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Viral pneumonia is a global health burden with a high mortality rate, especially

in the elderly and in patients with underlying diseases. Recent studies have

found that myeloid-derived suppressor cells (MDSCs) are abundant in these

patient groups; however, their roles in the progression of viral pneumonia

remain unclear. In this study, we observed a substantial increase in MDSCs in a

mouse model of renal ischemia/reperfusion (I/R) injury and in older mice.

When intranasal polyinosinic-polycytidylic acid (poly(I:C)) administration was

used to mimic viral pneumonia, mice with renal I/R injury exhibited more

severe lung inflammation than sham mice challenged with poly(I:C). In

addition, MDSC depletion attenuated lung inflammation in mice with I/R

injury. Similar results were obtained in older mice compared with those in

young mice. Furthermore, adoptive transfer of in vitro-differentiated MDSCs

exacerbated poly(I:C)-induced lung inflammation. Taken together, these

experimental results suggest that the increased proportion of MDSCs in

mice with renal I/R injury and in older mice exacerbates poly(I:C)-induced

lung inflammation. These findings have important implications for the

treatment and prevention of severe lung inflammation caused by

viral pneumonia.
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1 Introduction

Viral lung infections are a considerable global health burden. In

patients with highly pathogenic respiratory viral infections,

pneumonia and the resulting acute respiratory distress syndrome,

septic shock, and multiple organ failure are major risk factors for

severe and fatal illnesses (1–3). Multiple patient surveys from the

2003 severe acute respiratory syndrome (SARS) and coronavirus

disease 2019 (COVID-19) outbreaks revealed that elderly patients,

as well as those with underlying medical conditions, such as kidney

disease, diabetes, hypertension, cancer, and immunosuppression,

are prone to developing severe illness (4–6). Because these

individuals are often immunocompromised, the immune response

to antiviral therapy may lead to death due to complications related

to the underlying disease. For example, patients with diabetes and

hypertension have a sustained increase in proinflammatory

cytokines caused by a dysregulated immune response, which may

skew the antiviral response toward an inflammatory response

associated with cytokine storms, tissue damage, and respiratory

failure (7–9). Older patients with chronic kidney disease, who are

most at risk for death due to COVID-19, often have immune

senescence and immunosuppressive conditions that hinder the

approaches used to combat SARS-CoV-2 infection (10).

Unfortunately, the cascade of pathological and immune events

and the key mechanisms involved in the aggravation of viral

pneumonia remain unclear.

Myeloid-derived suppressor cells (MDSCs) are immune cells

with suppressive functions that have received considerable

attention in recent decades. MDSCs are a heterogeneous group of

myeloid cells that can be classified as CD11b+Ly-6G−Ly-6Chi

monocytic MDSCs (M-MDSCs) and CD11b+Ly-6G+Ly-6Cint

polymorphonuclear MDSCs (PMN-MDSCs) based on their

morphology and expression of surface markers in mice (11). M-

MDSCs suppress T-cell proliferation via arginase 1 and inducible

nitric oxide synthase (iNOS), whereas PMN-MDSCs exert inhibitory

effects through arginase 1 and reactive oxygen species (ROS) (12).

Although MDSCs were originally described in patients with cancer,

recent studies have highlighted their important roles in regulating

immune responses in other pathological conditions, including

infection, transplantation, and autoimmune diseases (13, 14). In

addition, there is compelling evidence that aging increases the

number of circulating MDSCs in humans and mice (15), whereas

CD11b+Gr-1+ cells isolated from the spleens of older mice can

effectively inhibit T-cell proliferation and activity (16). Other

studies have shown that MDSCs can exert suppressive effects

through various pathways that ameliorate acute kidney injury or

diabetic kidney disease (17, 18). Together, these observations suggest

that MDSCs may prevent excessive inflammation caused by aging

and kidney disease. Paradoxically, MDSCs can also promote tissue

degeneration and increase the risk of infection complications (19, 20),

and exacerbate kidney damage (21). Furthermore, MDSCs can

display features of proinflammatory cells and contribute toward

hyperinflammation under certain conditions (22–24), suggesting

that the behavior of MDSCs depends on the context of the disease.
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Several studies have highlighted the potential role of MDSCs in

viral infections, including influenza A virus (IAV), hepatitis C virus

(HCV), and SARS-CoV-2 (25–28). In patients with COVID-19,

MDSC expansion after infection correlates with disease severity and

mortality (23). Available data also suggests a direct role for MDSCs

in exacerbating respiratory viral infections (27). As increased

morbidity and mortality rates are consistently observed in aging

individuals and in those with chronic diseases during viral

infections, the increased frequency of MDSCs in such individuals

may play a detrimental role in the progression of viral pneumonia.

