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Introduction: Although both COVID-19 and non-COVID-19 ARDS can be

accompanied by significantly increased levels of circulating cytokines, the

former significantly differs from the latter by its higher vasculopathy,

characterized by increased oxidative stress and coagulopathy in lung

capillaries. This points towards the existence of SARS-CoV2-specific factors

and mechanisms that can sensitize the endothelium towards becoming

dysfunctional. Although the virus is rarely detected within endothelial cells or

in the circulation, the S1 subunit of its spike protein, which contains the receptor

binding domain (RBD) for human ACE2 (hACE2), can be detected in plasma from

COVID-19 patients and its levels correlate with disease severity. It remains

obscure how the SARS-CoV2 RBD exerts its deleterious actions in lung

endothelium and whether there are mechanisms to mitigate this.

Methods: In this study, we use a combination of in vitro studies in RBD-treated

human lung microvascular endothelial cells (HL-MVEC), including

electrophysiology, barrier function, oxidative stress and human ACE2 (hACE2)

surface protein expression measurements with in vivo studies in transgenic mice

globally expressing human ACE2 and injected with RBD.
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Results: We show that SARS-CoV2 RBD impairs endothelial ENaC activity,

reduces surface hACE2 expression and increases reactive oxygen species

(ROS) and tissue factor (TF) generation in monolayers of HL-MVEC, as such

promoting barrier dysfunction and coagulopathy. The TNF-derived TIP peptide

(a.k.a. solnatide, AP301) -which directly activates ENaC upon binding to its a

subunit- can override RBD-induced impairment of ENaC function and hACE2

expression, mitigates ROS and TF generation and restores barrier function in HL-

MVEC monolayers. In correlation with the increased mortality observed in

COVID-19 patients co-infected with S. pneumoniae, compared to subjects

solely infected with SARS-CoV2, we observe that prior intraperitoneal RBD

treatment in transgenic mice globally expressing hACE2 significantly increases

fibrin deposition and capillary leak upon intratracheal instillation of S.

pneumoniae and that this is mitigated by TIP peptide treatment.
KEYWORDS

Epithelial sodium channel (ENaC), SARS-CoV2 spike protein, receptor binding domain
(RBD), human ACE-2, endothelial dysfunction, NADPH oxidase 2 (NOX2), tissue factor
Introduction

COVID-19 is a viral respiratory illness caused by the single

stranded RNA virus, SARS-CoV2. The spike protein of SARS-CoV2

represents the main mediator of viral interaction with mammalian

cells and has been the main target for vaccine development. The

much higher transmissibility of SARS-CoV2 compared to SARS-

CoV can be at least partially explained by the much higher affinity

of its main receptor -human ACE-2- for the viral receptor binding

domain (RBD), liberated by cleavage of an 8-residue sequence

between the S1 from the S2 subunits of the spike protein by furin

(1, 2). Disruption of the alveolar epithelial barrier results in

pneumonia, but additional compromise of the endothelial barrier

can lead to ARDS (3), which develops in about 20% of COVID-19

patients and is the main cause of mortality (4).

A significantly increased level of circulating pro-inflammatory

cytokines can be detected in both COVID and non-COVID ARDS.

Yet, COVID-19 pneumonia has a significantly higher vasculopathy

as compared to other viral or bacterial pneumonia (5–12). SARS-

CoV2-induced oxidative stress in lung capillaries is of particular

importance for endothelial dysfunction in COVID-19, since it not

only affects barrier function directly, but also indirectly, by inducing

tissue factor generation and subsequent coagulopathy (5, 13). These

findings point towards the existence of SARS-CoV2-mediated

factors and mechanisms that can sensitize the endothelium

towards barrier dysfunction in COVID-19. This can be especially

relevant in the presence of pneumococcal co-infections, since

concomitant SARS-CoV-2 infection and invasive pneumococcal

disease (IPD) is associated with 7-fold higher risk of death, in

comparison to IPD alone (14). These findings suggest that

interactions between SARS-CoV-2 or its components and S.
02
pneumoniae may aggravate ARDS (15). Although the virus is

rarely detected within capillary endothelial cells or in the blood

circulation (16), the S1 subunit of the spike protein, which contains

the receptor binding domain (RBD) for human ACE2, can be

detected in plasma from COVID-19 patients and its levels

correlate with disease severity (17). Moreover, the SARS-CoV2 S1

subunit was shown by others and our group to induce barrier

dysfunction in human lung microvascular endothelial cell (HL-

MVEC) monolayers and in mice (18–20).

