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Teleost innate immunity, an
intricate game between immune
cells and parasites of fish organs:
who wins, who loses
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1Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy, 2Department of
Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy, 3Department of
Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy, 4Department of Veterinary
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Fish, comprising over 27,000 species, represent the oldest vertebrate group and

possess both innate and adaptive immune systems. The susceptibility of most

wild fish to parasitic infections and related diseases is well-established. Among all

vertebrates, the digestive tract creates a remarkably favorable and nutrient-rich

environment, which, in turn, renders it susceptible to microparasites and

macroparasites. Consequently, metazoan parasites emerge as important

disease agents, impacting both wild and farmed fish and resulting in substantial

economic losses. Given their status as pathogenic organisms, these parasites

warrant considerable attention. Helminths, a general term encompassing worms,

constitute one of the most important groups of metazoan parasites in fish. This

group includes various species of platyhelminthes (digeneans, cestodes),

nematodes, and acanthocephalans. In addition, myxozoans, microscopic

metazoan endoparasites, are found in water-dwelling invertebrates and

vertebrate hosts. It is worth noting that several innate immune cells within the

fish alimentary canal and certain visceral organs (e.g., liver, spleen, and gonads)

play active roles in the immune response against parasites. These immune cells

include macrophages, neutrophils, rodlet cells, and mast cells also known as

eosinophilic granular cells. At the site of intestinal infection, helminths often

impact mucous cells number and alter mucus composition. This paper presents

an overview of the state of the art on the occurrence and characteristics of innate

immune cells in the digestive tract and other visceral organs in different fish-

parasite systems. The data, coming especially from studies employed

immunohistochemical, histopathological, and ultrastructural analyses, provide

evidence supporting the involvement of teleost innate immune cells in

modulat ing inflammatory responses to metazoan and protozoan

parasitic infections.
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1 Introduction

In vertebrates, the immune system has evolved to discriminate

between self (host tissue) and non-self (pathogens). It consists of

two components: the innate system and the adaptive system (1).

While all animals possess an innate immune system, the adaptive

immune system develops later, appearing first in Gnathostomata or

jawed vertebrates (2). Fish, as the first vertebrate class to possess

both types of immune systems, serve as a crucial model for

investigating the evolutionary history of immune systems in

vertebrates and comparative immunology (3, 4). The innate

immune system, which comprises epithelial/mucosal barriers,

humoral parameters, and immune cells, is the initial responder to

infection, it plays a pivotal role in disease resistance and has a kind

of memory called trained innate immunity which differs from

adaptive memory for many aspects (2, 5).

In fish, the gills, skin, and gut act as mucosal barriers, serving as

the first line of defense. These dynamic structures enable the animal

to interact with the surrounding environment while maintaining

homeostasis (6). Fish mucosal barriers possess several important

properties. Firstly, they contain immune cells and effector molecules

within their anatomical structures. Additionally, the mucus layer

acts as a physical barrier and contains potent bioactive molecules

(7). Recent studies have provided insights into the features of fish

mucosal immunity and its roles in exposure to contaminants, stress,

vaccination, wound repair, and infection (8). In teleosts, the

intestinal mucosa holds particular immunological significance as

it interacts with leukocyte subpopulations that mediate both

adaptive and innate immune responses (9).

Intestinal parasites induce alterations in the structure of the gut

tissue, which in turn affect its normal function (10). Enteric worms

commonly induce gut inflammation and elicit host immune

reactions (11–13). Inflammation is a complex series of

homeostatic mechanisms involving the nervous, circulatory, and

immune systems in response to organ injury or infection (12, 14). If

the acute inflammatory response fails to eliminate the pathogen, the

inflammatory process persists and acquires new characteristics (15).

Studies on fish have reported the essential role of enteric

neuromodulators and the immune system in the inflammatory

process caused by endoparasites (16–18). The relationship

between mucous cells and neuroendocrine cells in fish harboring

intestinal helminths has been described in previous studies (19, 20).

Enteric parasites commonly enhance the secretion of mucous cells

(21, 22). Fish mucus is involved in excretion, feeding, respiration,

reproduction, ionic and osmotic regulation, and protection against

parasites (22). In some fish species, mucous cells have been found to

produce and release defense substances such as antimicrobial

peptides (AMPs) (23). Mucous cells are components of the innate

immune system (1, 24).

