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Epstein-Barr virus (EBV) is a ubiquitous human tumor virus associated with

various malignancies, including B-lymphoma, NK and T-lymphoma, and

epithelial carcinoma. It infects B lymphocytes and epithelial cells within the

oropharynx and establishes persistent infection in memory B cells. With a

balanced virus-host interaction, most individuals carry EBV asymptomatically

because of the lifelong surveillance by T cell immunity against EBV. A stable anti-

EBV T cell repertoire is maintained in memory at high frequency in the blood

throughout persistent EBV infection. Patients with impaired T cell immunity are

more likely to develop life-threatening lymphoproliferative disorders,

highlighting the critical role of T cells in achieving the EBV-host balance.

Recent studies reveal that the EBV protein, LMP1, triggers robust T-cell

responses against multiple tumor-associated antigens (TAAs) in B cells.

Additionally, EBV-specific T cells have been identified in EBV-unrelated

cancers, raising questions about their role in antitumor immunity. Herein, we

summarize T-cell responses in EBV-related cancers, considering latency

patterns, host immune status, and factors like human leukocyte antigen (HLA)

susceptibility, which may affect immune outcomes. We discuss EBV-induced

TAA-specific T cell responses and explore the potential roles of EBV-specific T

cell subsets in tumor microenvironments. We also describe T-cell

immunotherapy strategies that harness EBV antigens, ranging from EBV-

specific T cells to T cell receptor-engineered T cells. Lastly, we discuss the

involvement of gd T-cells in EBV infection and associated diseases, aiming to

elucidate the comprehensive interplay between EBV and T-cell immunity.

KEYWORDS
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1 Introduction

Epstein-Barr virus (EBV), also known as human herpesvirus 4 (HHV-4), is a highly

prevalent g-herpesvirus that infects an overwhelming 90% of the adult population

worldwide (1). Since its discovery in 1964 from a Burkitt lymphoma cell line, extensive

research has been conducted to investigate its association with cancer (2). In 2020, EBV-
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associated cancers accounted for an estimated 239,700 to 357,900

new cases and caused 137,900 to 208,700 deaths globally (3). EBV is

considered the primary etiological agent associated with multiple

epithelial and lymphoid cancers of variable fractions, including

nasopharyngeal carcinoma (NPC), gastric carcinoma (GC),

Hodgkin lymphoma (HL), Burkitt lymphoma (BL), Diffuse large

B-cell lymphoma (DLBCL) and Extranodal NK/T-cell lymphoma,

Nasal type (ENKTL-NT). In addition, EBV reactivation can lead to

uncontrolled B-cell proliferation in immunocompromised

individuals, including post-transplant lymphoproliferative disease

(PTLD) in hematopoietic stem cell transplant (HSCT) or solid

organ transplant (SOT) recipients and B-cell lymphoma in AIDS

patients (4–6).

Despite its ubiquity, most people remain asymptomatic

throughout their lifetime, owing to the potent host immune

system, especially its cellular immunity, which keeps the virus at

bay. However, when cellular immunity is compromised or

dysregulated, the virus can replicate unchecked, leading to EBV-

associated B-cell malignancies (7). These malignancies express EBV

antigens that T cells can specifically target (8). Over the last two

decades, the encouraging outcomes of adoptive cell therapy using

EBV-specific T cells in treating PTLD have sparked significant

research interest. Many clinical trials have been launched to explore

their potential application in treating other EBV-related

malignancies (9). Recent studies find that EBV latent membrane

protein 1 (LMP1), upon ectopic expression in EBV-unrelated

cancers, can upregulate TAAs and induce a robust TAA-specific

CD4+ CTL response (10), indicating that beyond its oncogenic

implications, EBV also has the potential for therapeutic applications

in cancer treatment. This review aims to advance our understanding

of the roles of T-cell immunity across both EBV-related and

unrelated cancers and provide insights to devise more effective

immune-based cancer prevention and treatment strategies.
2 Biology of EBV and
EBV-associated cancers

The transmission of EBV occurs through oral means and

involves the infection of epithelial cells of the oropharynx,

followed by replication and spread to B cells, which are major

sites for EBV infection in humans. While EBV predominantly

targets B lymphocytes and epithelial cells, it can sporadically

infect other human cell types, including T cells and natural killer

cells, albeit infrequently (11–13). EBV life cycle is complex and is

composed of latent and lytic infections. Only nine proteins

contributing to B cell transformation and tumorigenesis are

expressed during latent infection. These include six EBV nuclear

antigens (EBNA-1, -2, -3A, -3B, -3C, and -LP) and three latent

membrane proteins (LMP-1, -2A, and -2B). The latent cycle can be

subdivided into four patterns, namely latency III, II, I, and 0,

characterized by gradually restricted viral gene expression

patterns to evade immune surveillance. Ultimately, EBV

establishes persistent residence in memory B cells, characterized

by the absence of viral antigen expression (latency 0), thereby
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evading T-cell recognition and acting as a viral reservoir. The

latent-lytic switch is a particularly significant event in the EBV

life cycle, but its mechanism remains elusive. EBV can transition to

the lytic cycle periodically, resulting in viral replication, shedding,

and subsequent transmission (8, 11, 12, 14).