In this study, older mice and those with renal ischemia/reperfusion

(I/R) injury were challenged with polyinosinic-polycytidylic acid

(poly(I:C)) as a viral RNA analog to induce lung inflammation. We

aimed to unravel the role of MDSCs in these models of poly(I:C)-

induced lung inflammation and explore its implications in the

treatment and prevention of severe lung inflammation caused by

viral pneumonia in aging individuals and in those with

chronic diseases.
2 Materials and methods

2.1 Mice

Inbred male C57BL/6J mice (6–8 weeks old) were purchased

from Japan SLC (Shizuoka, Japan) and were aged over 24 weeks in

our facility. All animals were bred and maintained under pathogen-

free conditions.
2.2 Preparation of poly(I:C)

High-molecular-weight poly(I:C) (InvivoGen, CA, USA) was

prepared according to the manufacturer’s instructions. Briefly,

endotoxin-free water (provided by the manufacturer) was added

to poly(I:C) for a final concentration of 4 mg/mL; the solution was

incubated in a hot water bath (65–70°C) for 10 min, and allowed to

cool slowly to room temperature (approximately 25°C) to ensure

proper annealing. The poly(I:C) solution was then aliquoted and

stored at −20°C. Before use, the poly(I:C) solution was diluted and

vortexed to ensure thorough mixing.
2.3 Murine model of poly(I:C)-induced
pneumonia

Male C57BL/6J mice (6–8 weeks old; young mice, or over 24

weeks old; older mice) were anesthetized using isoflurane. Different

doses (20, 50, and 100 mg) of poly(I:C) in 50 mL sterile phosphate-

buffered saline (PBS) or PBS alone were administered intranasally

(i.n.) twice through both nostrils alternately (29, 30). Mice received

seven poly(I:C) (or PBS) administrations, with a 24 h rest period

between each administration. Anti-Ly-6G (clone1A8, 2 mg/kg;

BioXCell, NH, USA) and anti-Ly-6C (clone: Monts 1, 2 mg/kg;
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BioXCell) were administered by intraperitoneal (i.p.) injection one

day before poly(I:C) challenge, with one more dose injected after

three days. Mice were sacrificed 7 days after poly(I:C) injection and

retro-orbital blood (approximately 75 mL) was collected for flow

cytometry analysis. Blood cell counts were determined using an XT-

2000i automated hematology analyzer (Sysmex, Kobe, Japan).

Lungs and brochoalveolar lavage fluid (BALF) were obtained for

further analysis.
2.4 Murine model of renal I/R injury

The mouse model of renal I/R injury was established as

described previously (31, 32). Briefly, 6–8 weeks old male mice

were anesthetized using isoflurane. A left unilateral flank incision

was made and renal pedicle dissection was performed. A

microvascular clamp (Natsume Seisakusho, Japan) was placed on

the renal pedicle for 22 min while the animal was kept at a constant

temperature and adequately hydrated. The clamp was then

removed, the wound was sutured, and the mice were allowed to

recover. After seven days, retro-orbital blood or spleen samples

were collected to evaluate MDSC levels. Anti-Ly-6C and Anti-Ly-

6G antibodies and poly(I:C) were administered.
2.5 Collection of bronchoalveolar
lavage fluid