In addition to mucous cells, various cell types contribute to the

innate immunity of teleost fish. These include granulocytes, such as

mast cells (MCs), neutrophils, monocytes/macrophages, and rodlet

cells (RCs) (12, 17, 25), as well as non-specific cytotoxic cells and

natural killer-like cells (1). Our aim is to highlight exciting new

advances in our understanding of fish immune mechanisms against

enteric parasites and worms that infect visceral organs.
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2 Actors in fish innate immunity and
their responses against parasites

In this section, we will sequentially examine the major types of

innate immune cells.
2.1 Mucous cells

Within the gut, mucous epithelial cells, also known as goblet

cells, are responsible for mucus production and its holocrin

secretion on the epithelial surface (20). Mucus plays a critical role

in mucosal defense mechanisms (26–29), and mucous cells are

considered a specific type of innate immune cell (24, 28). Mucous

cells exhibit a basal elongated nucleus and possess supranuclear

spherical or polyhedric vacuoles that contain more or less mucus,

depending on the cell’s maturation stage. At the ultrastructural

level, the mucus within the vacuoles may appear electron-opaque

or, in certain cases, electron-lucent (20).

Gastrointestinal mucus has long been regarded as a lubricant

that aids in the transit of digesta and protects the gut mucosa from

mechanical damage (22, 30). Numerous studies have demonstrated

that the chemical composition of mucus varies across different

regions of the digestive tract and depending on its physiological

state (25, 30–32). During stress or inflammation caused by

pathogenic organisms, carboxylate and sulfate acidic mucus

components increase (22, 25). Thomsson et al. (33) reported

rapid glycosylation changes in the mucus of the intestine of

rainbow trout Oncorhynchus mykiss infected with Aeromonas

hydrophila and A. salmonicida.

Mucins, which are the primary components of vertebrate

mucus, are high molecular weight proteins consisting of long

pept ide chains adorned wi th hundreds of O-l inked

oligosaccharides (27). The expression of mucins changes in the

presence of enteric infections and varies depending on the type of

pathogen (27). Limited information is available regarding the effects

of intestinal parasites on differential mucin expression in fish.

Perez-Sanchez et al. (27) reported the downregulation of three

mucins (Muc13, Muc2, and Muc2-like) in the intestines of gilthead

seabream, Sparus aurata, infected with the myxozoan Enteromyxus

scophthalmi. Furthermore, myxozoan infection elicited higher

glycosylation levels in the gut mucus composition of gilthead

seabream, reducing pathogen adhesion (34). Schroers et al. (35)

demonstrated changes in mucus composition in the gut of the

common carp, Cyprinus carpio, following per oral treatment with

the bacterium Aeromonas hydrophyla. During the infection,

mucosal adhesion of pathogen is an essential initial step (36, 37).

In infected fish, alterations in the glycosylation patterns of intestinal

mucus serve as a mechanism to hinder pathogens adhesion to the

epithelial surface and the activity of their enzymatic complexes (38).

An increase in the total number of mucous cells was observed in

the intestines of fish infected with helminths, particularly near their

attachment sites (19, 20, 22, 39). The hyperplastic response of

intestinal mucous cells to helminth infections has been reported in

various parasite-fish systems, such as Salmo trutta and Squalius

cephalus infected with Pomphorhynchus laevis (Acanthocephala)
frontiersin.org
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(20, 39, 40), Salmo trutta infected with Echinorhynchus truttae

(Acanthocephala) or Cyathocephalus truncatus (Cestoda) (20, 41),

Anguilla anguilla infected with Acanthocephalus rhinensis

(Acanthocephala) or Helicometra fasciata (Trematoda) (20), and

Tinca tinca infected with Monobothrium wageneri (Cestoda) (20).

Intestinal helminths induce the secretion of abundant mucus into the

lumen (19, 20, 25, 39–42). Lectin histochemistry revealed remarkable

changes in the mucus oligosaccharides of mullet intestines infected

with Neoechinorhynchus agilis (Acanthocephala) compared to

uninfected conspecifics (22). These changes include increased

mucus viscosity due to higher amounts of sulfated mucins,

providing resistance to degradation by bacterial lytic enzymes (22,

43, 44). Infected fish exhibit mucins that are rich in terminal sialic

acid residues, which inhibit bacterial adhesion to the epithelial surface

(22, 35).

