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Cancer vaccines drive the activation and proliferation of tumor-reactive immune

cells, thereby eliciting tumor-specific immunity that kills tumor cells.

Accordingly, they possess immense potential in cancer treatment. However,

such vaccines are also faced with challenges related to their design and

considerable differences among individual tumors. The success of messenger

RNA (mRNA) vaccines against coronavirus disease 2019 has prompted the

application of mRNA vaccine technology platforms to the field of oncotherapy.

These platforms include linear, circular, and amplifying mRNA vaccines. In

particular, amplifying mRNA vaccines are characterized by high-level and

prolonged antigen gene expression at low doses. They can also stimulate

specific cellular immunity, making them highly promising in cancer vaccine

research. In this review, we summarize the research progress in amplifying

mRNA vaccines and provide an outlook of their prospects and future

directions in oncotherapy.

KEYWORDS

cancer vaccine, amplifying mRNA, tumor-specific antigen, tumor associated antigen, in
vitro transcription
1 Introduction

Tumors pose a severe threat to human health. Both the suppression and reprogramming of

the immune system play key roles in the onset and progression of tumors. Immuno-

oncotherapy refers to a series of methods involving the activation of the immune system for

cancer treatment. It includes immune checkpoint inhibitors, therapeutic antibodies, adoptive

cell transfer, small molecule immunosuppressants, and cancer vaccines (1). Among these

methods, cancer vaccines serve as a form of active immunotherapy. Upon vaccination, they

activate the specific antitumor immune responses of patients to eradicate tumor cells. In clinical

studies, cancer vaccines have demonstrated positive effects in the active immunotherapy of
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tumors, including the eradication of tumor cells and prevention of

tumor metastasis and recurrence (2, 3). However, cancer vaccines, such

as peptide vaccines and cell vaccines, have a single antigen, poor

antitumor immune activation effect, and high production cost. mRNA

vaccines can deliver multiple antigens, induce stronger T cell responses,

and have a relatively lower production cost.

In 1995, Conry et al. first proposed the concept of using messenger

RNAs (mRNAs) for immuno-oncotherapy (4). The coronavirus

disease (COVID-19) mRNA vaccine Comirnaty was approved for

marketing by the United States Food and Drug Administration (US

FDA) in 2021, making it the first-ever approved mRNA vaccine (5).

With the rapid development, manufacturing, and application of

mRNA vaccines against COVID-19, increasing attention has been

focused on mRNA vaccines over the last few years. Compared with

conventional vaccines, mRNA vaccines provide the advantages of rapid

editability, low biosafety risk, T-cell activation, and induction of

stronger immunogenicity (1, 6) Two mRNA cancer vaccines,

mRNA-4157 and BNT122, have recently exhibited good therapeutic

effects in clinical studies on melanoma and pancreatic ductal

adenocarcinoma, respectively. These findings have led to widespread

interest in the use of mRNA vaccines for cancer treatment (7).

In particular, mRNA vaccines include linear mRNA, circular

mRNA, and amplifying mRNA vaccines (8). The characteristics of

amplifying mRNA vaccines are as follows (1): They are dependent on

self-amplifying RNAs (saRNAs) that are capable of synthesizing RNA

within host cells using an RNA-dependent RNA polymerase (RdRp).

This enables the high-level and prolonged expression of the tumor

antigen genes carried by vectors, thereby achieving levels of protein

expression similar to those of linear mRNA vaccines but at lower doses

and a relatively lower production cost (2); Amplifying mRNAs possess

the potential for stimulating immune responses as they can form

double-stranded RNAs during the amplification process. This is highly

similar to the viral RNA replication process, which can activate the

innate immune response of the host and further enhance the effects of

the vaccine (3); Amplifying mRNAs can simultaneously express

multiple antigens, thereby inducing humoral and cellular immune

responses targeted toward different antigens (9, 10). Therefore,

amplifying mRNA vaccines offer promising prospects for the

research and application of vaccines against infectious diseases and

cancer. At present, there are 43 COVID-19 mRNA vaccines in the

clinical stage, of which 14 are amplifying mRNA vaccines. Among the

various amplifying mRNA-based cancer vaccines, dozens are in the

preclinical stage and five are in the clinical stage (11–13).