After sacrifice, an incision was made in the abdominal cavity of

mice and a microvascular clamp was placed in the bronchus of the

left lung. BALF was obtained by inserting a 20-gauge catheter into

the trachea, through which 0.5 mL of cold Hank’s Balanced Salt

Solution (HBSS; Gibco, USA) was flushed back and forth three

times. BALF was centrifuged at 330 × g for 5 min at 4°C. Cell-free

supernatants were used to measure cytokine concentrations using

Bio-Plex. The BALF cell pellet was treated with red cell lysis buffer

and resuspended in Hank’s Balanced Salt Solution (HBSS)

supplemented with 2% fetal bovine serum (FBS) (2% FBS/HBSS;

Gibco, CA, USA) for cell counting and flow cytometry analysis.
2.6 Quantitative reverse transcription
polymerase chain reaction (qRT-PCR)

Total RNA was isolated from CD11b+Gr-1+ cells purified from

murine splenocytes using a JSAN cell sorting instrument (KS-

Techno, Chiba, Japan) with TRIzol reagent. cDNA was

synthesized using a QuantiTect reverse transcription kit (Qiagen,

Hilden, Germany) according to the manufacturer’s instructions.

qRT-PCR was performed using SYBR Premix Ex Taq (Tli RNaseH

Plus; TaKaRa, Tokyo, Japan) on a CFX96 Touch Real-Time PCR

Detection System (Bio-Rad, CA, USA). The specific primer

sequences used are listed in Table S1. Glyceraldehyde 3-

phosphate dehydrogenase (Gapdh) was used as a reference gene

and the relative expression of other genes was calculated using the

2-DDCt method.
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2.7 Flow cytometry analysis

Cells were pelleted, washed with 2% FBS/HBSS, blocked with

TruStain fcX (anti-mouse CD16/32) antibodies (BioLegend, CA,

USA) for 5 min, and then stained with the following antibodies for

15 min at 4°C: APC anti-mouse CD11b, Pacific Blue anti-mouse

Gr-1, APC-Cy7 anti-mouse Ly-6C, FITC anti-mouse Ly-6G, APC

anti-mouse CD3e, Pacific Blue anti-mouse CD4, PE anti-mouse

NK1.1, and FITC anti-mouse CD8a (BioLegend). The cells were

then washed and resuspended in 2% FBS/HBSS. Shortly before

performing measurements, a 7-amino actinomycin D viability

staining solution (BioLegend) was added to each sample to stain

dead cells. Flow cytometry analysis was performed using a BD

FACSCanto II flow cytometer (BD Biosciences, NJ, USA). Data

were analyzed using the FlowJo software (version 10.7.0, BD

Biosciences). The gating strategy used for flow cytometry

analysis was as follows: monocytes (7AAD−CD45+CD11b+Ly-

6G−Ly-6Chi), neutrophils (7AAD−CD45+CD11b+Ly-6G+Ly-

6Cint), CD4+ T cells (7AAD−CD45+CD3e+CD4+NK1.1−), CD8+

T cells (7AAD−CD45+CD3e+CD8a+NK1.1−), and NK cells

(7AAD−CD45+CD3e−NK1.1+) (Figure S1A).
2.8 Histopathological examination

The left lungs were removed from euthanized mice, fixed in 10%

formalin, and sent to the Kyoto Institute of Nutrition & Pathology

for paraffin embedding. Whole lungs were cut into 4 mm sections,

stained with hematoxylin and eosin (H&E), and imaged using the

SLIDEVIEW VS200 Imaging System (EVIDENT, Tokyo, Japan).

Digital images were imported into the HALO software (Indica Labs)

for analysis. Regions of interest around the relevant areas in each

slide were annotated manually and lung sections were divided into

normal and inflamed areas using the Indica Labs’ Area

Quantification module (Version 1.0). Nuclear cells in the

inflamed areas (infiltrating inflammatory cells) were automatically

counted using the CytoNuclear v2.0.9 analysis module (Figure S1B).
2.9 Bio-Plex cytokine analysis

To detect multiple cytokines in BALF, the Bio-Plex Pro mouse

cytokine assay (23-Plex Group I; Bio-Rad) was performed using a

Luminex-xMAP/Bio-Plex 200 System with the Bio-Plex Manager 6.2

software (Bio-Rad). Cytokine levels were measured using a cytometric

magnetic bead-based assay according to themanufacturer’s instructions.
2.10 Statistical analysis