In this study, we investigate the role of oxidative stress in SARS-

CoV2 RBD-induced barrier dysfunction in HL-MVEC monolayers.

We moreover evaluate whether the TNF-derived TIP peptide (21–

23) (a.k.a. solnatide, AP301), which activates endothelial ENaC and

preserves barrier function in HL-MVEC or mice treated with

bacterial toxins (24, 25), can also inhibit actions of the SARS-

CoV2 spike protein in lung capillaries. We moreover assess whether

prior intraperitoneal RBD injection can increase capillary leak in

global human ACE2 transgenic mice subsequently infected with

pneumococci. Our results demonstrate that RBD treatment inhibits

ENaC activity, decreases hACE2 surface expression and increases

ROS and tissue factor generation in HL-MVEC, as such causing

direct and indirect barrier dysfunction. The TIP peptide, which

binds to the a subunit of ENaC, can restore ENaC activity, hACE2

expression and barrier function in HL-MVEC in the presence of

RBD, at least partially by reducing ROS generation. Our results

indicate that SARS-CoV2 RBD represents a sensitizing factor for

vasculopathy and coagulopathy in COVID-19 and that this is

especially relevant for capillary leak during SARS-CoV2/

pneumococcal co-infections. As such, strategies activating

endothelial ENaC may hold promise to treat COVID-19-

associated vasculopathy.
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Materials and methods

Reagents

TIP peptide (a.k.a. Solnatide, AP-301), is a 17 amino acid cyclic

synthetic peptide and a direct ENaC activator with the sequence

CGQRETPEGAEAKPWYC and is provided by BCN, Barcelona,

Spain. NADPH oxidase 2 inhibitory peptide gp91dstat is purchased

from Anaspec (Freemont, CA, USA). Recombinant SARS-CoV2

spike protein RBD is purchased from Raybiotech (Peachtree

Corners, GA, USA). Recombinant full length Spike protein is

purchased from Creative Diagnostics (Shirley, NY, USA). Rabbit-

anti-human ACE-2 polyclonal antibody and the human ACE-2

(CT) antibody blocking peptide are from PromoKine (PromoCell,

Cat#: PK-AB718-3227, Heidelberg, Germany).
Cell culture

Human lung microvascular endothelial cells (HL-MVEC), cell

medium and endothelial cell growth supplement were purchased

from Lonza (East Rutherford, NJ). Cells were cultured in humidified

5% CO2 at 37°C using the appropriate culture medium.
Animals

Mice are housed in accordance with the National Institutes of

Health (NIH) guidelines in the AAALAC-accredited experimental

animal facility at Augusta University in a controlled environment.

All mouse studies described in this study are approved by the

Institutional Animal Care and Use Committee at Augusta

University. Global humanized ACE-2 mice, in which mouse

ACE2 has been globally replaced with human ACE2 (global

hACE-2 knock in mice) have been generated using CRISPR-Cas9

in the Transgenic and Genome Editing Core facility at Augusta

University. These mice express human ACE-2 in several cell types,

including pulmonary endothelial cells. All mice are genotyped by

PCR amplification of tail DNA. Every effort is made to minimize

animal suffering and reduce the number of animals used.
Intratracheal S. pneumoniae instillation

24h post i.p. RBD injection (500 mg/kg), i.t. instillation of 106

CFU of D39 S. pneumoniae (26) (Institute of Medical Microbiology,

Justus-Liebig University, Giessen, Germany) is performed. After

sedation of the mice with i.p. ketamine (100 mg/kg) and xylazine

(20 mg/kg) solution in 0.9% normal saline, animals are placed in an

intubation platform, the tongue is carefully grasped with a curved

blunt-ended forceps in an upward and leftward position to gain

visualization of the larynx, and a fiber-optic illuminator is

positioned over the trachea to trans-illuminate the tracheal

opening. Mice are intubated using a 20-gauge catheter under a

Zoom stereo microscope. A volume of 20-30 ml, containing either

saline (vehicle), 106 CFU of D39 S. pneumoniae or 106 CFU of D39
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S. pneumoniae with TIP peptide (2.5 mg/kg) is instilled. The

catheter is removed, and the mice are maintained in the same

position on the intubating platform for at least 30 s. Then, mice are

removed from the platform and placed on a heating pad for a 3-4h

recovery period. Animals are returned to isolated cages in the

respective animal facilities for 24 h.
Tissue harvesting

Tissue collection is performed in mice deeply anesthetized by

i.p. injection of a ketamine (70-80 mg/kg) and xylazine (2-4 mg/kg)

cocktail in sterile PBS at 24h post S. pneumoniae instillation.