In this study, we present a review of the research progress and

working principles of amplifying mRNA vaccines and highlight the

considerations and outstanding issues in the quality control of

amplifying mRNA vaccines, so as to provide a reference for the

future development of amplifying mRNA cancer vaccines.
2 History of amplifying mRNA vaccine
research

Research on amplifying mRNA vaccines dates back to the

investigation of the characteristics of RNA viruses in the 1950s
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and 1960s. When RNA extracted from ascites tumor cells infected

with Mengo encephalitis virus was introduced into cells, it was

found that complete infectious viral particles could be synthesized

(14). In 1989, Malone et al. conceived the concept of mRNA-based

drugs (15). Zhou et al. in 1994 reported the generation of humoral

responses with high antibody titers in mice through the expression

of the nucleoprotein of influenza virus using the Semliki Forest

virus (SFV) replicon, and first proposed the concept of using

synthesized amplifying mRNAs as vaccines (16). In 1999, Ying

et al. proposed that naked, noninfectious saRNAs may be used for

the development of cancer vaccines (17). In 2003, in a phase I

clinical trial of an mRNA vaccine encoding prostate-specific antigen

(PSA), it was found that the vaccine effectively evoked T-cell-

mediated antitumor immune responses in vivo (18). The first

amplifying mRNA-based therapeutic cancer vaccine AVX701

entered phase I clinical testing in 2007 (19). In 2019, Beissert

et al. designed a novel bipartite amplifying mRNA vector system

using trans-amplifying RNA (taRNA). Compared with

conventional self-amplifying mRNA (samRNA) vaccines, this

method has key advantages in the aspects of safety, production,

and ease of optimization (20). During the same year, Samsa et al.

pioneered the use of lipid nanoparticles (LNPs) for the delivery of a

live-attenuated Venezuelan equine encephalitis virus (VEEV) RNA

vaccine (21). In 2021, Imperial College London reported the

outcomes of a clinical trial of the first amplifying mRNA COVID-

19 vaccine worldwide. Among 23 participants who received the

vaccine at doses of 5.0 and 10.0 mg, 20 developed immune responses

(22). At present, the amplifying mRNA vaccine technology

platform has been applied in the clinical research of vaccines for

infectious viruses such as influenza, respiratory syncytial virus

(RSV), rabies, Ebola, and HIV-1 and for cancers such as

melanoma and has exhibited immense potential in the fields of

infectious disease prevention and oncotherapy (12, 23) (Figure 1).
3 Mechanisms of action of amplifying
RNA vaccines

Amplifying mRNAs differ from nonamplifying mRNAs in that

they can serve as templates for amplification. Besides conventional

structural elements such as the cap, 5′-UTR, 3′-UTR, and poly(A)

tail, amplifying mRNAs also contain a sequence within the 5′ open
reading frame that encodes an RNA-dependent RNA polymerase

(RdRp) complex (replicase) and a subgenomic promoter (24). The

gene sequences encoding viral structural proteins are usually

located downstream of the subgenomic promoter. During the

design of amplifying mRNA vaccines, this sequence is replaced by

a gene sequence encoding the vaccine antigen of interest (25). The

genomes of alphaviruses such as the Venezuelan equine encephalitis

virus (VEEV) (26), Sindbis virus (SINV) (27), and Semliki forest

virus (SFV) (28) are commonly used in the design of amplifying

mRNA vaccines. Other genomes used include those of the tick-

borne encephalitis virus (TBEV) (29), yellow fever virus (YFV) (30),

and Kunjin virus (KUNV) (31). For instance, the replicase encoded

by an alphavirus vector is composed of four nonstructural proteins
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(NSPs). NSP1 is responsible for the connection between the

replicase complex and cell membrane and the 5′-end capping of

the viral RNA (32); NSP2 serves as a RNA helicase and protease for

polyprotein processing (33, 34); NSP3 mediates various virus-host

protein-protein interactions (35); while NSP4 is the RdRp (36).

Aggregation of these four NSPs through a complex multistep

process causes the formation of an replicase, which provides

amplifying mRNA with the ability to self-replicate (37).

Following its entrance in the host cell, the amplifying mRNA is

translated in a host ribosome-dependent manner and then

undergoes processing within the host cell to form replicase. As

the sequence of the amplifying mRNA is a sense (+)-strand RNA, it

is used by replicase as a template for amplification, thereby forming

the antisense (–)-strand amplifying mRNA. Subsequently,

amplification of the (–)-strand amplifying mRNA leads to the

synthesis of two different types of (+)-strand RNA. One is a copy

of the original full-length genomic RNA, whereas the other is a

subgenomic RNA encoding the target gene. Given the presence of a

subgenomic promoter and the gene of interest (GOI) in the

amplifying mRNA sequence, the viral replicase recognizes the

subgenomic promoter in the (–)-strand amplifying mRNA.

Consequently, a large amount of (+)-strand mRNA containing

the target gene sequence is synthesized, and the required target

product is then obtained through translation (23). Hence,

amplifying mRNA results in the high-level and prolonged

expression of the target protein at low doses. Figure 2A shows a

schematic diagram of the working principle of a self-

amplifying mRNA.