During lytic infection, EBV expresses more than 80 lytic

proteins that facilitate the generation of new viral particles (8).

The viral lytic cycle is divided into three temporal and functional

stages: immediate early (IE), early (E), and late (L). IE gene products

are transcription factors in charge of turning on the cascade of

expression of lytic genes. Among these proteins, the immediate

early proteins BZLF-1 and BRLF-1 act as triggers of the EBV lytic

cycle (15). E genes encode enzymes with DNA replication function,

and L genes are mostly viral structural proteins.

Several lytic genes are somewhat expressed during latent states.

For instance, BHRF1, commonly associated with the virus lytic

cycle, remains constitutively expressed as a latent protein in vitro

within growth-transformed cells and might contribute to virus-

associated lymphomagenesis in Wp-restricted BL (16).

Additionally, BALF1, expressed with early kinetics during the

lytic cycle, is found in latently infected epithelial and B cells (15).

While dispensable for lytic replication and B cell transformation,

BALF1 might facilitate efficient transformation, potentially in

vivo (15).

Under specific circumstances (17), such as immunosuppression

like HIV or immunosuppressive therapy (18), concurrent infections

such as CMV, HPV, or coronavirus (19, 20), disruptions in cellular

equilibrium like hypoxia (21), or psychological stressors like

familial and socio-economic instability (22), EBV can switch from

latency to lytic infection, termed viral reactivation, contributing to

the dissemination of the virus and its potential to cause various

diseases and complications.

In EBV-associated cancers, latent EBV proteins are crucial for

tumor pathogenesis, and their expression can classify tumors into

distinct categories (Figure 1). In type III latency cancers, cells

infected with EBV express a full array of latent proteins,

including six EBV nuclear antigens (EBNA1, 2, 3A, 3B, 3C, LP),

two latent membrane proteins (LMP1, 2), BamH1-A right frame 1

(BARF1), several small noncoding RNAs, various micro-RNAs, and

EBV-encoded small RNAs. All EBNA3 family proteins are highly

immunogenic and can be effectively targeted and cleared by T cells

in immunocompetent individuals (8, 23, 24). Consequently, type III

latency malignancies can primarily be seen in innate or acquired

immunodeficient individuals, such as PTLD of HSCT or SOT

recipients and B-cell lymphoma in AIDS patients. Type III

latency can also be seen in EBV-transformed B cel l

lymphoblastoid cell lines (LCLs) cultured in vitro.

Type II latency tumors mainly include NPC, GC, some cases of

HL, and NKT. These tumors express EBNA1, LMP1, LMP2, and

BARF1 and have intermediate immunogenicity.

Type I latency, marked by sole EBNA1 expression, is seen in BL

and exhibits constrained immunogenicity.

Apart from latent antigens, some lytic cycle transcripts are also

found in certain tumors, which encode molecules known to

contribute to tumor growth (25). Among these transcripts, BZLF1
frontiersin.org
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and BRLF1 are the IE transcription factors that master-regulate

EBV reactivation/lytic expression. Notably, the expression of some

of the immediate early genes, such as BZLF1, in the absence of other

lytic genes, particularly those encoding late structural proteins,

thereby precluding the formation of infectious viral particles, is

termed the abortive lytic cycle. Specifically, it is known as the pre-

latent abortive lytic cycle when it occurs just after infection. The

abortive lytic cycle has been well-documented in pre-latent cells

(26–30) and established tumors (31–34). Furthermore, evidence

derived from mouse models (35, 36) supports the notion that the

abortive lytic cycle facilitates cell-to-cell viral dissemination and

contributes to viral-induced tumorigenesis.
3 EBV-specific T cell immunity in
EBV-related cancers

3.1 EBV-positive lymphoma in
immune-deficient host

In the context of immunocompromised SOT or HSCT

recipients, PTLD predominantly arises, characterized by the

presence of six EBNA and two LMP antigens denoting Type III

latency. The EBNA3 antigens within PTLD demonstrate notable

immunogenicity, forming a foundation for potential adoptive cell

therapies targeting these specific antigens.