Following thoracotomy, lungs are removed and used for Evans

Blue Dye extraction and immunohistology. Final euthanasia is

guaranteed by exsanguination and organ removal.
ROS generation in HL-MVEC

HL-MVEC are plated on coverslips inserted into wells of a 24-

well plate. The next day, cells are treated for 2h with either vehicle

(ctrl) or RBD (5 mg/ml, 2h), in the presence or absence of TIP

peptide (50 mg/ml), the latter of which is applied either 30 min

before or 30 min after RBD. Five min before the end of the above-

mentioned treatments, CM-H2DCFDA solution (5 µM, Thermo

Fisher, Cat#C6827) in serum-free media is added and cells are

incubated for 15-30 min. Vehicle-treated cells without incubation

with CM-H2DCFDA solution are taken as negative control (No

H2DCFDA control). Coverslips with cells are washed twice with

PBS, mounted on slides with DAPI-containing mounting media,

and immediately imaged using a Zeiss 780 confocal microscope.

Images of five randomly selected microscopic fields are captured

(excitation/emission: 490 nm/525 nm) and fluorescence intensity is

quantified using the Image-Pro Plus software (Media Cybernetics,

Bethesda, MD).
Human ACE-2 surface expression
in HL-MVEC

We use cell surface biotinylation to determine if RBD (2 mg/ml)

reduces surface hACE-2 expression in commercially available HL-

MVEC and we investigate whether TIP peptide can prevent a RBD-

induced reduction. Confluent cells are grown on permeable supports

and washed three times with cold PBS buffer before adding 0.5 mg/ml

sulfo-SS-biotin (Pierce) in borate buffer (85 mmNaCl, 4 mm KCl, 15

mmNa2B4O7, pH 9.0) to the apical surface while the basolateral

compartment was exposed to media containing 5% (v/v) fetal calf

serum. The experiment is performed at 4°C with gentle agitation for

15 min, and the procedure is repeated. Labeling is stopped at time

zero by adding 5% fetal calf serum in endothelial cell medium. One

filter sample from each group is scraped and lysed at times 0, 30 min,

1h, 2h and 4 h and 24h. Cells are extensively washed in PBS buffer,

harvested, and lysed in buffer B (PBS with 0.1% SDS, 1% Nonidet P-

40, and 0.5% sodium deoxycholate) containing protease inhibitors.
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Cellular debris is removed by centrifugation (1200 × g, 5 min). Biotin-

labeled proteins are precipitated by incubating with prewashed

streptavidin coupled to magnetic beads for 18 h at 4 °C with gentle

agitation. The beads are collected with a magnetic stand and removed

and the supernatant saved for analysis. 300ml of Buffer B is added to

the tube and gently mixed. Beads are then collected and supernatant

is discarded. This washing step is repeated twice. The biotin-

streptavidin complex is then lysed by boiling in buffer containing

100 mm dithiothreitol and 5% SDS. Beads are magnetically separated

and supernatant containing cell surface proteins is saved. The

proteins are then separated in 7.5% SDS-PAGE, transferred to

nitrocellulose, and probed with specific antibodies. Lysates are kept

at 4°C until the last samples (24h) are collected. All samples from 0 to

4h from one experiment are run on one gel. The 24 h samples are run

separately. Western blot densities are determined with a Licor imager

and ACE-2 band densities are quantified with the FIJI variant of

Image-J (27). Biotinylation densities of untreated, RBD-treated, and

TIP-treated cells decrease exponentially with time. Initial densities at

time 0 are set to unity and densities are normalized to the amount of

biotinylated ACE-2 and values are plotted on a semi-log plot to

determine rate of biotin loss.
Electrophysiology of HL-MVEC

Whole cell recording. Patch electrodes are pulled on Narishige

vertical puller producing electrodes which when filled with saline

are approximately 10 MOhms. A giga-Ohm seal is formed on a HL-

MVEC and the patch membrane is disrupted with a short pulse of

current to form a whole cell patch. PClamp 10.7 is used to apply a

step voltage protocol and current voltage relationships are

determined. Solutions for whole-cell patch-clamping recording

from HL-MVEC are in mM NaCl: 140; KCl: 5; CaCl2:1; MgCl2:1;

HEPES: 10. pH=7.4. The pipette solution is NaCl: 5; KCl: 140;

CaCl2: 3; MgCl2:1; EGTA: 5; HEPES: 10. pH=7.4; final

Ca2+concentration is 100 nM.