Compared with nonamplifying linear mRNA, amplifying

mRNA contains an additional sequence that encodes the

replicase. For instance, the replicase sequence in the VEEV-

encoded RNA has a length of up to 7 kb (38). As RNA stability is

negatively correlated with sequence length, this has resulted in strict

requirements for RNA storage and transportation. To address this

issue, a split-vector trans-amplifying RNA system can be adopted,

that is, the sequence encoding the RdRp complex and that encoding
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the target gene can be split into two independent transcripts for

delivery This contributes to the reduction of mRNA size, thereby

enhancing overall mRNA stability (20). The working principle of a

trans-amplifying mRNA is shown in Figure 2B.
4 Progress on amplifying mRNA
cancer vaccines

Amplifying mRNAs, which serve as a novel vaccine technology

and treatment method, have been increasingly adopted in the fields

of infectious disease prevention and oncotherapy. This section

summarizes the applications of amplifying mRNA cancer vaccines

in preclinical (Table 1) and clinical studies (Table 2).
4.1 Progress on preclinical research of
amplifying mRNA cancer vaccines

At present, amplifying mRNA cancer vaccines are used for the

high-level expression of tumor antigens. These vaccines have

demonstrated the ability to elicit strong cellular and humoral

immune responses in animal models (12). Preclinical studies in

this area have primarily focused on tumor-associated antigens

(TAAs), tumor-specific antigens (TSAs), and immunomodulatory

molecules and have achieved promising therapeutic effects in

various mouse tumor models.

Differences in the levels of expression of TAAs between tumors

and normal cells serve as possible targets for cancer vaccine therapy.

Currently, the design of amplifying mRNA cancer vaccines in the

preclinical stage mainly involves the targeting of TAAs, including

tyrosinase, pMEL17/gp100, gp75/tyrosinase-related protein (TRP)-

1, MART-1/melan-A, and dopachrome tautomase/TRP-2 which are

preferentially expressed in melanoma cells. Avogadri et al.’s

research suggested that amplifying mRNA cancer vaccine based

on VEEV vector expressing TRP-2 induced Humoral immunity
FIGURE 1

Milestones in the development of amplifying mRNA-based cancer vaccines.
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B

A

FIGURE 2

Alphaviruses-based amplifying mRNA expression process. (A) Mechanism of self-amplifying mRNA. (B) Mechanism of Trans-amplifying mRNA. Green
rectangular, Non-structural proteins (NSP) RNA sequence; green oval, RNA-dependent RNA polymerase; orange rectangular, gene of interest RNA
sequence; orange cloud, antigen; grey oval, N7-methylguanosine RNA sequence.
TABLE 1 Preclinical studies on amplifying mRNA cancer vaccines.

Source of
RdRp

Antigen Tumor
Method of
injection

Animal
model

Concomitant
drug

Effects Reference

SFV
E6E7; E6+E7
fusion

HPV-16
Subcutaneous
Injection

C57BL/6 mice /
Tumor regression, complete
eradication

(39)

SFV VEGFR-2 CT26
Subcutaneous
Injection

BALB/c mice IL12; IL-4
Inhibition of tumor growth,
metastasis

(40)

SFV IL18 B16
Intratumoral
Injection

C57BL/6 mice IL12
Enhanced Th1-type response,
antitumor immunity

(41)

SFV IL12 MC38
Intratumoral
Injection

C57BL/6 mice / Tumor regression in mice (42)

SFV IL12 4T1
Intratumoral
Injection

BALB/c mice LVR01
Tumor regression in mice, prolong
survival in tumor mice

(43)

VEEV E7 HPV-16
Subcutaneous
Injection

C57BL/6 mice /
Immune responses, tumor protection
in mice

(44)

VEEV TRP2 Bl6
Subcutaneous
Injection

C57BL/6 mice / Tumor regression in mice (45)

VEEV TRP2 Bl6
Subcutaneous
Injection

C57BL/6 mice
GITR mAb; CTLA-
4 mAb

Tumor regression in mice (46)

VEEV PSMA TRAMP
Subcutaneous
Injection

BALB/c and
C57BL/6

/ Robust immune responses in mice (47)

VEEV STEAP TRAMP
Subcutaneous
Injection

C57BL/6 mice / STEAP-specific immune responses (48)
F
rontiers in Immu
nology
 04
SFV, Semliki Forest virus; VEEV, Venezuelan equine encephalitis virus; PMSA, prostate specific membrane antigen; STEAP, six-transmembrane epithelial antigen of the prostate; TRAMP,
transgenic adenocarcinoma mouse prostate; VEGFR-2, vascular endothelial growth factor receptor-2; IL, interleukin.
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against TRP-2, played a role in immunotherapy of Melanoma, and

cooperated with tumor specific CD8 T cell reaction (45). Six-

transmembrane epithelial antigen of the prostate (STEAP) is

highly overexpressed in human prostate cancer tissue. Garcia-

Hernandez et al. used VEE virus-like replicon particles (VEE

VRPs) for vaccination in prophylactic and therapeutic mouse

prostate tumor models, and found that vaccination increased the

overall survival rate of prostate tumor-bearing mice (48).