Shapiro-Wilk normality test was performed to analyze the

normal (Gaussian) distribution of data. A p-value >0.05 indicated

a normal distribution. Subsequently, significant differences were

assessed using the Student’s t-test or one-way analysis of variance

(ANOVA) using the GraphPad Prism (GraphPad Software). P

values <0.05 were considered statistically significant.
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3 Results

3.1 MDSCs aggravate poly(I:C)-induced
lung inflammation in mice with
renal I/R injury

Poly(I:C), a synthetic analog of double-stranded RNA, is

present in some viruses and is, therefore, widely used to model

viral pneumonia (33). Upon binding to toll-like receptor 3 (TLR3),

retinoic acid-inducible gene I protein (RIG-I), melanoma

differentiation-associated gene 5 (MDA5), and poly(I:C)

selectively activate innate immune signaling pathways leading to

inflammation (34). First, we aimed to elucidate the importance of

MDSCs in poly(I:C)-induced lung inflammation using a mouse

model of acute renal I/R injury. A substantial increase in both

MDSC subsets was observed in mice with renal I/R injury

(Figure 1A) and CD11b+Gr-1+ MDSCs showed increased

expression of the immunosuppression-associated genes, Arg1,

Nos2, and Cybb (Figure 1B).

Repetitive intranasal administration of poly(I:C) significantly

increased the number of CD45+ cells in BALF (Figures 1C, D). The

increase in total cellularity in BALF was caused by significant

monocyte, neutrophil, CD4+ T cell, CD8+ T cell, and NK cell

infiltration (Figure 1D). Notably, the number of inflammatory

cells in BALF samples harvested from mice with I/R injury mice

was significantly increased compared with that in sham mice.

To elucidate whether the effects induced by poly(I:C) in I/R-

injured mice depended on MDSCs, I/R-injured mice were treated

with anti-Ly-6C and anti-Ly-6G antibodies to deplete circulating

MDSCs. Almost all M-MDSCs and total PMN-MDSCs were

depleted from the blood (Figure S2). In addition, MDSC-depleted

I/R-injured mice displayed reduced inflammatory cell infiltration,

especially for monocytes, neutrophils, CD4+ T cells, and CD8+ T

cells (Figure 1D).

Histological analysis of the lungs was performed to better

understand the pathology induced by poly(I:C). Marked

perivascular and moderate peribronchiolar interstit ial

inflammatory infiltrate was observed in poly(I:C)-treated sham

mice (Figures 1E, S3). A more severe inflammatory infiltrate was

observed in I/R injured mice and the inflammatory infiltrate in I/R-

injured mice was slightly lower under MDSC-depleted conditions

(Figures 1E, F). These results suggest that the frequency of MDSCs

is increased in mice with renal I/R injury and aggravates poly(I:C)-

induced lung inflammation.
3.2 MDSCs aggravate poly(I:C)-induced
lung inflammation in older mice

Next, we assessed the role of MDSCs in poly(I:C)-induced lung

inflammation in older mice. Consistent with previous reports, older

mice showed an increase in both MDSC subsets compared to young

mice (Figure 2A). In addition, CD11b+Gr-1+ MDSCs isolated from

older mice showed increased Arg1, Nos2, and Cybb expression

compared to those isolated from young mice (Figure 2B). Older

mice also showed a significant increase in the number of CD45+
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cells in BALF compared to young mice with poly(I:C) challenge,

similar to mice with I/R injury (Figures 2C, D). This increase in total

cellularity in BALF samples from older mice was caused by

significant neutrophil, CD4+ T-cell, and CD8+ T-cell infiltration.