Varying concentrations of peptide are perfused on the apical

surface of the cells to a final concentration of 0, 2, 5, 10, 25, or rarely

50 mg/ml; i.e., 0, 5.2, 10.4, 26, 52, 130, or 260 nM. The holding

potential is -40 mV with voltage steps from -100 to +60 in steps of

10 mV. The current at -100 mV is recorded to measure ENaC

response. Amiloride (10 mM) is added at the end of the protocol to

determine the component of the current due to ENaC.

Single channel cell-attached recording. Single channel events are

recorded with an Axopatch 1D and then digitized at 4000 Hz with

an Axon 1440 digitizer directly to disk storage. Patch pipettes with a

resistance of 6–10 MW are fabricated from filamented borosilicate

glass capillaries (TW-150F; World Precision Instruments) with a

two-stage vertical puller (PP-2; Narishige, Tokyo, Japan). Cells are

visualized with Hoffman modulation optics (Modulation Optics,

New Haven, CT, USA) on a Nikon Diaphot. Negative pressure is

applied to achieve a cell-attached patch with a seal resistance of

greater than 10 GW after making contact between the pipette tip and

the cell surface. The extracellular bath solution consists of a saline

solution (150 mM NaCl, 5 mM KCl, 1 mM CaCl2, 2 mM MgCl2, 5

mM glucose, and 10 mM HEPES, adjusted to pH 7.4). The patch
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pipette solution consists of a saline solution (140 mM NaCl, 2 mM

MgCl2, and 10 mM HEPES, adjusted to pH 7.4). The cell-attached

patch configuration is used for single-channel experiments, and

voltages are given as the negative of the patch pipette potential. The

initial patch pipette potential is +40 mV, as such driving cations

inward across the membrane. ENaC activity and open and closed

times within a patch are calculated using pCLAMP 10 software

(version 10.7, Molecular Devices, San Jose, CA, USA). We use the

product of the number of channels (N) times the single channel

open probability (Po) as a measure of channel activity within a

patch. This product is calculated without making any assumptions

about the total numbers of channels in a patch or the open

probability time (Po) of a single channel. The total number of

functional channels (N) in a patch is estimated by observing the

number of peaks in the current-amplitude histogram over the entire

duration of the recording, after which Po can be calculated fromNPo
and N.
Detection of fibrin deposition in lungs
in immunostaining

Lungs are flushed through the right ventricle of the heart with

warm PBS to be clear of blood, fully inflated with 10% formalin via

intratracheal instillation, and excised en bloc after trachea ligation.

Lungs are subsequently fixed in 10% formalin overnight and

included in paraffin. Lung sections are cut at 5 µm and mounted

on glass slides. Sections are incubated in an oven at 80°C for 30 min,

deparaffinized with xylene and cleaned in ethanol and water.

Deparaffinized sections are placed overnight in antigen retrieval

solution (10 mM sodium citrate buffer, pH= 6) at 65–80°C. Sections

are then removed from the oven to room temperature and allowed

to cool for about 20 min, before proceeding with immunostaining.

We use a primary anti-fibrin mouse monoclonal antibody (clone

59D8, Cat. No. MABS2155, Sigma-Aldrich) and a commercial kit

(M.O.M.® ImmPRESS® HRP (Peroxidase) Polymer Kit, MP-2400,

Vector), that contains a mouse Ig blocking reagent paired with a

specialized, ready-to-use, one-step M.O.M. ImmPRESS Peroxidase

Polymer reagent. Detection of fibrin deposition is achieved using

diaminobenzidine (DAB) substrate (ImmPACT® DAB Substrate

Kit, Peroxidase (HRP), SK-4105, Vector), which produces a brown

reaction product. Sections are counterstained with hematoxylin,

dehydrated, cleared in xylene and mounted (Vecta Mount, H-5000,

Vector) for microscopic analysis.
Tissue factor detection in HL-MVEC

Human Tissue factor ELISA kit is from Abcam (Cat

# Ab220653).
Statistical analysis

All data are presented as means ± SD. Data are analyzed by

GraphPad InStat software (GraphPad Software Inc.). Comparisons
frontiersin.org
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between groups are analyzed using one or two-way analysis of