The mucous cells of fish intestines are believed to play a role in

the secretion of AMPs like piscidins (45–52), and peptides such as

inducible nitric oxide synthase (i-NOS) (53). In the broad gilled

hagfish Eptatretus cirrhatus, an ancient jawless fish, mucous cells in

the intestinal tract were identified through the use of antibodies

targeting the biogenic amine serotonin, Toll-Like Receptor 2 (TLR-

2), piscidin1, and i-NOS (54). In their record, Alesci et al. (54)

mentioned the co-occurrence of serotonin/TLR-2, and i-NOS/

piscidin1 in the E. cirrhatus intestinal mucous cells, using the

“colocalization view” with the software Zen 2011. Nevertheless, a

further independent confirmation might be necessary (i.e. analysis

of the Pearson’s coefficient, 55). Additionally, the same authors

highlighted the presence of immunoreactivity to the anti-vesicular

acetylcholine transporter (VAChT) antibody in mucous cells of the

intestines of Heteropneustes fossilis and Heterotis niloticus,

indicating the ectopic presence of acetylcholine (56).

Acetylcholine, which controls various vital cellular functions (e.g.

proliferation, differentiation, establishment and maintenance of

cell-cell contacts), is secreted by several non-neuronal cells (57).

Despite the relatively limited observations made by the

aforementioned authors, there have been no definitive studies

establishing the ability of fish mucous cells to produce serotonin

and i-NOS/piscidins. Therefore, the results of their research are yet

to be confirmed.

In the intestines of infected fish, cholinergic signals play a role in

mucus secretion and discharge (19, 58). For example, in chub

intestines parasitized with P. laevis, close proximity between

endocrine epithelial cells secreting galanin, serotonin, and

enkephalins and mucous cells has been observed. This indicates a

strong association between paracrine signals from endocrine cells

and mucus discharge (19). Furthermore, in the same host-helminth

system, the use of confocal and transmission electron microscopies

has revealed the presence of mast cells (MCs) in the vicinity of

intestinal mucous cells and often MCs were found in degranulation

(25, 59). Similarly, intraepithelial MCs adjacent to mucous cells

have been documented in the intestine of Silurus glanis infected

with the cestode Glanitaenia osculata (16). Many researchers

concur that the degranulation of MCs and the heightened

production of mucus in the vertebrate gut are part of a defensive

mechanism against intestinal parasites (16, 25, 60–63).
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With reference to mammals and intestinal helminths, excessive

mucus secretion has been suggested to aid in the removal of worms

from the gut lumen (64). Several studies have focused on the

hyperplasia of mucous cells, resulting in an increase in mucus

secretion in various fish-helminth systems (19, 41). We have

documented an elevated density of mucous cells in the fish gut

and observed qualitative changes in the glycoconjugates secreted in

response to helminths (12, 19, 22, 25). Accumulating evidence

suggests that mucus secretion primarily functions to protect the

underlying mucosa from wormmechanical damage and invasion by

pathogenic microorganisms (12, 22, 25, 35, 40, 41).
2.2 Mast cells

Mast cells (MCs) are crucial components of the host defense

system (65). Mast cells are secretory cells that have been conserved

for over 500 million years in all vertebrate classes, predating the

development of adaptive immunity (66). While MCs comprise a

heterogeneous cell population, they serve as initiators and effectors

of innate immunity and regulators of the adaptive immune

response. Across all vertebrates, they share similar morphology

and function (67). In mammals, MCs are critical for controlling the

bacteria burden (68). Recent literature by Dahlin et al. (69) provides

a comprehensive review of MC behavior and function in mammals.

In fish, the acidic and basic contents of MC cytoplasmic granules

vary among species and often exhibit different metachromasia

based on the staining method used (65, 70). Fish MCs display an

irregular shape, eccentric nucleus, and numerous electron-dense

cytoplasmic granules (63).

MCs are commonly found in connective tissues of most fish

species. They are primarily located inside or in close proximity to

the blood vessels of the gill and mucosal layer of the intestine. This

particular positioning enables MCs to fulfill a crucial role in host

defense (12, 18, 65, 71). Within mucosae, MCs frequently coexist

with other innate immune cells such as neutrophils, mucous cells,

rodlet cells, and macrophage aggregates (22, 59). In certain species,

they can also be found in the intraepithelial position (16, 22), liver

(72, 73), and gonad (74).