TSAs, also known as neoantigens, originate from random

somatic cell mutations within tumor cells. These antigens do not

exist in normal cells and are thus ideal targets for cancer vaccines.

More than 99% of cervical cancers express the E6 and E7 oncogenes,

which are necessary for the malignant phenotype. Daemen et al. used

a SFV vector to carry an E6E7 fusion protein that possessed higher

stability than the individual E6 and E7 proteins. Compared with mice

vaccinated with SFV vectors independently expressing E6 and E7

proteins, mice immunized with the SFV vector expressing the E6E7

fusion protein exhibited stronger cytotoxic T lymphocyte (CTL)

responses. Immunization of tumor-bearing mice led to tumor

regression and eradication, indicating good oncotherapeutic

effects (39).

IL-12 can induce the differentiation of naïve T-cells into T

helper type 1 (Th1) cells, which are essential for cellular immunity-

mediated antitumor responses. The antitumor effects of IL-12 are

exerted through the activation of CTLs and natural killer (NK) cells

and the induction of interferon-gamma (IFN-g) production.

Rodriguez Madoz et al. used SFV vector expressing IL-12 to treat

MC38 cell line colon cancer mice, which significantly enhanced the

anti-tumor immune response of mice, leading to tumor regression

and complete eradication (42). IL-18 can increase NK cell viability
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and T-cell proliferation, promote the secretion of IFN-g and

granulocyte-macrophage colony-stimulating factor (GM-CSF) by

NK and T-cells, and enhance the production of Th1-type cytokines,

which are associated with antitumor CTL responses. Yamanaka

et al. combined intratumoral injection of IL-18 bound by a

genetically engineered SFV vector with systemic administration of

IL-12 to induce responses from antibrain tumor-specific CD4+ and

CD8+ T-cells and NK cells. This strategy led to a significant

enhancement in antitumor effects (41).

Preclinical studies have shown that amplifying mRNA cancer

vaccines can evoke strong humoral and cellular immune responses,

effectively inhibiting f tumors growth such as melanoma, cervical

cancer, and prostate cancer. These results may serve as valuable

reference data for subsequent clinical studies.
4.2 Progress on clinical research of
amplifying mRNA cancer vaccines

Presently, many candidate amplifying mRNA cancer vaccines

have entered clinical testing. Various clinical trials have revealed

that amplifying mRNA cancer vaccines enhance T-cell immune

responses and improve patient outcomes and survival. Therefore,

these vaccines provide new tools and support for oncotherapy. On

November 9, 2022, JCXH-211 was approved for phase I clinical

testing by the National Medical Products Administration (NMPA)

of China. This is a novel samRNA-based therapeutic encoding

human IL-12 for the treatment of various solid tumors that is

presently in the subject recruitment phase (55). Vvax001, a

therapeutic cancer vaccine based on a self-amplifying SFV vector,
TABLE 2 Clinical studies on amplifying mRNA cancer vaccines.

Vaccine
name

Source
of RdRp

Antigen Tumor
Concomitant
drug

ClinicalTrials.gov
Identifier

Recruitment
Status

Phase Reference

AVX901 VEEV HER2
HER2+
cancer

/ NCT01526473 Completed Phase I (49)

AVX901 VEEV HER2
HER2+
Breast/breast

Pembrolizumab NCT03632941 Recruiting Phase II (50)

AVX701 VEEV CEA
Stage III
colon cancer

/ NCT01890213 Completed Phase I (19)

AVX701 VEEV CEA

Colorectal
cancer
Breast cancer
Lung cancer
Pancreatic
cancer
Colon cancer

/ NCT00529984 Completed
Phase I/
Phase II

(19, 51)

Vvax001 SFV E6 E7 Cervical / NCT03141463 Completed Phase I (52, 53)

GRT-902 VEEV Neoantigen

Colonic
neoplasms
Colorectal
neoplasms

Atezolizumab
Ipilimumab

NCT05456165 Terminated Phase II (54)

JCXH-211 VEEV IL-12

Cutaneous
tumor
Malignant
solid tumor

/ NCT05727839 Recruiting Phase I (55)
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is currently undergoing phase I clinical trial testing for the

evaluation of its immunogenicity, safety, and tolerability in the

treatment of human papillomavirus (HPV)-induced cancers (52).