variance (ANOVA) with the Tukey’s post hoc test. P < 0.05 is

defined as statistically significant.
Results

TIP peptide increases whole cell amiloride-
sensitive current in HL-MVEC

We have previously shown that lung capillary endothelial cells

express all three subunits of the epithelial sodium channel (ENaC): a,
b and g25). In order to investigate whether TIP peptide can actually

activate amiloride-sensitive Na+ uptake, we applied voltage steps in

10 mV increments from -100 mV to +60 mV to whole cell patches on

HLMVEC cells and measured the current before and after applying

increasing concentrations of TIP peptide. As shown in Figure 1B, TIP

peptide increases the cellular current at all potentials. We then added

10mM amiloride to block ENaC channels. Amiloride reduces the

whole cell current to a level below that of untreated cells showing that

there is significant amiloride-sensitive current before addition of TIP

peptide in HLMVEC and that amiloride can also block all of the TIP-

induced current. The reversal potential for the amiloride-sensitive

currents were all very positive consistent with the currents being due

to ENaC.
SARS-CoV2 RBD inhibits ENaC activity
in HL-MVEC

We have recently shown that activation of endothelial ENaC

can preserve barrier function in lung capillaries in the presence of
Frontiers in Immunology 05
bacterial toxins (24, 25). Previously, others have shown that the

spike proteins of both SARS-CoV and SARS-CoV2 can inhibit

ENaC activity in Xenopus oocytes expressing the a, b and g
subunits of human ENaC (28, 29). However, whether the RBD

fragment of the spike protein S1 subunit can also reduce ENaC

activity in primary HL- MVEC and whether ENaC can still be

activated by TIP peptide in the presence of SARS-CoV2 RBD in

these cells has not been investigated. As shown in single channel

patch clamp measurements in Figure 2A, basal ENaC activity in

HL-MVEC is strongly reduced after a 5 min treatment with

recombinant SARS-CoV2 RBD (RayBiotech, 2 mg/ml, middle

panel) (Figure 2B) and this is significantly relieved after the

subsequent addition of TIP peptide (50 mg/ml) for 6 min

(Figure 2C). Figure 2D shows that, as anticipated from whole cell

currents, TIP peptide significantly increases ENaC open probability

but without a significant change in the number of channels per

patch. Figure 2E show the relationship between voltage and the

amplitude of single channel events. Despite changing the open

probability, TIP does not change the amplitude of single channel

events which implies that TIP does not alter ENaC’s conducting

pore. The slight curvature is characteristic of ENaC current and due

to more Na+ charge carriers on the outside of the cell than on the

inside. A summary of the effects of RBD and TIP from 8

experiments like the one shown in Figures 2A–C is in Figure 2F.

RBD significantly inhibits ENaC open probability (Po) and that this

is restored by subsequent TIP peptide addition (*: p<0.05 vs. vehicle

control or TIP treated group, n=9 per group). We could detect a

similar inhibitory activity with full length recombinant SARS-CoV2

spike protein (Creative Diagnostics, data not shown), confirming

previous findings by others (29). Data from whole cell (Figure 1)

and single cell patch clamp measurements (Figure 2) convince us

that HL-MVEC express amiloride-sensitive low conductance ENaC
A B

FIGURE 1

Current-Voltage relationships from whole cell patch recordings in HL-MVEC. (A) On the left are the current records. The holding potential was -40
mV with voltage steps from -100 to +60 in steps of 10 mV. The TIP peptide concentrations were 0, 2, 5, 10, and 25 mg/ml. 10 mM amiloride was
added after the highest concentration of peptide. (B) current-voltage relationships at different TIP concentrations and amiloride sensitive current at
-100 mV is 106 pA. The TIP-induced increase in amiloride-sensitive current implies that TIP peptide activates a sodium conductance likely ENaC.
This current also implies that there are approximately 500 sodium conductive channels per cell and that TIP peptide increases their open probability.
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channels and that these channels can be inhibited by RBD and that

TIP peptide can restore their activity.
Endothelial ENaC activation by TIP peptide
increases surface hACE2 expression in
RBD-treated HL-MVEC