At the site of inflammation and in the presence of damaged

tissue, MCs release a range of inflammatory mediators, including

several proteolytic enzymes, cytokines, arachidonic acid metabolites

and piscidins (45–47). Piscidins exhibit potent, broad-spectrum

antimicrobial activity against viruses, bacteria, fungi, and metazoan

parasites (47–50). Molecular analyses of piscidins in different fish

species have revealed high variability in length and amino acid

sequence (50, 51). Piscidins 3 and 4 have been detected in the

intestinal MCs of hybrid striped bass (Morone saxatilis × M.

chrysops) (45) and gilthead seabream (46, 52, 75). However,

piscidins 3 and 4 were absent in the intestines of barbel and wels

catfish infected with the acanthocephalan Pomphorhynchus laevis

(76), providing further evidence of the distinct taxonomic

distributions of piscidins (45, 46, 52). In the medium intestine of

the goldfish Carassius auratus, MCs exhibit immunoreactivity to

antibodies against TLR-2 and S100 (77). TLR-2 is an antimicrobial
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peptide receptor that recognizes gram-positive bacteria (78).

Detection of pathogen molecules by TLR-2 triggers the activation

of macrophages and dendritic cells, leading to cytokine secretion

(79, 80). S100 is a peptide with antimicrobial activity that has been

detected in various types of immune cells, including neutrophils,

monocytes/macrophages, and MCs (77, 81–83). Mast cells might

contain histamine (67, 84), serotonin (77, 85, 86), Tumor Necrosis

Factor-a (TNF-a) (87), and mucopolysaccharides with residues of

a-N-acetyl-galactosamine (59).

Mast cells frequently respond to parasites by undergoing

degranulation, releasing their contents. This process has been

observed in fish infected with metazoans (25, 88). In the intestine

of brown trout infected with the cestode Cyathocephalus truncatus

and acanthocephalans Echinorhynchus truttae and Dentitruncus

truttae, the migration and accumulation of MCs at the site of

parasitic infection have been observed in large numbers (71, 89, 90).

A similar finding was observed in the gut of powan-infected with

the cestode Diphyllobothrium dendriticum (91). In wels catfish,

Silurus glanis parasitized by the cestode Glanitaenia osculata, a high

number of MCs were observed in the medium intestine compared

to uninfected conspecifics and MCs were often observed in close

proximity to endocrine epithelial cells (16). Furthermore,

parasitized wels catfish exhibited a higher number of endocrine

epithelial cells immunoreactive to met-enkephalin, galanin, and

serotonin (16). Endocrine epithelial cells are part of the gut

neuroendocrine system and interact with and cooperate with

immune cells in response to helminths (16, 19) and pathogens or

inflammation caused by them (92–94). Remarkably, extraintestinal

infections in Gasterosteus aculeatus by larvae of P. laevis have been

documented, with MCs found on the surface of the worm, and

granules penetrating the tegument of the parasite (95).
2.3 Neutrophils

Neutrophils are among the first cell types to arrive at the site of

tissue injury or infection (96, 97). Neutrophils exhibit a round to

oval shape with an irregular outline and a lobed nucleus (73).

Cytoplasm of neutrophils contains smaller granules compared to

those of MCs. These granules have a rod-shaped structure and

possess an elongated electron-dense lamellar core (72). Unlike

mammals, where neutrophils represent the predominant

leukocytes during homeostasis, in fish neutrophils account for

approximately 5% of circulating leukocytes (98). Kidney of teleost

as hematopoietic organ has the largest population of neutrophils,

which can be rapidly mobilized through blood vessels to sites of

inflammation (98, 99). They are guided to the target site by

chemotactic signals (99). In fish as in mammals, the chemokine

interleukin-8 (IL-8, also known as CXCL8) is involved in recruiting

neutrophils to the site of inflammation (100, 101). These highly

motile cells play a crucial role in the initial defense through

phagocytosis of microbes, secretion of granule proteins, and

release of other antimicrobials (102, 103). The plasmalemma of

neutrophils contains antimicrobial peptide receptors that directly

bind to pathogenic microorganisms, facilitating their engulfment

and internalization within the cytoplasmic phagosome.
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Subsequently, the phagosome fuses with a lysosomal vacuole

(104). In addition to phagocytosis, neutrophils secrete active

molecules and radicals such as nitric oxide, reactive oxygen

species, and reactive nitrogen species (105). These reactive

substances exert biocidal actions against bacteria and parasites,

and emerging evidence suggests their involvement in cytokine

responses and modulation of immune cell apoptosis (106).