Front-line therapies for PTLD post-HSCT or SOT commonly

involve reducing immunosuppression, often coupled with rituximab

and occasionally augmented by chemotherapy. However, cellular

therapy remains the primary option in cases of inadequate

response or relapse. The rich diversity of EBV antigens expressed

in these tumors facilitates the efficacy of adoptive therapy using virus-

specific cytotoxic T cells (CTLs). Clinical trials across global centers

have successfully employed CTL preparations, sourced either

autologously or from third-party donors, for PTLD treatment or

prevention, with a strong record of safety and efficacy. These antigen-

specific T cells are primed via in vitro exposure to LCLs. The potent

immunogenicity of the EBNA3 family proteins makes them the

principal targets of CD8 T-cell immunity (8, 23, 24). CD4+ T cells,

though less frequent, also contribute to tumor control (10, 37, 38).
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CD4+ T-cell effectors are crucial in limiting early-stage EBV-induced

B-cell proliferation, and some direct target EBV-transformed LCLs

(37). Notably, EBV-specific T cell products enriched with CD4+ T

cells correlate with improved clinical outcomes (38). Furthermore,

the expansion of T cells through LCL generates CD4+ T cells specific

to nonviral cellular antigens (39, 40), known as TAAs (10),

upregulated by LMP1 in EBV-infected cells.
3.2 EBV-positive tumors in the
immunocompetent host

Unlike PTLD, which expresses a full array of EBV latent

antigens (latency III), most EBV-associated cancers exhibit

limited expression of EBV latent antigens in relatively

immunocompetent hosts (Figure 1). Immunodominant proteins

such as EBNA2, 3A, 3B, 3C, and -LP are absent, redirecting immune

attention towards remaining target antigens, such as EBNA1 in BL,

EBNA1, LMP1, and LMP2 in HL, and primarily EBNA1 and LMP2

in NPC, GCa, ENKTL, and DLBCL. Efficient recognition of these

EBV antigens by T cells is crucial for targeting and eliminating

infected cells.

Traditionally considered immunologically inert, EBNA1 has a

glycine-alanine repeat (GAr) region that shields it from proteasome

breakdown and MHC I presentation (41). However, studies of CD8

+ T cells targeting specific EBNA1 epitopes are also reported (42,

43). These T cells can recognize naturally expressed native EBNA1

protein within EBV-transformed LCLs, inhibiting LCL proliferation

(44), suggesting that the GAr domain within EBNA1 does not

confer complete protection from MHC class I presentation. In vitro

models suggest that HL, NPC, and T/NKL cells retain MHC class I

antigen processing capabilities and can be recognized by CD8+ T

cells specific to LMP2 (45–49).

In contrast, BL is deficient in MHC class I processing (50) but

exhibits MHC class II expression (51), allowing recognition by

EBNA1-specific CD4+ T cells ex vivo and in murine models (52,

53). Besides MHC molecules, HLA polymorphism, which

influences antigen presentation and immune recognition, is

strongly associated with disease risk (54–57). For example, the

HLA-A01 allele increases the risk of EBV-positive HL, whereas
FIGURE 1

EBV latency types. Latency III express all EBV-encoded latent proteins and is the most immunogenic. Latency II expresses EBNA1, LMP1, and LMP2,
and has intermediate immunogenicity. Latency I only expresses EBNA1 and is poorly immunogenic. Latency 0 abolishes all antigen expression and is
seen in memory B cells as a reservoir of the virus. There can be transition latency states with upregulation of latency and lytic genes. EBNA, EBV
nuclear antigen; LP, leader protein; LMP, latent membrane protein.
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HLA-A02 has a protective effect (58). Despite EBV-specific T cells

being restricted by various HLA alleles, the emergence of EBV-

positive tumors cannot be solely attributed to antigen-specific

blindness in the T cell repertoire. T-cell population deficiencies

and attenuated T-cell responses are plausible contributors (59, 60).

This is particularly evident in endemic BL, where Plasmodium

falciparum and EBV act as co-factors in cancer development (61).

Malaria stimulates the proliferation of latently infected B cells

through viral reactivation (53). Meanwhile, T-cell control of EBV-

infected B cells is lost during P. falciparummalaria (59, 60), possibly

contributing to an increased risk of incidence of BL.

Furthermore, EBV-positive cancers employ diverse strategies to

evade immune surveillance. The tumor microenvironment (TME)

within EBV-associated malignancies, including HL, NPC, and the

majority of EBV-positive gastric cancers, is characterized by an

“immune hot” phenotype (58, 62, 63). These tumors display

pronounced infiltration of lymphocytes whose specificities and

functions remain incompletely elucidated.

EBV-positive HL exhibits distinct characteristics compared to

EBV-negative HL. Notably, the signature of EBV+ cHL tissues is

enriched in genes characteristic of Th1 and antiviral responses.

Furthermore, in pediatric cases of EBV+ cHL, a robust T cell

infiltration is evident, exhibiting a cytotoxic/Th1 immune profile

(64, 65). However, markers of suppression also increase, including

LAG-3 and IL-10 (66). Regulatory T cells (Tregs), both natural and

induced, are present in higher frequencies, contributing to

immunosuppression (66, 67). EBNA1 may upregulate CCL20

expression, promoting the migration and recruitment of Tregs

(68). Additionally, active signaling by LMP1 and LMP2 can

induce high-level expression of galectin-1 and PD-L1 (69–71).