Human ACE-2 is the main receptor and point of entry for

SARS-CoV2 in the alveolar compartment of the lungs, as such

motivating strategies to reduce its expression in alveolar epithelial

cells in COVID-19 (30). However, reduced hACE-2 expression in

endothelial cells, as can occur through hACE-2 ectodomain

shedding (31–33), will shift the ACE2/ACE balance towards

generation of barrier-disruptive angiotensin 2 (Ang 2). Increased

Ang 2 binding to the angiotensin type 1 receptor (AT1R) in

capillary endothelial cells can trigger a signaling cascade,

culminating in the shedding of additional ACE-2 and further loss

of barrier function. Circulating plasma Ang 2 levels are markedly

elevated in COVID-19 patients, as compared to healthy controls

and correlate with the severity of lung injury (34). Consistent with

data reported by other groups (33), RBD (2 mg/ml) time-

dependently reduces surface hACE-2 expression in HL-MVEC.
Frontiers in Immunology 06
We used surface biotinylation (Figures 3A, C) to estimate the rate

of loss of biotinylated hACE2 from the surface membrane. Loss of

hACE2 surface expression is actually 5 times faster in the presence

of RBD (2 mg/ml) compared to vehicle-treated cells. As

demonstrated in Figures 3B, C, co-treatment with TIP peptide (50

mg/ml) significantly preserves hACE-2 surface expression in cells

treated with RBD. Figure 3D documents the specificity of the

antibody signal, which is abrogated upon preincubation of the

antibody with the peptide immunogen against which it is was

raised (1:1 molar ratio).
TIP peptide significantly reduces RBD-
induced oxidative stress in HL-MVEC

RBD binding to hACE2 shifts the hACE2/hACE1 balance

towards Ang 2 generation, the circulating levels of which are

increased in severe COVID-19 patients (30–34). Ang 2 activates

PKC, which in turn phosphorylates cytosolic subunits of NADPH

oxidase 2 (NOX2) and fosters their recruitment to gp91phox

required for NOX2 activation (35). NOX2 activation, as

measured by soluble NOX2-derived peptide (sNOX2-dp) was

shown to be higher in COVID-19 patients versus controls and
D

A

B

E

F
C

FIGURE 2

Effect of RBD, followed by TIP peptide, on activity of cation-permeable channels in HL-MVEC. (A–C) show continuous single channel recordings
from HL-MVEC cells in culture all at a patch pipette potential of +40 mV. Recordings are from untreated cells (A), cells treated with SARS-CoV2 RBD
(2 mg/ml) for 5 min prior to recording (B), and subsequent treatment of the same cell for 6 min with TIP peptide (50 mg/ml) (continuous record for
40 s) (C). Most of the channels are ENaC channels that we have previously shown to be sensitive to less than 1 mm amiloride. Some non-selective
cation channels are also present (examples are marked with arrows in C). Dotted lines associated with each trace mark the zero current state (all
channels closed). On the right in (D) is the effect of TIP on ENaC channels in HL-MVEC cells. As is typical for ENaC, the open probability varies over
a wide range (0.0897 to 0.806 before TIP peptide and 0.251 to 0.959 after TIP peptide). The treatments are significantly different by paired t test at p
< 0.001 (before TIP 0.302 ± 0.199 compared with 0.505 ± 0.225 mean ± s.d. n=12). (E) shows the current voltage relationships for unit single
channel currents for untreated and TIP treated patches for both conditions the current is nonlinear which is characteristic of low conductance ENaC
channels. There is no significant difference between these two conditions. This implies that TIP does not alter the channel open state. (F)
summarizes the results from 8 experiments on the effect of SARS-CoV2 S1 (RBD) on ENaC channel open probability. This graph and (A–C) show that
the time in the open state is reduced by the S1 protein from that of untreated cell, but that channel openings are restored by addition of TIP peptide.
Untreated and TIP-treated are not significantly different (Untreated and TIP open probability = 0.611 ± 0.134 and 0.613 ± 0.187 mean ± s.d.; p =
0.977). TIP and untreated vs RBD (RBD open probability = 0.168 ± 0.0705 mean ± s.d.; p <0.001; both by repeated measures ANOVA with Holm-
Sidak post-test, n = 9).
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in severe versus non-severe COVID-19 (36). As shown in

Figures 4A, B, HL-MVEC treated for 2h with SARS-CoV2 RBD

(5 mg/ml) significantly increase their reactive oxygen species

(ROS) generation, as compared to vehicle control, TIP peptide-

pretreated (-30 min) or post-treated (+1h) cells and as measured

by H2DFCDA staining.
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NOX2 inhibition or ENaC activation blunt
RBD-induced barrier dysfunction and
Tissue Factor (TF) generation in HL-MVEC