Studies on zebrafish have shown that neutrophils do not always

undergo apoptosis during inflammation resolution but can often

migrate from damaged tissues back to the vasculature. This process,

known as reverse transmigration, is regulated by retrograde

chemotaxis (107, 108). The cytoplasmic granules of neutrophils

contain mainly myeloperoxidase, a highly cationic glycosylated

enzyme primarily produced by these leucocytes (109, 110).

Neutrophils also contribute to proinflammatory responses by

releasing cytokines that activate and recruit other host immune

cells (103).

At the site of inflammation, neutrophils recruited to the area

release extracellular traps (NETs), which consist of smooth

chromatin fibers combined with histones and granule

components (99, 111). NETs immobilize and reduce the virulence

of extracellular micropathogens, preventing their dissemination and

facilitating their elimination (99, 110–112). Additionally, NETs help

maintain a high local concentration of antimicrobial peptides found

in degranulated neutrophils (111).

Neutrophils interact with various aquatic pathogens, including

fish virus (113), Gram-negative bacteria (114, 115), protozoans (97,

116, 117), flatworm monogeneans (118), and digeneans (119). In

the case of other helminths, in the intestine of the tench parasitized

with the cestodeMonobothrium wageneri, numerous neutrophils in

degranulation were observed in close proximity to the microtriches

of the worm (120). Neutrophils have also been documented to be in

close proximity to the nematode body (121) and encysted nematode

larvae in the pancreas and liver of the minnow (72). The

relationship between neutrophils and aquatic pathogens has been

recently reviewed by Buchmann (104). It has been documented that

neutrophils have various functions in both adaptive and innate

immunity, including proinflammatory roles. However, their

contributions to the resolution of inflammation have been limited

to apoptotic cell death and subsequent clearance by macrophages

(103, 122).
2.4 Macrophages

The primary phagocytic cells in vertebrates are macrophages

and their precursor monocytes. In response to tissue injury or

infection caused by parasitic pathogens, monocytes are promptly

recruited and undergo differentiation into tissue macrophages

(123). Similar to other vertebrates, cells of the macrophage

lineage contribute to the immune responses in fish. Consequently,

recent studies in fish immunology have specifically targeted these

cells (124).

Fish macrophages are found throughout the body cavity and

various organs, including kidney, spleen, intestine, liver, and gills

(109). Macrophages are characterized as large cells with an irregular
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outline, containing vesicular structures with electron-lucent vesicles

and electron-opaque contents (76). Macrophages often contain

pigments like hemosiderin, lipofuscin, and melanin (109) and can

be organized in groups known as melano-macrophage centers or

macrophage aggregates (MAs) (125, 126).

Recent studies have reported the presence of resident

macrophage populations in various tissues, which exhibit rapid

and highly specific responses to pathogen-induced damage (127).

The precise mechanisms by which resident macrophages contribute

to development, tissue homeostasis, and defense functions remain

incompletely understood (127). In the zebrafish gut, resident

macrophages are known to participate in the regulation of the

microbiota (128). Additionally, these cells within the gut muscle

layers interact with enteric neurons to coordinate smooth muscle

contractions (85, 127).

In response to signals from the surrounding tissues, macrophages

undergo molecular changes and exhibit different functional behaviors

through a process known as macrophage polarization (129).

Following polarization, macrophages can assume either the M1

type (classically activated macrophages), characterized by activation

and the expression of pro-inflammatory modulators, or the M2 type

(alternatively activated macrophages), characterized by high levels of

anti-inflammatory mediators (130, 131). Macrophage polarization is

believed to be induced by pathogens or their excreted-secreted

molecules (129, 131).

It has been suggested that a successful acute inflammatory

response leads to the elimination of infectious agents, followed by

a resolution and repair phase facilitated by tissue-resident and

recruited macrophages (132). In vitro stimulation of macrophages

with pathogen-associated molecules like lipopolysaccharides or

peptidoglycan results in increased production of oxygen radicals,

pro-inflammatory chemokines and cytokines, as well as enhanced

phagocytic activity (1). Macrophages express plasmalemma

receptors, including toll-like receptors, scavenger receptors, and

pathogen pattern recognition receptors (1). Furthermore, in

addition to their phagocytic activity, macrophages function as

antigen-presenting cells, binding antigens to T cells (133).