Conversely, MDSC depletion significantly decreased the levels of all

analyzed cells in older mice (Figure 2D). No significant reduction in

total CD45+ cells was observed in young mice; only a decrease in

neutrophils and NK cells was noted (Figure 2D). Analysis of lung

peribronchial and perivascular inflammatory cells from lung

sections revealed more severe inflammatory infiltrate in older

mice than in young mice (Figures 2E, F, S4), whereas MDSC

depletion reduced poly(I:C)-induced lung inflammation in older

mice to the same level as in young mice. Together, these results

suggest that MDSCs are upregulated in older mice and aggravate

poly(I:C)-induced lung inflammation.
3.3 Adoptive transfer of MDSCs aggravates
poly(I:C)-induced lung inflammation

To verify the direct effect of MDSCs on poly(I:C)-induced lung

inflammation, in vitro MDSCs were adoptively transferred into

mice in an intravenous manner and the consequences of

inflammation were studied. In vitro MDSCs were differentiated

from BM cells with GM-CSF stimulation, as described previously

(CD11b+Gr-1+ MDSC purity over 90%, Figure S5A) (35, 36). These

cells displayed higher Arg1, Nos2, and Cybb expression than BM

cells (Figure S5B) and potently inhibited CD8+ T-cell proliferation

(Figure S5C).

Intranasal poly(I:C) administration dose-dependently increased

inflammatory cell infiltration into the lungs in both the PBS- and

MDSC-transfer groups. The adoptive transfer of MDSCs

significantly increased BALF CD45+ cell numbers, even in the

absence of poly(I:C), mainly due to CD4+ T-cell and neutrophil

infiltration into the lung. When poly(I:C) was administered,

monocyte and CD8+ T-cell infiltration also increased (Figures 3A,

B). Analysis of lung peribronchial and perivascular inflammatory

cells from lung sections revealed more severe lung inflammation

after the adoptive transfer of in vitro MDSCs (Figures 3C, D, S6).

Mul t ip l e po ly ( I :C) admin i s t ra t ions upregu la ted the

proinflammatory cytokines, GM-CSF, IFN-a, MCP-1, TNF-a,
and the anti-inflammatory cytokine IL-10 in BALF, which were

further upregulated upon adoptive transfer of in vitro MDSCs

(Figure 3E). The expression levels of other cytokines, such as G-

CSF, IL-1b, IL-2, IL-4, IL-5, and IL-6, were barely detectable or no

significant change (Figure S7). Thus, MDSCs appear to aggravate

poly(I:C)-induced lung inflammation.
4 Discussion

Viral infections target the airway and alveolar epithelial cells,

causing alveolar epithelial injury that can lead to acute respiratory

distress syndrome and even death (3, 37). Although dysregulated

immune responses are hallmarks of severe infectious diseases, it

remains unclear as to which innate and adaptive immune cells are
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critically involved in disease pathogenesis and which immunological

mechanisms could be useful therapeutic targets. Higher morbidity and

mortality rates in the elderly and in patients with chronic diseases may

be related to increased MDSC levels. In this study, we showed that the

frequency of MDSCs is increased before infection in older mice and in
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those with renal I/R injury, and is involved in the progression of viral

pneumonia, leading to increased lung inflammation.

MDSCs exert immunosuppressive functions that may increase

disease severity and cause clinical deterioration in patients with

infectious diseases. However, MDSCs may also display features of
B

C

D

E
F

A

FIGURE 1

Myeloid-derived suppressor cells (MDSCs) aggravate poly(I:C)-induced lung inflammation in mice with renal ischemia/reperfusion (I/R) injury.
(A) MDSC subsets in the blood were counted (mean ± SEM of two independent experiments; n = 9 in sham group, n = 13 in I/R group. Student’s t-
test: *p < 0.05). (B) Arg1, Nos2, and Cybb mRNA expression in MDSCs (CD11b+Gr-1+) sorted from sham or I/R injury mouse spleens measured using
qRT-PCR (mean ± SEM; n = 3 per group, Student’s t-test: *p < 0.05). (C) Mouse model of poly(I:C)-induced pneumonia established using an anti-Ly-
6C/Ly-6G dosing schedule. (D) Total number of CD45+ cells, monocytes, neutrophils, CD4+ T cells, CD8+ T cells, and NK cells in bronchoalveolar
lavage fluid (BALF) assessed using flow cytometry (mean ± SEM; one-way ANOVA: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
(E) Representative hematoxylin and eosin (H&E)-stained lung sections from Sham, I/R, and MDSC-depleted I/R groups at 1× and 10×. (F) Total
inflammatory cells in H&E-stained lung sections identified using HALO AI (mean ± SEM; one-way ANOVA: **p < 0.01).
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proinflammatory cells that contribute toward hyper-inflammation