AVX701 is a self-amplifying VEEV vector-based cancer vaccine

expressing a modified carcinoembryonic antigen gene (CEA (6D)).

Preliminary results of a phase I/II clinical trial in patients with

metastatic colorectal cancer revealed that vaccinated patients

exhibited stronger T-cell immune responses and longer survival

(19, 51). AVX901, an amplifying mRNA vaccine based on a self-

amplifying VEEV vector encoding HER2, has completed phase I

clinical trial in the treatment of HER2+ breast cancer, and the phase

II clinical trial for its concomitant use with pembrolizumab is

currently in the recruitment stage (50). In tumors that carry

nonsynonymous DNA mutations, human leukocyte antigens on

tumor cell surfaces express peptides containing these mutations as

nonself antigens. A subset of these mutated peptides serve as

neoantigens that are capable of generating T-cell responses

targeting tumor cells. GRANITE is a vaccine based on the self-

amplifying VEEV vector GRT-R902 and adenoviral vector GRT-

R901 that expresses (54) neoantigens. It is used in combination with

checkpoint inhibitors for the treatment of advanced metastatic solid

tumors and is currently undergoing phase II/III clinical testing.

Notably, there has been a rapid rise in the number of clinical

trials of mRNA cancer vaccines. Although clinical trials of mRNA

cancer vaccines are still in the early stages, swift advancements

achieved in this field suggest that the prospects of amplifying

mRNA cancer vaccines remain promising.
5 Optimization strategies for
amplifying mRNA cancer vaccines

The length of amplifying mRNAs exceeds that of conventional

nonamplifying linear mRNAs by 7,000 bp, leading to disadvantages

such as higher tendency for mRNA degradation; increased difficulty

in the preparation of in vitro transcription (IVT)systems; higher

complexity in chemistry, manufacture, and control (CMC)

processes; low LNP encapsulation efficiency; and low delivery

efficiency. In recent years, amplifying RNA cancer vaccines have

achieved a series of breakthroughs in stability, translation efficiency,

and delivery efficiency, with advancements made mainly in the

following areas (1): Design and optimization of amplifying mRNA

carrier backbone sequences to enhance the intensity and stability of

mRNA expression while reducing the innate immune responses of

the host (2); Selection and combination of tumor antigens (3);

Optimization of IVT systems (4); Design of novel delivery systems

suitable for amplifying mRNAs.
5.1 Optimization of amplifying mRNA
vector sequences

Amplifying mRNAs activate intracellular pattern recognition

receptors during in vivo transcription and synthesis, which can

inhibit the overall protein translation process within cells.

Inhibition of the protein kinase R (PKR) and IFN pathways
Frontiers in Immunology 06
significantly improves the translation efficiency of amplifying

mRNAs in vivo and in vitro (56, 57). Notably, amplifying

mRNAs, which contain a self-replicase sequence with a length of

7–8 kb, have a much longer length than that of conventional linear

mRNAs, increasing the demands on mRNA stability. Blakney et al.

developed a split replicon (splitzicon) system that demonstrated the

self-amplifying characteristics of replicon RNA. The splitzicon

system was also used for encoding multiple antigens, providing a

novel approach for the design of multivalent RNA vaccines (58).

Beissert et al. developed a bipartite taRNA system that

demonstrated high-efficiency levels of protein expression similar

to those achieved by amplifying mRNAs (20). In recent years,

artificial intelligence (AI) tools have been employed for the

optimization of mRNA vaccine sequences, leading to significant

increases in mRNA half-life, protein expression levels, and thermal

stability of mRNAs (59). Li et al. developed an in vitro evolution

strategy based on the VEEV replicon system and screened two

effective mutant replicons, achieving significant increases in the

intensity and duration of luciferase expression within mice

compared with that of wild-type replicons (60). Conclusively, the

optimization of amplifying mRNA vector sequences for reducing

the host innate immune responses can significantly enhance the

stability and expression efficiency of these vectors.
5.2 Optimization of antigen selection and
combinations

Antigen selection is crucial for the development of cancer

vaccines. Two important features that cancer vaccines should

possess are tumor specificity and the ability to induce high-level

and controllable antitumor immune responses. Tumor antigens,

including TSAs and TAAs, are antigenic molecules that emerge or

are overexpressed during the onset and progression of tumors.