Accounts of fish macrophages and MAs against helminth

infections have been reported (25, 134). At the site of

inflammation, macrophages are exposed to dying cells and pro-

inflammatory stimuli (135). The intestine harbors the largest pool

of macrophages, responsible for maintaining mucosal homeostasis

and epithelial renewal. Macrophages appear to be maintained in a

steady state within the lamina propria of the fish intestine,

protecting the mucosa against parasites/pathogens (12, 18) while

also scavenging foreign debris and dead cells (136). In zebrafish

experimentally infected with the pathogen Streptococcus iniae,

neutrophils were found to produce leukotriene B4 (LTB4), which

regulates macrophage aggregation (137).

Macrophages exhibited immunoreactivity to serotonin and i-

NOS antibodies, displaying strong reactivity primarily within the

outer cytoplasmic region (88). In the intestine of mullet Chelon

ramada infected with the myxozoan Myxobolus mugchelo, a

significant number of large and atypical intraepithelial

macrophages were observed engulfing M. mugchelo spores and

necrotic debris (88).
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In the livers of fish Gymnotus inaequilabiatus harboring

nematode larvae, the presence of macrophages and MAs was

remarkable (73). Furthermore, in the swimbladder of European

eels infected with the nematode Anguillicoloides crassus, a

considerable number of macrophages and MCs were observed

within the submucosal layer (17, 138).
2.5 Epithelioid cells

After infection, the extent of the subsequent host reaction can

vary considerably, and each encysted parasite is often surrounded

by granulomatous tissue (73). Fish granulomas are inflammatory

focal points consisting of concentric layers of epithelioid cells (63)

and various types of host immune cells, resembling mammalian

granulomas closely (139, 140). The formation of granulomas in

response to extra-intestinal parasites in fish has been extensively

documented in the intestines and viscera (63, 141). Granulomas are

chronic inflammatory lesions that often manifest as nodules (73) in

one or multiple organs (142). Epithelioid cells derive their name

from their morphological resemblance to epithelial cells (143).

These cells are typically transformed macrophages, primarily

responsible for phagocytosing foreign agents (144–146).

The inner layer of granulomas closest to the parasitic larva

mainly consisted of dark necrotic epithelioid cells (72). Non-

necrotic epithelioid cells formed desmosomes with each other

(72) or with the fibroblasts. Epithelioid cells possess nuclei rich in

euchromatin, and their cytoplasm contains numerous filaments,

free ribosomes, and swollen mitochondria. In some cases, the

epithelioid cells exhibited a foamy appearance. Granulomas have

been observed surrounding encysted larvae of nematodes in the

organs of various fish species (12, 63, 72, 147, 148), digenean larvae

in tench organs (149), and cestodes in the liver of perch (150). In

zebrafish granulomas caused by mycobacteria, the epithelioid cells

exhibit elevated levels of E-cadherin, forming a closed-cell envelope

around the pathogens (151). It has been hypothesized that such

concentric layers of epithelioid cells could serve as a protective

barrier for pathogens against the host’s immune response (151,

152), or they may “isolate” the pathogen and prevent damage to the

host’s tissues (152).
2.6 Erythrocytes

Several studies have established the involvement of fish red

blood cells in innate and adaptive immune processes, in addition to

their role in gas exchange mechanisms (153). Unlike higher

vertebrates, the erythrocytes of Osteichthyes are oval in shape,

possess a nucleus, and rarely exhibit visible cytoplasmic

organelles, likely due to hemoglobin storage (154).

Fish erythrocytes can modulate the expression of different sets

of gene in response to stimuli (155, 156). They also produce

antimicrobial peptides and cytokines (157, 158) and are involved

in the elimination of pathogens associated with complement

components (159). Similar to neutrophils and macrophages, fish

erythrocytes can engulf micro-pathogens or molecular debris
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through erythrophagocytic processes (159, 160). Furthermore, these

cells possess pattern pathogen recognition receptors, enabling them

to function as antigen-presenting cells via major histocompatibility

complex class II antigens (157).