Undifferentiated NPC is invariably EBV-positive and exhibits a

suppressive TME characterized by dysfunctional lymphocyte

infiltration. Regulatory CD4+ T cells are elevated in the blood

and consistently detected in tumors (72). CD8+ FoxP3+

lymphocytes with suppressive functions are also present (73).

Immune checkpoint molecules such as PD-L1, LAG3, galectin 9-

TIM3, TIGIT, and CTLA4 are overexpressed (74–77). Recently, an

epithelial-immune dual feature of NPC cells has been identified,

characterized by upregulated MHC II gene expression. This dual

feature correlates with CD8+ T cell exhaustion and a suppressed

TME, ultimately associated with poor prognosis (78).

Approximately 10% of gastric cancers are EBV-positive (79),

and patients with EBV-associated gastric cancer (EBVaGC) have a

more favorable prognosis compared to their EBV-negative

counterparts (80). EBV-positive gastric cancer exhibits

pronounced lymphocytic infiltration (81). Many perforin-positive

CD8+ T cells are observed within this infiltrate, exhibiting

effectiveness in eliminating autologous EBV-transformed cells

(82). However, these CD8+ T cells may not recognize known

EBV latent antigenic peptides, suggesting the involvement of

alternative cellular antigens (82). Nevertheless, these CD8+ T cells

can be counteracted by localized immunosuppression, as evidenced

by high expression of PD-L1, PD-L2, and indoleamine 2,3-

dioxygenase (IDO), which inhibits T and NK cell function

through tryptophan depletion (83, 84).
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Despite the diverse repertoire of immunomodulatory

mechanisms employed by EBV-positive cancers, adoptive transfer

of EBV-specific T cells has demonstrated clinical efficacy in patients

with PTLD, HL, NPC, and T/NKL (85–88). The therapeutic effect of

EBV-specific T cells not only destroys tumor cells and reduces

tumor burden but may also induce the release of potentially

antigenic debris from tumor cells, thereby stimulating an immune

response against nonviral cellular antigens. This phenomenon,

known as epitope spreading (85), expands the range of targeted

antigens for T-cell recognition and response. However, the origin of

these cellular antigens, whether from epitope spreading or as a

consequence of LMP1 signaling-induced upregulation of TAAs on

B cells (10), warrants further investigation.
3.3 HLA susceptibility

The human leukocyte antigen (HLA) complex, located within

the major histocompatibility complex (MHC) on chromosome

6p21.3, plays a vital role in antigen presentation to the immune

system. The MHC region encompasses three subregions: HLA class

I, crucial for CD8+ T-cell cytotoxicity induction; HLA class II,

involved in CD4+ helper T-cell responses; and class III, housing

non-HLA genes associated with inflammation, leukocyte

maturation, and the complement cascade.

HLA’s diversity and polymorphism contribute to its ability to

recognize and target various pathogens. Growing evidence suggests

that HLA variations can influence genetic susceptibility to EBV-

associated cancers. Notably, NPC strongly associates with HLA

genes in the MHC region (54–57). In the genomic analysis of NPC

patients, a notable frequency of aberrations in MHC class I genes

(NLRC5, HLA-A, HLA-B, HLA-C, B2M) has been observed (89).

An HLA class I region-specific association suggests the importance

of CD8+ T-cell cytotoxicity in NPC etiology (90). HLA associations

may vary across racial groups, with specific HLA alleles conferring

protective or increased risk effects in different populations. In

Southern China and Southeast Asia, where NPC is most

prevalent, HLA-A11 and B13 are associated with a protective

effect against NPC, whereas HLA-A02 (A0207, A0206), A33, B46,

and B58 are linked to an increased risk of NPC (91).

HLA also demonstrates significant links with other EBV-

associated cancers, including HL, BL (92), and PTLD (93). For

example, the HLA-A01 allele increases the risk of EBV-positive HL,

whereas HLA-A02 has a protective effect (58). However, the

mechanisms underlying the diverse roles of HLA alleles in cancer

susceptibility and immune escape remain incompletely understood.

In addition to classic HLA genes, non-classic HLA genes have

been implicated in immune escape. HLA-G, known to inhibit T-cell

and NK-cell function, is frequently expressed in NPC tumors and is

associated with poor survival outcomes (94).