under certain conditions (22–24). Various factors secreted by

inflamed tissues, such as GM-CSF, can promote the local

recruitment of MDSCs from the circulatory system and promote
Frontiers in Immunology 06
their terminal differentiation into mature myeloid cells, as well as

their activation to a proinflammatory phenotype with enhanced

cytokine secretory capacity (38). These studies may explain the

significant increase in the inflammatory cytokines, GM-CSF, IFN-
B

C

D

E F

A

FIGURE 2

Myeloid-derived suppressor cells (MDSCs) aggravate poly(I:C)-induced lung inflammation in older mice. (A) MDSC subsets in the blood were
counted (mean ± SEM of two independent experiments; n = 15 in young, n = 23 in older. Student’s t-test: *p < 0.05). (B) Arg1, Nos2, and Cybb
mRNA expression in MDSCs (CD11b+Gr-1+) sorted from young or older mouse spleens measured using qRT-PCR (mean ± SEM; n = 3 per group.
(B) Student’s t-test: n.s., no significance; *p < 0.05). (C) Mouse model of poly(I:C)-induced pneumonia was established and treated with anti-Ly-6C/
Ly-6G antibodies per the dosing schedule shown. (D) Total number of CD45+ cells, monocytes, neutrophils, CD4+ T cells, CD8+ T cells, and NK cells
in bronchoalveolar lavage fluid (BALF) assessed using flow cytometry (mean ± SEM; one-way ANOVA: *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001). (E) Representative hematoxylin and eosin (H&E)-stained lung sections from young, older, and MDSC-depleted groups at 1× and 10×. (F)
Total inflammatory cells in H&E-stained lung sections identified using HALO AI (mean ± SEM; one-way ANOVA: *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001).
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a, MCP-1, and TNF-a, observed in our study following the adoptive

transfer of in vitro MDSCs in the absence of poly(I:C) challenge,

suggesting that MDSCs may be a source of these cytokines.

Consequently, MDSCs are probably dominant pathogenic factors

in infectious diseases that drive exaggerated inflammation and the

migration of immune cells into the lung. Furthermore, the MDSC

transfer plus poly(I:C) administration group exhibited elevated levels

of IL-10, an anti-inflammatory cytokine that plays a pivotal role in
Frontiers in Immunology 07
maintaining immune homeostasis by facilitating the clearance of

infection (39). Because IL-10 is often induced together with

proinflammatory cytokines, and provides an endogenous feedback

to inhibit excessive inflammation (40), in our study, IL-10 induction

would have occurred in a similar manner.

In older mice, all inflammatory cells analyzed in this study

showed high infiltration in BALF when poly(I:C) was administered,

whereas their infiltration was decreased by the depletion of Ly-6C+
B

C D

E

A

FIGURE 3

Adoptively transferred myeloid-derived suppressor cells (MDSCs) aggravate poly(I:C)-induced lung inflammation. (A) Mouse model of poly(I:C)-
induced pneumonia established as shown with MDSC adoptive transfer. (B) Total number of CD45+ cells, monocytes, neutrophils, CD4+ T cells,
CD8+ T cells, and NK cells in bronchoalveolar lavage fluid (BALF) assessed using flow cytometry (mean ± SEM; one-way ANOVA: *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001). (C) Representative H&E-stained lung sections from PBS or MDSC-transferred mice at 1× and 10×. (D) Total
inflammatory cells in hematoxylin and eosin (H&E)-stained lung sections identified using HALO AI (mean ± SEM; one-way ANOVA: **p < 0.01,
***p < 0.001). (E) Cytokines in BALF were analyzed using Bio-Plex (mean ± SEM; one-way ANOVA: *p < 0.05, **p < 0.01).
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and Ly-6G+ cells. Thus, Ly-6C+ and/or Ly-6G+ cells may be the key

causes of inflammatory cell infiltration into the lungs of older

individuals. In I/R-injured mice, NK-cell infiltration was

increased following the depletion of Ly-6C+ and Ly-6G+ cells

compared to that of other cells. Consistently, NK cell levels did

not increase significantly with the adoptive transfer of in vitro

MDSCs. I/R-injured mice were almost the same age as the young

mice, suggesting that NK-cell infiltration is independent of MDSCs

in young mice with or without disease. A massive increase in CD4+

T cells and neutrophils was observed after the adoptive transfer of in

vitro MDSCs; however, this change did not exacerbate pneumonia

in the absence of poly(I:C), indicating that CD8+ T cells, monocytes,

and NK cells may play roles in the exacerbation of pneumonia.