Several studies have focused on the involvement of fish

erythrocytes in immune processes, specifically concerning viruses

(156, 159, 161), bacteria (160), and fungi (162). A recent review by

Stosik et al. (153) provides insights into the function of fish

erythrocytes in immunity against micro-pathogens. This evidence

highlights the significance of these cells in host defense against

pathogens (155). However, there is currently no information

available regarding the potential role of these cells in metazoan

infection of fish tissues/organs.
2.7 Rodlet cells

Rodlet cells (RCs) are pear-shaped cells characterized by a

distinctive cortex, basal nucleus, and conspicuous typical

inclusions called rodlets (163, 164). Rodlet cells are primarily

found in the epithelial tissue of the intestine, gonads, swim

bladder, skin, gills, heart, sensory organs, brain, thymus, liver,

spleen, kidney, in freshwater and marine fish (164). For over 120

years, fish pathologists and histologists have debated the origins and

functions of these enigmatic cells. The first review of RCs, published

by Manera and Dezfuli (163), reported contrasting perspectives on

the nature and function of RCs, along with several unresolved

issues. The parasitic nature of RCs leaves many questions

unanswered. For instance, why do these cells lack a specific tissue

preference? If RCs are a type of protozoan parasite (Apicomplexa),

it is challenging to explain why their number increases in fish

infected with another protozoan (17, 164). Extensive literature on

RCs as endogenous fish cells exists and continues to grow.

Consequently, in investigations of numerous fish species, no

evidence of inflammation in the surrounding tissue of RCs has

been found. Moreover, RCs have been observed in neonates or very

young laboratory-reared fish, embryos of viviparous teleosts, and

newly hatched fish obtained under pathogen-free, quality-

controlled conditions (165, 166). Some claims suggest that RCs

are a type of inflammatory cell closely associated with other piscine

inflammatory cells, such as MCs, mesothelial, and epithelioid cells

(65). Additionally, RCs are considered a kind of secretory cell and

proliferate in response to tissue injury or related factors (164, 167,

168). In the intestines of A. anguilla and C. carpio, RCs express

immune molecular markers , including lysozyme and

polysaccharides, such as a-N-acetyl-galactosamine (164, 168).

Lysozyme, being an antimicrobial enzyme, has a significant role

in the innate immunity of fish and its presence in RCs strengthens

the defensive role of these cells against pathogens (164). Indeed, a-
N-acetyl-galactosamine was detected in MCs of different species of

fish (59, 164, 168), it was suggested that its residues in the

carbohydrate backbone were involved in the protection of the

mucosae from microorganisms (35).

Records concerning the role of RCs as immune effector cells

have primarily focused on their mobilization and recruitment in

response to microparasites such as viruses (169), bacteria (168, 170),
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protozoans (17, 164, 171), and myxosporeans (88, 167, 171–173). In

fish hosting macroparasites, the presence of an increased number of

RCs, particularly at the site of infection (12), provides further

evidence of their defensive function as part of the innate immune

system (12, 17, 60, 174). As previously mentioned, the initial review

on RCs was published 18 years ago, and a subsequent edition was

necessary to update the current understanding of the origin,

structure, and function of these intriguing fish cells (164).

Rodlet cells are unique cells exclusively found in teleosts.

However, two Egyptian research groups (175, 176) observed a

kind of cells in the alimentary canals of two bird species and

named them RCs. These bird cells bear minimal resemblance to

fish RCs, and the authors did not provide sufficient compelling data

to support their interpretations. Notably, RCs have not been

reported in elasmobranch tissues, which are much closer relatives

to teleosts than birds. This observation raises doubts regarding the

existence of RCs in birds, and parsimony leads us to suspect that the

two bird species possess RCs while elasmobranch fish lack them.
2.8 Parasite-host counter-adaptation, who
is calling the shots?

Due to their elongated body plan, helminths are macroparasites

that cannot be ingested by host phagocytes such as macrophages

and neutrophils (177). Helminths are highly successful pathogens

primarily due to their evolution of potent and diverse immune

subversion strategies, which enable them to evade host immune

responses effectively (178–180). Their remarkable co-evolution with

the host’s immune system allows helminths to infect multicellular

species across various geographical environments (181). A

substantial portion of our understanding regarding the structure,

function, and regulation of host immune responses and the

excretory-secretory (ES) products of parasites has been derived

from studies on mammal-helminth systems (177, 182, 183).

Helminth secretomes encompass a multitude of potential

immunomodulators, and the molecular and functional diversity

of these entities at the host-parasite interface have gained increasing

recognition (180, 183, 184). Consequently, these molecules play an

essential role in the survival of the parasite within the host (177, 179,

183, 185). Helminth ES products comprise extracellular vesicles

(EVs) that contain proteins, lipids, and RNAs, serving as carriers for

immune modulators targeted at specific cell types (179, 186, 187).

EVs, which are membrane-enclosed nanoparticles, are a common

feature of parasite secretion across a wide range of species; further

details can be found in (188). Two types of EVs have been proposed

based on their size and biogenesis (188). Numerous studies have

been published on the ES products of human helminths,

particularly focusing on nematodes (e.g., 183, 189, 190), and

lesser on cestodes (191–193), and trematodes (194, 195).