TSAs, which include HPV E6, E7, CMV pp65, and neoantigens, are

newly formed antigens that are either specific to tumor cells or exist

only in certain types of tumor but not in normal cells. By contrast,

TAAs are not specific to tumor cells and also exist in normal cells

and tissues. However, their expression is significantly increased

during carcinogenesis. Examples of TAAs include MUC1, which is

abnormally overexpressed in many tumor cells, as well as gp100 and

MART1, which are respectively overexpressed and abnormally

expressed in most melanoma cancer cells. Immunomodulatory

molecules such as IL-7, IL-12, IL-15, GM-CSF, and IFN-a and

tumor suppressor genes such as p53 and PTEN have also been

applied in the antigen design of cancer vaccines. Table 3 lists the

antigens of cancer vaccines currently used in clinical and

preclinical studies.

Multiple mutation sites usually exist in the antigenic epitopes of

tumor cells, with the suppressive tumor microenvironment also

exerting certain negative effects on cancer vaccines. In cancer

immunotherapy, combination therapy is commonly adopted for

enhancing the effects of cancer vaccines. An effective strategy is the

simultaneous expression of multiple antigens. Compared with

single-antigen OVA1 mRNA, the dual antigens OVA1 and OVA2

mRNAs caused a 30% increase in the antigen-specific activation of
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T-cells and a two-fold increase in their proliferation. Cotransfection

with a combination of CD40L, CD70, and constitutively active

TLR4 encoding mRNA was reported to enhance the human

dendritic cell-induced activation of T-cells. Interestingly, the

adoption of a combination therapy strategy for the treatment of

pancreatic ductal adenocarcinoma (PDAC) not only inhibited the

expression of PD-1 but also simultaneously activated IL-2Rbg and
suppressed IL-2a signaling, thereby providing excellent therapeutic
Frontiers in Immunology 07
effects to patients with PDAC (102). Besides tumor antigen targets,

mutation sites were also introduced into the nonstructural proteins

of the VEE replicon backbone by Li et al. Compared with wild-type

VEE, the saRNA modified with nonstructural proteins led to a

significant increase in the levels of expression of the target protein in

model animals. In addition, the infiltration of CD8+ T-cells was

enhanced and tumor growth was delayed (60).

The characteristics of amplifying mRNA vaccines should be

considered during the formulation of suitable antigen combination

strategies targeted toward different tumor types in order to enhance

the therapeutic effects of active immunotherapy on tumors.
5.3 Optimization of IVT systems

Compared with conventional mRNAs, amplifying mRNAs are

longer and contain more secondary structures. Therefore, the

optimization of conventional mRNA IVT synthesis systems is

necessary. With the application of the Quality by Design (QbD)

concept to IVT system optimization, the effects of critical process

parameters on critical quality attributes (CQAs) can be rapidly

determined. This will enable the development and continuous

production of safe and effective RNA vaccines. Samnuan et al.

adopted a design of experiment approach to investigate the

various factors affecting the yield of amplifying mRNAs

produced by the IVT reaction. Subsequently, the optimum

component ratios for IVT were determined and used for the

synthesis of amplifying mRNAs with high yield and quality

(103). Moderna developed a modified T7 RNA polymerase that

reduced dsRNA impurities during transcription reactions. This

eased the subsequent purification and enhanced the production

efficiency (104). Other researchers have found that a novel

psychrophilic phage VSW-3 RNA polymerase is capable of

reducing terminal and full-length dsRNA byproducts during

IVT, which is beneficial for the production of RNAs for in vivo

use (105). The development of stable IVT systems with high yield

and low byproduct formation remains a key area for

future research.
5.4 Research of delivery systems

Delivery systems are a key aspect of mRNA vaccines. Initially,

the direct delivery of naked saRNA into cells was the simplest

strategy used. For example, injection of 50 mg of saRNA carrying

the influenza virus nucleoprotein was found to induce specific

humoral responses in mice. Subsequently, various delivery

methods were developed to enhance the stability and delivery

efficiency of mRNAs (16). These methods include electroporation,

protamine, LNPs, cationic nanoemulsions, polyethylenimine,

polymer-based nanoparticles, exosomes, extracellular vesicles,

mesoporous silica, and calcium phosphate (9, 106). LNPs can also

function as an adjuvant (107). Miao et al. used LNPs containing

cyclic lipid components that stimulated the stimulator of interferon

genes pathway for the encapsulation of an OVAmRNA vaccine and
TABLE 3 Cancer vaccine antigens.