Due to its strong association with cancer etiology, HLA has

potential applications in cancer screening, as demonstrated in

improved prediction efficiency for NPC screening when

combining HLA class I gene variants with EBV genetic variants

and epidemiological risk factors (95).
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To advance our understanding of the intricate role of HLA

genes and their interplay with T-cell immunity in EBV-associated

cancers, larger-scale and comprehensive studies are needed.
4 EBV-induced T cell responses
against TAAs

Choi et al. (10) demonstrated in a mouse model that the

expression of the EBV signaling protein LMP1 in B cells induces

T-cell responses against multiple TAAs. LMP1 signaling enhances

the presentation of TAAs on B cells and upregulates the expression

of costimulatory ligands CD70 and OX40L, leading to the activation

of potent cytotoxic CD4+ and CD8+ T-cell responses against LMP1

(EBV)-transformed B cells (Figure 2). Furthermore, through the

ectopic expression of LMP1 on patient-derived tumor B cells to

prime T cells, autologous cytotoxic CD4+ T cells can be expanded

to target a wide range of endogenous tumor antigens, including

TAAs and neoantigens. This innovative approach holds great

promise for treating B-cell malignancies and augmenting

immune-mediated protection against EBV-unrelated cancers by

targeting shared TAAs (96).

Several independent studies have also reported a nonviral,

cellular antigen-specific component in the human CD4+ T cell

response upon EBV-transformed LCL stimulation in vitro (39, 97).

However, these cellular antigens have not been identified and their

classification as TAAs remains to be established. Furthermore,

clinical studies have observed the detection of T cells specific for

nonviral TAAs in the peripheral blood following cytotoxic T

lymphocyte (CTL) infusion, which is associated with clinical

responses (85). Nevertheless, whether these T cells arise through

epitope spreading or are derived from the therapeutic T cells

through LCL stimulation is unclear. Therefore, further
Frontiers in Immunology 05
investigations are needed to identify TAAs expressed by EBV-

infected or transformed B cells and to determine their recognition

by T cells in individuals with EBV infection (96).

In addition to B cells, whether LMP1 or other EBV antigens can

induce the upregulation of TAAs in epithelial cells has yet to be

examined. Furthermore, the exact roles ofMHC IImolecules in cancer

remain subject to debate and investigation. Accumulating evidence

indicates that tumor-specific MHC II expression is linked to positive

outcomes in many cancer types (98) (e.g., breast cancer (99), colon

cancer (100), melanoma (101)). However, an opposing functional

aspect of MHC II has also emerged. In HLA-DR+melanoma, MHC II

lessens CD8+ T cell activity by inducing LAG3+ and FCRL6+ TILs

(102) or recruiting CD4+ T cells to the tumor (103). In the TC-1

mouse model of HPV-related carcinoma, the absence of MHC II

molecules promotes CD8+ T cell infiltration and activation, curbing

tumor growth (104). Moreover, a recent study examining NPC using

single-cell transcriptomics has revealed a dual epithelial-immune

feature of tumor cells, characterized by the expression of immune-

related genes, including MHC II-coding genes (78), which relates to

poor prognosis. This distinct trait also links to CD8+ T cell exhaustion

and a suppressed tumor environment (78).
5 EBV-specific T cells in TME:
bystanders or not?

Humans can experience common viral infections like CMV,

EBV, and influenza. Once recovered, antiviral memory T cells are

retained throughout the body to sense reinfection or recrudescence

(105, 106) and are endowed with the capacity for rapid response,

sustained vigilance, and cytotoxic prowess (107). Although such

virus-specific T cells are abundant within tumors, they may not

target tumor cells and are therefore regarded as “bystander-T cells”
FIGURE 2

LMP1 signaling in B cells triggers cytotoxic T-cell resposes against TAAs. (Choi et al., 2021) LMP1 signaling induces substantial cellular gene
expression, leading to (i) upregulation of antigen processing and presentation machinery, (ii) enhanced expression of co-stimulatory ligands (CD70,
OX40L, etc.), and (iii) overexpression of cellular antigens known to function as TAAs. Collectively, these mechanisms contribute to the effective
eradication of LMP1 (EBV)-transformed B cells. TAA, tumor associated antigens.
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(108). However, emerging evidence suggests that these virus-

specific T cells can still be harnessed for cancer immunotherapy

(107, 109–111).

One strategy involves antibody-mediated delivery of viral

epitopes to tumors (110, 111), achieved by conjugating virus-

derived epitopes with tumor-targeting antibodies. These

antibodies bind to specific tumor cell antigens and release

immunogenic virus epitopes when cleaved by tumor-specific

proteases. The released peptide then binds to free HLA class I

molecules at the tumor cell’s surface and can be targeted for

destruction by circulating virus-specific CTLs (110, 111).

Another strategy employs viral peptides to mimic a viral

reinfection event in memory T cells. Memory T cells can execute a

‘sensing and alarm’ function upon antigen re-exposure (112), and this

form of immunotherapy is termed peptide alarm therapy (PAT) (109).