Four taxa, namely trematodes (flukes), cestodes (tapeworms),

nematodes (roundworms), and acanthocephalans (spiny-headed

worms), encompass the helminths found in aquatic vertebrates.

Similar to helminths infecting terrestrial vertebrates, helminths of

teleost fish have developed strategies to manipulate and evade host

immune responses. These strategies involve the release of
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extracellular vesicles by parasites (196–198). Several studies have

investigated the effects of helminth ES products on piscine

leukocytes (e.g., 199–201). Experimental in vivo infections have

demonstrated that Schistocephalus solidus (Cestoda) can alter the

cellular immune responses of its fish second intermediate host

(202), and similar findings have been reported in three salmonid

species infected with the nematode Anisakis simplex (200, 203).

In recent years, the characterization of extracellular vesicles

from zoonotic nematode species, such as Anisakis spp., has garnered

the attention of several authors (196, 198, 204, 205). Regarding the

Anisakis simplex-rainbow trout system, the ES products of the

nematode had an immune depressive effect; accordingly, worm

enzymes reduced the fish immune response and increased parasite

survival (200). Over 40 years of direct evidence on the occurrence

and stability of helminths in numerous fish species suggest that not

all fish species are capable of mounting effective defenses against

helminths. Furthermore, in four different taxa of endoparasitic

helminth species in fish at the host-parasite interface regions, no

extracellular vesicles containing tegumental secretions of the worms

were observed (95). It appears that in high-intensity liver infections

of Gymnotus inaequilabiatus andMicromesistius poutassou with the

nematodes Brevimulticaecum sp. and Anisakis simplex, respectively,

organ functions are likely to be severely compromised (73, 148).

However, it should be noted that both of these species were alive

before necropsy.

Invasion of tissues can have more serious pathological

implications, depending on factors such as worm size, infection

intensity, and parasite stage (206). However, there are very few

documented cases of wild fish eliminating helminths. Instances of

helminth destruction have only been observed in the liver of Lota

lota and Perca fluviatilis, where Triaenophorus nodulosus larvae

were affected (207).

Insights from various areas of parasitology research, including

immunoparasitology and pharmacology, can drive the development

of new methods aimed at altering host-parasite interactions through

the suppression of parasite ES products, with the goal of developing

vaccines (208), novel anthelmintic strategies (180, 187), and

exploring therapeutic potential (204). These studies may provide

valuable insights into the question of “Who is calling the shots?” in

fish helminth infections, but the mechanisms of immunoavoidance

and immunosuppression in these parasites remain unclear.
3 Concluding remarks

Global fish consumption has witnessed an increase in recent

years, and this upward trend is expected to persist (209). However,

the presence of parasites poses a substantial threat to both wild-

caught and cultured fish. Parasitic infections are highly prevalent in

wild fish populations, and the rising popularity of consuming raw

and smoked fish necessitates diligent parasite monitoring to

mitigate the risk of disease transmission. Within the realm of fish

mariculture and aquaculture, metazoan parasites stand out as

particularly pathogenic organisms capable of causing zoonotic
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infections in consumers. To date, no commercial vaccines have

been developed to combat parasitic diseases in fish. Hence, it is

imperative that we expand our understanding of basic biology to

devise sustainable strategies for controlling fish parasites. A more

comprehensive understanding offish defense mechanisms will serve

as a foundation for the development of health management tools,

thereby facilitating the growth of sustainable aquaculture and

mariculture industries.

Both protozoan and metazoan parasites encounter the cellular

and humoral components of fish immune systems, resulting from

the co-evolution of the immune response of the host and the evasive

mechanisms employed by the parasite. While significant progress

has been made in elucidating the molecular mechanisms underlying

immunomodulation by various ES proteins and other products

generated by mammalian helminths, our understanding of the

occurrence and effects of helminth ES proteins on fish immune

systems is still in its nascent stages. Further investigations are

required to unravel the relationship between the fish immune

system and protozoan and metazoan parasites. Additionally,

immunohis tochemical s tudies can contr ibute to our

comprehension of the mechanisms and interactions involving fish

innate immune cells and parasites. The application of molecular

and immunopathological approaches to fish-parasite systems will

enhance our understanding of fish pathology and provide insights

into immune mechanisms in fish. We hope that the data presented

in this article will inspire further research on the interactions

between fish innate immune cells and parasites.
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