Stage Antigens

Tumor-associated
antigens (TAAs)

Preclinical CEA (61), gp100 (62), MART1 (63, 64),
total tumor RNA (65), cytokeratin 19
(64), PSMA (66), STEAP (67), TRP-1
(68), gp70 (69), MUC1 (70), TRP-2 (71),
GM-2 (72)

Clinical CEA (NCT00529984 (51), NCT01890213
(19)), MUC1 (NCT00088660 (73)), TRP-
2 (NCT01456104 (74)), PSA
(NCT01322490 (75)), STEAP1
(NCT00831467 (76)), TPTE
(NCT04526899 (77)), PSMA
(NCT00831467 (76)), WT1
(NCT02405338 (78)), NY-ESO-1
(NCT02609984 (53)), AML lysate plus
mRNA (NCT00514189), hTERT
(NCT00923312 (76), NCT00510133), STn
(NCT00003638 (79)), GD3
(NCT00037713 (80)), MAGE-C1/2
(NCT00923312 (76)), MAGE-A3
(NCT04526899 (77)), LAMP
(NCT00510133), suppressor of cytokine
signaling-1 (NCT02688686), PRAME
(NCT02405338), 5T4 (NCT00923312
(76)), tyrosinase (NCT04526899 (77)),
CA-125 (NCT00418574 (81)), prostate
stem cell antigen (NCT00831467),
survivin (NCT01197625, NCT02688686),
VEGFR2 (UMIN000002500 (81, 82)),
EGFRvIII (NCT01480479 (83))

Tumor-specific
antigens (TSAs)

Preclinical HPV E7 (84), human CMV pp65 (85),
HPV E6/E7 (86), poly-neo-epitope (87),
neoantigens (88)

Clinical CMV pp65-LAMP (NCT02529072),
Kirsten rat sarcoma viral oncogene
mutated proteins (NCT03948763)

Immunomodulatory
molecules

Preclinical IL-12 (89), IL-15 (90), GM-CSF (91),
IFN-a (92), OX40L (93), IL-23 (94), IL-
36g (95), CD70 (96), constitutively active
TLR4 (97)

Clinical IL-12 (NCT04710043, NCT03871348,
NCT03946800, NCT04455620), TLR7/8-
agonist (NCT03291002, NCT03203005),
GM-CSF(NCT03871348), RIG-1-agonist
(NCT03291002, NCT03203005), IL-23
(NCT03739931 (98)), IL-7
(NCT04710043), human OX40L
(NCT03739931 (98)), IL- 15
(NCT03871348), IFN-a (NCT03871348),
IL-36g (NCT03739931 (98))

Tumor suppressor
genes

Preclinical PTEN (99), p53 (100)

Clinical p53 (NCT02316457, NCT00978913 (101))
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observed a significant enhancement in its antitumor effects (108).

However, the design of novel delivery systems for amplifying

mRNA cancer vaccines still holds many key challenges and

opportunities. These include the improvement of stability and

delivery efficiency of amplifying mRNAs, delivery targeting, and

controllability of the activation of the immune system.
6 Quality control of amplifying
mRNA vaccines

Regarding mRNA vaccines, which are a novel type of vaccine,

quality control is of utmost importance. The assurance of good

quality, safety, and efficacy will contribute to sufficient trust and

confidence among the public in mRNA vaccines and other

innovative products and therapies. The World Health

Organization, United States Pharmacopeial Convention, and

Center for Drug Evaluation of the NMPA of China have

published relevant guidelines and documents, thereby providing

regulatory agencies with considerations regarding quality control of

mRNA vaccines and methods for the analysis of mRNA quality

(109–111). In particular, mRNA sequence and integrity, content

and purity, capping efficiency, and encapsulation efficiency are key

quality parameters specific to mRNA vaccines that determine both

their effectiveness and safety.

Currently, nine COVID-19 mRNA vaccines have been

approved or granted emergency use authorizations. However,

details such as test items, analysis methods, and acceptance

criteria of many types of mRNA vaccines have not yet been

publicly disclosed (112). Although COVID-19 mRNA vaccines

have demonstrated high safety and efficacy, rare serious adverse

events such as myocarditis and hypersensitivity reactions have also

been reported, suggesting that the quality control of mRNAs

requires further research (60, 113, 114) The application of the

QbD concept enables the accurate determination of CQAs, key

process parameters, and operational spaces of mRNA vaccines,

contributing to the establishment of rational control strategies for

the production process, which is of utmost importance for the

quality control of mRNA vaccines. As mentioned before, mRNA

stability is affected by the length of the mRNA fragment. Previous

studies have found that the length of mRNA in yeast is negatively

correlated with its half-life (115). Amplifying mRNAs carry an

additional coding sequence for replicase, which enables their

amplification. Consequently, the length of amplifying mRNAs

exceeds that of conventional linear mRNAs by 7,000 bp, resulting

in poorer stability. Therefore, to achieve the quality control of

amplifying mRNA vaccines, further research should be performed

on key CQAs such as their stability and in vivo replicase activity. In

view of the prolonged expression time of amplifying mRNAs, the

duration of antigen expression should be calculated for the

evaluation of their in vitro and in vivo activities. Regulatory

agencies and vaccine manufacturers should also consider

establishing reference standards for the measurement of nucleic

acid content, purity, and biological activity of amplifying mRNAs

for use in the quality control testing of mRNA vaccines.
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Amplifying mRNA cancer vaccines are a highly promising