Reactivating virus-specific memory T cells through intratumoral

delivery of adjuvant-free virus-derived peptide triggers local immune

activation. This delivery translates to antineoplastic effects, which lead

to a significant tumor reduction of tumor growth in mouse models of

melanoma (107) and improved survival in a murine glioblastoma

model (109). This approach can reactivate and attract T-cell

infiltration into the tumor and transform the immunosuppressive

tumor microenvironment into immune-active sites.
6 EBV-specific T cell-based therapies

6.1 EBVSTs

EBV-specific T cells (EBVSTs) derived from allogeneic or

autologous donors can recognize and eliminate cancer cells

expressing EBV antigens, highlighting their potential in adoptive

cell therapy (Table 1).
Frontiers in Immunology 06
Clinical trials in the early stages have demonstrated the

effectiveness of adoptive T-cell therapy in treating PTLD, which

leverages the restoration of cellular immunity to control EBV-

associated PTLD. Initial trials using unmanipulated donor-

derived lymphocytes in HSCT patients yielded favorable

outcomes, with complete regression observed in all 5 patients

(113). However, the alloreactive nature of these T cells also led to

the development of graft-versus-host disease (GvHD). Subsequent

trials focused on generating allogeneic EBVSTs through in vitro

stimulation using EBV-transformed LCLs, recombinant viral

vectors, or synthetic peptides (86, 114–118). These trials

demonstrated efficacy in preventing and treating PTLD in HSCT

recipients, with minimal alloreactivity and reduced production

pipeline. Similar strategies have been employed in the context of

SOT to address PTLD (119–121); however, the response rate and

persistence of EBVSTs in SOT patients have been limited, likely

attributed to high levels of immunosuppression (9). To overcome

this challenge, preclinical studies have attempted genetic

modifications of EBVSTs to confer resistance against

immunosuppressive agents (122–124).

The success of EBVSTs in PTLD has fostered an interest in

treating other EBV-associated malignancies, such as NPC and HL.

EBVSTs targeting type II latency antigens (EBNA1, LMP1, and

LMP2) have shown promising results in clinical trials (85, 87, 88,

117, 125), with increased response rates and overall survival

observed in patients with NPC and HL compared to those who

did not receive adoptive cell transfer. However, it should be noted

that the best response rate is still observed in PTLD-post HSCT

(Table 2). In addition, emerging evidence indicates that immediate

early and other lytic transcripts, including BARF1, could broaden

specificity and enhance cytotoxicity for EBV-associated diseases.

BARF1-specific T cells have demonstrated the ability to efficiently

eliminate NPC cell lines in vitro (127).
TABLE 1 EBV-associated malignancies and their forms of viral latency.

tumor subtype % EBV positive latency

PTLD post HSCT >95% III

PTLD post SOT
95% in first year III

50-60% after 1 year I/II

Hodgkin’s lymphoma
classical 30-40%

II
AIDS-related 100%

Diffuse large B cell lymphoma

late post-transplant DLBCL >50%

I/IIElderly DLBCL >50%

AIDS-related ~50%

Burkitt’s lymphoma
Endemic BL 100%

I
AIDS-related BL 30-40%

T/NK cell lymphoma Extranodal >95% I/II

Nasopharygeal carcinoma Undifferentiated 100% I/II

Gastric carcinoma 9% I/II
fro
PTLD, post-transplant lymphoproliferative disease; HSCT, hematopoietic stem cell transplant; SOT, solid organ transplant; AIDS, acquired immunodeficiency syndrome; DLBCL, diffuse large B
cell lymphoma; EBV, Epstein-Barr virus; NK, natural killer.
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To improve accessibility and expedite treatment, the

establishment of third-party EBVST banks is actively being

explored for PTLD (38, 126). The use of banked cells from third-

party donors has broadened the availability of EBVSTs, and the

observed response rates indicate the potential effectiveness of this

approach in a wider range of patients. Alternatively, a combination

of therapies with other immunomodulatory agents, such as

checkpoint inhibitors (135) or vaccines (136) may be necessary to

ensure clinical impact.
6.2 EBV specific T cell receptor engineered
T cell therapy

TCR (T-cell receptor) engineered T-cell therapy has emerged as

a promising strategy for immune-based treatment (Table 1). TCRs

specific to EBNA3A, EBNA3B, LMP1, LMP2, BRLF1, and BMLF1

have been generated from CD8+ T cell clones (129, 137, 138).

However, recognition of autologous EBV-transformed LCLs by T-

cell lines transduced with these TCRs was weak, partly attributed to

the limited expression of latent EBV antigens in LCLs. Nevertheless,

the adoptive transfer of TCR transgenic T cells significantly

attenuated tumor growth induced by the CNE NPC line in nude

mice, demonstrating their efficacy in vivo (139). The interactions

between transgenic TCR a and b chains with the endogenous TCR

is another possible factor contributing to the constrained killing

efficiency (140). To overcome this, chimeric TCRs have been

devised. These chimeric TCRs entail the fusion of constant

regions derived from mouse TCR with variable domains derived

from EBV-specific T cell clones (141). The stability of these

modified receptors was enhanced by introducing an additional

disulfide bond between the TCR a and b chain constant domains

(128, 142). Transgenic T cells expressing these chimeric TCRs

exhibited improved cytotoxicity against co-incubated EBV-

positive NPC cells, effectively suppressing tumor growth in

immune-compromised mice (128). Similarly, promising outcomes

were observed with an LMP1-specific TCR, as T cells transduced

with LMP1-specific TCR rendered a twofold increase in the survival

of immune-compromised mice challenged with LMP1-expressing

tumor cells (129).

