as an independent prognostic biomarker for TNBC,

further advancing precise TNBC immunotherapy.

Although a few targeted therapies, including poly (ADP-ribose)

polymerase inhibitors (e.g., olaparib and talazoparib) and immune

checkpoint inhibitors (e.g., atezolizumab and pembrolizumab),

have been approved for TNBC, their clinical benefits are limited

to a small subset of patients with BRCA1/2 mutations or

programmed death ligand 1 expression (27, 68, 76). Developing

novel targeted therapies with different mechanisms of action for

TNBC can work synergistically with these approved modalities,

potentially further enhancing clinical efficacy (69).

TMB, defined as the number of somatic mutations per

megabase of the genome, is more likely to respond to immune

checkpoint inhibitors (70–72). In our study, we found that TMB

levels were lower in the high-risk group than in the low-risk group,

indicating a weaker response to immunotherapy in high-risk

patients. In a dataset (GSE173839) of patients with TNBC

undergoing immunotherapy, non-responders exhibited higher

risk scores than responders, and the high-risk score group had a

higher proportion of patients with ineffective immunotherapy,

highlighting the predictive efficacy of the Treg infiltration-related

risk score for immunotherapy responsiveness. Extensive research

has shown that chemical inhibition is the most appropriate choice

for downregulating Treg-related immune suppression (73–75, 77).

Therefore, we conducted analyses using drug response data derived

from CTRP and PRISM, ultimately identifying 10 CTRP-derived

compounds (SGX-523, DNMDP, tivozanib, AZD6482, BRD-

K04800985, PLX-4720, MK-0752, MI-1, BRD-K33199242, and

TG-100-115) and four PRISM-derived compounds (uprosertib,

NVP-BEZ235, bay87-2243, and temsirolimus). In the subset with

high Treg infiltration-related risk scores, all compounds exhibited

lower estimated AUC values and showed a negative correlation with

Treg infiltration-related risk score, thereby identifying candidate

drugs with higher sensitivity. Previous studies have indicated a

crucial role of tumor-infiltrating Tregs in TNBC immune tolerance,

antitumor immunity, and immune evasion (46, 47, 78, 79).

Gajewski et al. demonstrated that tumor-infiltrating Tregs

promote immune evasion via the expression of T-cell markers,

type I interferon markers, programmed cell death-ligand 1,

indoleamine 2, 3-dioxygenase, and FOXP3 (80). Semba et al.

confirmed that JNK-regulated TAM-produced C-C motif

chemokine 2 promotes TNBC invasiveness by recruiting Tregs,

thereby facilitating an immunosuppressive TME (47). Oshi et al.

found a significant correlation between low Treg abundance and

pathological complete response after neoadjuvant chemotherapy in

TNBC (81). Therefore, targeting Tregs may improve the treatment

prognosis of patients with TNBC. Furthermore, multiple patterns of

programmed cell death have been proposed as an ideal predictive

model for assessing the progression and drug sensitivity in

postoperative TNBC patients. This model can accurately predict

the patients’ prognosis and drug sensitivity after TNBC

surgery (82).
Frontiers in Immunology 16
To enhance the predictive ability of the risk score, we combined

it with tumor size and employed multivariate Cox regression

analysis to establish a nomogram model. Additionally, we

constructed a column chart to visualize and predict the 1-, 2-, 3-,

and 5-year survival probabilities of patients, demonstrating the

higher predictive accuracy of the column chart. Therefore, this

column chart can guide the establishment of personalized screening

programs for patients with TNBC and facilitate the efficient

utilization of medical resources. However, this study has a few

potential limitations. First, all the cohort studies were retrospective,

necessitating future validation through multicenter, large-sample,

prospective double-blind trials. Second, the analysis encompassed

data from all patients with TNBC in the METABRIC cohort

without considering molecular subtypes due to limited samples

and individual tumor cells. Third, further confirmation of drug

sensitivity through cellular experiments and additional animal

studies exploring the functional role of TK1 in TNBC would

provide stronger clues for guiding clinical applications.
Conclusions

In this study, we demonstrated that Treg infiltration-related

genes in TNBC could be used to establish clinically relevant TNBC

classifications. Based on three TNBC cohorts, we developed and

validated a Treg infiltration-related prognostic model, identifying

the role of Treg infiltration-related genes in the development of the

tumor immune microenvironment and immune therapy response.

Furthermore, we revealed that Tregs may affect tumor occurrence,

progression, and prognosis by modulating the expression of TK1

within the TME. We identified candidate drugs with a negative

correlation to Treg infiltration-related risk scores and higher drug

sensitivity, which can predict TNBC clinical outcomes and

immunotherapy response. We believe that our Treg infiltration-

related prognostic model can broaden our understanding of TNBC

biology and prognostic prediction, and targeting Tregs presents a

promising therapeutic approach for TNBC.
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