technological platform in the field of cancer treatment. A large

number of biopharmaceutical companies and research teams

worldwide have made considerable efforts to the research and

development of such vaccines, achieving significant progress. To

date, five types of amplifying mRNA cancer vaccines have entered

clinical testing. However, mRNA vaccines face obstacles such as

higher tendency for mRNA degradation, antigen selection and

optimization and targeted delivery to tumor. And many issues

regarding the research and development, production, quality

control, and safety remain to be resolved for amplifying mRNA

cancer vaccines. Recently, researchers have proposed the concept of

Quality by Digital Design concept as an extension of the QbD

approach. Efforts should be made to accelerate the integration of

such a concept into the research and production of amplifying

mRNA vaccines (116).

Currently, RdRp used for constructing amplifying mRNA

cancer vaccines mainly originates from alphaviruses and have a

gene sequence length of up to 7 kb. The use of longer gene

sequences hinders the production and quality control of mRNA

vaccines and may lead to their poorer stability. Therefore, research

should be focused on the exploration of RdRp with a shorter gene

sequence or the design and optimization of various component

elements to reduce the mRNA length in vaccines. Delivery systems

are of critical importance for mRNA vaccines. Given the relatively

long nucleotide sequences of amplifying mRNA vaccines, existing

LNPs may not be suitable for encapsulating longer mRNAs. The

optimization of currently available LNPs or development of new

delivery systems suited to the encapsulation of longer mRNAs is

therefore required. Targeted therapy not only enables precise killing

of tumors but also reduces the side-effects of medications.

Therefore, the exploration and development of delivery systems

with higher targeting capabilities for use with amplifying mRNA

cancer vaccines is highly necessary. Many studies have indicated

that tumor tissues are generally in a state of hypoxia. Recent studies

have also demonstrated that hypoxia within cells or tissues can lead

to reduced transfection and expression efficiency of LNP-mRNA.

Therefore, further design and optimization of amplifying mRNA

cancer vaccines should be performed to enhance their transfection

and expression efficiencies within the body.

The relatively long sequences of amplifying mRNA vaccines

may also affect the efficiency of IVT. Therefore, further

optimization of the reaction conditions and systems of IVT and

the development of more efficient IVT enzymes should be carried

out. The use of cap analogs from different sources and optimization

of the cap analog-guanosine ratio may enhance IVT efficiency. In

addition, longer mRNA sequences may also cause premature

termination of IVT, resulting in decreased integrity of the

generated mRNA sequences. Therefore, optimization of the IVT

reaction is required to achieve the generation of complete target

sequences. The production of mRNA vaccines also requires a

purification step. Considering that the IVT products of

amplifying mRNA vaccines may contain a considerable
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proportion of incomplete mRNAs, it is necessary to develop and

opt imize su i tab le pur ificat ion processes to enhance

purification efficiency.

The establishment and validation of quality control methods for

amplifying mRNA vaccines should be performed based on specific

requirements stipulated in the General Chapter <1220> “The

Analytical Procedure Lifecycle” recently released by the USP and the

ICH Q2 “Validation of Analytical Procedures” and Q14 “Analytical

Procedure Development” draft guidelines published by the

International Council for Harmonization of Technical Requirements

for Pharmaceuticals for Human Use (ICH) for which public comment

is currently being sought (117, 118). This includes the establishment of

an analytical target profile, risk analysis and identification,

confirmation of CQAs, experimental design, process control, and in-

use monitoring. The most prominent characteristic of amplifying

mRNA vaccines is their ability to replicate within cells. Therefore, it

is important to focus on the quality control of their replicating

properties. Given the lack of research on relevant quality control

methods, there is a need to develop pertinent methods and establish

standards to facilitate the research and development of such vaccines.

The relatively long sequences of amplifying mRNAs also cause lower

stability of the resultant vaccines. Therefore, it is also crucial to focus on

quality control of the markers of integrity of vaccine sequences.

In terms of safety, given that amplifying mRNA vaccines can

continuously generate new mRNAs within the body, attention

should be paid to the possibility of evoking strong systemic or

local inflammatory reactions. The fact that such vaccines encode

RdRp signifies that the body will express RdRp after immunization.

However, in the case of viral infection in the body post-

immunization, RdRp may bind to the RdRp binding site in the

viral genome, raising concerns about the promotion of viral genome

replication. Further investigation is also needed to determine

whether this system might cause the replication of the host

mRNA, thereby affecting gene expression in the host.
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