Consequently, despite the limited cytotoxicity towards

autologous tumor cells, transgenic T-cell therapy remains a

promising strategy in combating EBV-associated malignancies.
7 Beyond ab: accumulating evidence
of a role for gd T-cells

The preceding review primarily focuses on ab T cells, but it is

important to note the unique features of gd T cells that make them

appealing in various cancer settings. These features include tissue

tropisms, MHC-independent antigen presentation, antitumor

activity regardless of neoantigen burden (143), and a combination

of T and natural killer cell properties (144–146). In humans, gd T

cells can be categorized into Vd1+ and Vd2+ cells, with distinct

distributions in mucosal tissues and blood/lymphoid organs,
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respectively. They play a crucial role in antiviral immune

responses in cytomegalovirus (147–150). Emerging evidence

suggests that gd T cells also play a role in primary EBV infection

and EBV-associated cancers.

During primary EBV infection, there is an observed increase in

the frequency of gd T cells in the blood of patients with infectious

mononucleosis (IM) (151–153). Pediatric patients have a bimodal

innate response to primary EBV infection (154), influenced by a

dimorphism in TCRg-chain repertoires (155). Altered gd T cells

have also been observed in patients with EBV-associated

malignancies, such as NPC, where the impaired functional

capacity of gd T cells is observed despite an unchanged frequency

(156, 157). In a case involving a cord blood transplant recipient with

elevated EBV viremia, the absence of detectable ab T cells was

compensated by expansions of cytotoxic Vd1+ gd T cells, resulting

in no signs of lymphoproliferative disorder (158). Moreover, early

recovery of Vd2+ T cells has been identified as an independent

protective factor against EBV reactivation in recipients of allo-

HSCT (159). Interventions that induce early reconstitution of

autologous gd T cells could hold therapeutic benefits. ab TCR

graft depletion (160, 161) has demonstrated efficacy in reducing

GVHD by facilitating rapid immune reconstitution of NK cells and

gd T cells (162–164). Additionally, reducing immunosuppressants

has led to enhanced recovery of Vd2+ T cells and decreased risk of

EBV-associated lymphoproliferative disorders in HSCT recipients

(159). Notably, long-term persistence of donor-derived Vd1+ T cell

clones has been detected in recipients’ blood even a decade post-

HSCT, with these cells exhibiting expandability in vitro and

cytotoxicity against autologous EBV-LCL (165).

While extensive research and clinical trials have explored the

therapeutic potential of gd T cells in managing solid tumors and

hematopoietic malignancies (166–168), only a limited number of

studies have investigated their efficacy in EBV-associated cancers

using murine models (Table 1). Adoptive transfer of anti-gd TCR

antibody-expanded gd T cells to Daudi lymphoma-bearing nude

mice significantly prolonged their survival time (130). In addition,

the adoptive transfer of pamidronate-expanded Vg9Vd2-T cells

prevented and inhibited EBV-LPD in mouse models (131).

Moreover, co-administration of Vd2+ T cells and the EBNA1-

targeting peptide L2P4 enhanced gd T cell cytotoxicity against NPC

in immunodeficient mouse models (132). Additionally, exosomes

derived from Vd2+ T cells exhibited the ability to eliminate EBV-

associated tumor cells (133), and when combined with

radiotherapy, gd-T-Exos demonstrated efficacy in effectively

treating NPC by eradicating radioresistant cells (134).

Thus, gd T cells represent an essential component of cellular

immunity in regulating primary EBV infection and hold promise in

combating EBV-associated malignancies.
8 Conclusions

Cellular immunity is pivotal in maintaining the delicate

equilibrium between the host and EBV. Despite EBV’s high

prevalence, affecting a significant portion of the global population,

most individuals remain asymptomatic throughout their lives,
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TABLE 2 Summary of EBV-specific T cell-based therapies.

method
disease, clinical
trial/animal model

phase
published
year
(reference)

results

Adoptive cell therapy

Donor-derived unmanipulated
lymphocytes

PTLD I 1994 (113) CR in 5/5 patients, but GVHD developed

gene-modified donor-derived
EBVSTs

PTLD, HSCT I 1995 (114)
CR of immunoblastic lymphoma in 1/1 patients; EBV reactivation
controlled in 3/3 patients without lymphoma