Recent studies have demonstrated that NK cells exert anti-SARS-

CoV-2 activity but show defects in viral control, cytokine

production, and cell-mediated cytotoxicity in patients with severe

COVID-19 (41–43). Together with our results, these findings

suggest that NK cells are a key factor in the deterioration of

patients with pneumonia, in addition to MDSCs.

Because we found that MDSC depletion reduces poly(I:C)-

induced lung inflammation in older mice and in those with I/R

injury, our study highlights the potential of therapeutic approaches

that aim to reduce the number of MDSCs. Preliminary studies have

shown that a CCR5 inhibitor can alleviate SARS-CoV-2 plasma

viremia in patients with COVID-19 (44). Targeting the CCL5/CCR5

axis can reduce the recruitment of MDSCs from the bone marrow to

the lesion site (45); thus, COVID-19-related immunomodulatory

disorders could be improved by targeting this pathway. The absence

of HLA-DR is an important marker of human MDSCs and in one

study it has been shown that IL-6 blockers can partially elevate HLA-

DR expression, considering the decreased MDSC levels in patients

with severe COVID-19 (46). Taken together, these data suggest that

new approaches targeting MDSCs could be used to treat and prevent

severe lung inflammation caused by COVID-19. It should be noted

that although MDSC depletion in older mice reduced the severity of

pneumonia to levels observed in young mice, MDSC depletion in

young mice did not significantly improve pneumonia. Therefore,

MDSC depletion may only attenuate the worsening of pneumonia

in elderly patients or in those with underlying diseases.

The roles and mechanisms of M-MDSCs and PMN-MDSCs in

diseases, including tumors and pneumonia, are distinct and require

further exploration (22, 23). In our model, we observed a significant

increase in the number of MDSCs in the blood, with PMN-MDSCs

outnumbering M-MDSCs. However, it is important to note that in

the BALF, the number of monocytes was significantly higher than

that of neutrophils. This suggests that in our pneumonia model,

more monocytes, including M-MDSCs, may be recruited to the site

of lung inflammation. Further investigation is required to

determine whether M-MDSCs play a more prominent role in

exacerbating pneumonia.

Research on the relationships between MDSCs and acute or

chronic viral infections is still in its infancy and has only begun to

gain widespread attention since the COVID-19 pandemic. For

instance, several recent studies have demonstrated an increase in

the frequency of MDSCs in patients with COVID-19, which is related

to immune regulation during infection and can be used as an
Frontiers in Immunology 08
indicator of the severity of COVID-19 (23). To our knowledge, no

studies have yet reported the role of MDSCs in the progression of

viral pneumonia in aging individuals and in those with chronic

diseases. Although the details of the immune events and key

mechanisms remain unclear, this study presents evidence that the

increased MDSC profile present in older mice and in those with renal

I/R injury exacerbates poly(I:C)-induced lung inflammation. In

addition, we demonstrated that adoptively transferred MDSCs

could worsen poly(I:C)-induced lung inflammation, indicating that

MDSCs play a direct role in the pathogenesis of pneumonia. Further

investigation is necessary to determine the applicability of our results

to other related diseases. It should be noted that poly(I:C) does not

effectively mimic the viral replication process; therefore, the effect of

MDSCs on viral clearance requires further investigation. Due to the

challenges associated with the separation and purification of cells, we

were unable to perform in-depth functional and phenotypic analyses

of lung MDSCs. Such analyses would have provided valuable insights

into the mechanisms underlying the exacerbation of lung

inflammation. Future studies should continue the investigation of

the role ofMDSCs in viral progression, their impact on the activation,

exhaustion, and inhibition phenotypes of T and NK cells in the lungs,

and their potential as a target for drug intervention in virus-infected

mice or patients.
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