Donor-derived EBVSTs PTLD, HSCT I 1998 (115)
CR of immunoblastic lymphoma in 2/2 patients; EBV reactivation
controlled in 6/6 patients without lymphoma

Multivirus-specific CTLs activated by
LCLs genetically modified with an
adenoviral vector

PTLD, HSCT I 2006 (116) CR in 11/11 individuals with evidence of active CMV, EBV or
adenoviral infection, without GVHD

EBV, ADV-specific CTLs activated
by monocytes and LCLs transduced
with adenoviral vector

PTLD, HSCT I 2009 (118) none of 13 receiving EBVSTs as prophylaxis developed PTLD

Peptide-induced multivirus-CTL PTLD, HSCT I 2014 (86)
11 recipients: 94% response rate of 8 patients receiving EBVSTs as
treatment; 3 patients receiving EBVSTs as prophylaxis did not
develop PTLD.

third party-EBVSTs PTLD II 2007 (38) CR or PR in 17/33 patients

third party-EBVSTs PTLD I 2019 (126) CR or PR in 35/59 patients

Autologous EBVSTs PTLD, SOT I 1999 (119) Significant regression of the PTLD in 1/1 patient

Autologous EBVSTs PTLD, SOT I 2006 (120)
CR of liver PTLD in 1/1 patient; prevention of PTLD in 12/12
patients

Autologous EBVSTs SOT I 2002 (121) Decrease EBV load, prevention of PTLD in 7/7 patients

Autologous EBVSTs NPC I 2005 (125) CR in 4/10 patients and PR in 2/10 patients

Autologous EBVSTs combined with
chemotherapy

NPC II 2014 (87) CR in 3/35 patients and PR in 22/35 patients

LMP1/LMP2-specific Autologous
EBVSTs

Lymphoma II 2014 (85) CR in 11/21 patients and PR 2/21 patients

LMP1 and LMP2a-specific EBVSTs
Extranodal NK/T Cell
Lymphoma

I 2015 (88) CR in 10/10 patients

LMP- EBVST HSCT I 2018 (117)
PR in 2/7 post treatment therapy
15/19 remain in remission post prophylaxis therapy

BARF1-EBVST NPC cell lines 2016 (127)
CTLs generated with doxorubicin-treated LCLs kill T2-A2 cells
with exogenous or endogenous BARF1-peptides

EBV Specific TCR engineered T cell therapy

Autologous CD8 and CD4
Lymphocytes expressing LMP2-
specific TCR

NSG mouse, NPC model 2015 (128)
Lysed LMP2+ NPC cells and inhibited tumor growth in a mouse
model

LMP1-specific TCR-T NSG mouse, tumor model 2018 (129) Doubled the survival time of mice bearing tumor

EBV-Specific gd T cells

Anti-gd TCR antibody-expanded gd
T cells

nude mice, lymphoma
model

2012 (130)
adoptive transfer of the expanded gd T cells to Daudi lymphoma-
bearing nude mice significantly prolonged the survival time of the
mice and improved their living status

pamidronate-expanded Vg9Vd2-T
cells

EBV-LPD Model in
Humanized and Rag2–/–
gc–/– Mice

2014 (131) prevented and inhibited EBV-LPD in mouse models

adoptive gd T cells combined with
EBV-targeting probe (L2)P4

NPC-bearing NSG mice
model

2023 (132)
exerted killing against certain NPC cells, enhanced tumor
regression in vivo by adoptive transfer of gd T cells

(Continued)
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highlighting the critical role of effective immune control. However,

EBV-associated malignancies primarily occur in individuals with

apparently intact immune function. This raises intriguing questions

about the mechanisms and stages at which these tumors manage to

evade the surveillance of virus-specific T cells.

EBV-associated malignancies express distinct EBV latent

antigens, triggering diverse T-cell responses while also employing

a range of immune evasion mechanisms, rendering a complex

interplay with cellular immunity. Encouragingly, promising

clinical responses have been observed from adoptive cell transfer

of EBV-specific T cells targeting latent antigens. Recent

investigations into early lytic EBV antigens in tumorigenesis

provide additional potential targets for therapeutic interventions.

Additionally, TCR transgenic therapy offers the possibility of

redirecting T cells to recognize EBV antigens and the

involvement of gd T cells also merits consideration in EBV-

associated diseases.

In cancers not associated with EBV, there usually exists an

abundance of EBV-specific memory T cells, which can be leveraged

to either activate the immunosuppressive tumor microenvironment

or re-directed to target tumor cells. In addition, EBV can activate

TAA-specific T-cell responses. These further broaden our

understanding of this oncogenic virus and its implications for the

fields of cancer biology and therapy. In this regard, a pivotal

research goal is to attain a comprehensive grasp of the intricate

interplay between cellular immunity and the virus. By harnessing

the inherent capabilities of T-cell immunity, we can advance toward

more precise and effective interventions in the treatment of EBV-

associated and other cancers.
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