The predominant mechanisms inducing endothelial barrier

impairment include, first, phosphorylation of regulatory myosin
A B

FIGURE 4

Direct ENaC activation blunts RBD-induced ROS generation in HL-MVEC. (A) Representative H2DCFDA staining as an indicator of ROS in HL-MVEC
treated for 2h with SARS-CoV2 Spike protein RBD (5 mg/ml, RayBiotech), upon pre- (-30 min, TIP-RBD)) or post-treatment (+1h, RBD-TIP) with TIP
peptide (50 mg/ml), in comparison to vehicle-treated or TIP peptide only-treated cells. (B) Quantification of total green fluorescence in 10-15 fields
(* p<0.03: RBD vs. Vehicle, TIP-RBD vs. RBD; ** p<0.05: RBD-TIP vs. RBD and Vehicle; *** p<0.04: TIP vs. RBD).
D

A

B

C

FIGURE 3

TIP peptide partially inhibits RBD-induced reduction in hACE-2 surface expression. (A, B) Representative surface biotinylation experiment.
Glycosylated hACE-2 (i.e., the target for biotinylation) runs at about 130 kDa. We assessed hACE-2 surface expression in HL-MVEC treated with
either vehicle (control group), RBD or RBD+TIP. Please note that the same control group is shown in (A, B), since all samples are from the same
experiment. (C) Results of 3 separate experiments with untreated, RBD-treated, and RBD+TIP-treated HL-MVEC. Half-life after RBD treatment
implies rapid removal of hACE-2 from the membrane by shedding and/or internalization. TIP peptide partially reverses the effect of RBD. Data are
normalized to the difference of biotin label at time 0 and at small amount of label remaining at 24h and then fit to a single exponential decrease.
Difference in half-lives for RBD vs. vehicle or RBD+TIP-treated are significant (p < 0.001, n =3, t-test). (D) Specificity of the anti-hACE2 antibody,
upon pre-incubation with blocking peptide (1:1 molar ratio, 1h, right panel) or not (left panel).
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light chain (MLC) (catalyzed by either Rho kinase or Ca2

+-dependent MLC kinase, which causes actin cytoskeleton

rearrangement and formation of actin stress fibers) and, second,

microtubule depolymerization, which causes disassembly of

adherens junction proteins, such as vascular endothelial (VE)-

cadherin (24, 37). Figure 5 demonstrates that in accordance with

findings from others, RBD (5 mg/ml) treatment induces a small, but

significant increase in HL-MVEC monolayer permeability within

6h, as measured in electrical cell-substrate impedance sensing
Frontiers in Immunology 08
(ECIS). TIP peptide (50 mg/ml), as well as the NOX2 inhibitor

gp91dstat (10 mM), significantly strengthen barrier function when

applied to the cells 1h after RBD. These results indicate that

oxidative stress induced by RBD is crucially involved in its barrier

disruptive activity and that NOX2 activation plays a prominent role

in this.

COVID-19 ARDS has a significantly higher prevalence of

microthrombi in pulmonary capillaries as compared to non-

COVID ARDS (5–12). The procoagulant glycoprotein tissue
A

B C

FIGURE 6

RBD increases Tissue Factor protein expression in HL-MVEC. (A) RBD (5 mg/ml) within 6h induces a significant increase in TF expression in HL-MVEC,
which is mitigated by a 1h post-treatment with TIP peptide. (B) Normalized TF generation (WB) in vehicle, RBD or RBD+TIP treated HL-MVEC (n=5
per group; mean ± SD; *: p<0.0008 vs vehicle; #: p<0.0012 vs RBD). (C) Quantitative TF assessment (ELISA) in HL-MVEC treated for 6h with vehicle
or RBD, the latter in the presence or absence of TIP peptide (50 mg/ml, 1h post RBD) (mean ± SD; n=3-5 per group; ***: p<0.0001 vs. control; #: p<
0.001 vs. RBD; *: p<0.05 vs. control).
FIGURE 5

TIP peptide and NOX2 inhibitor gp91dstat partially reverse RBD-induced barrier dysfunction in HL-MVEC monolayers. TIP peptide (50 mg/ml) and
NOX2 inhibitor gp91dstat (10 mM), when applied 1h after RBD, significantly restore barrier function, measured in electrical cell-substrate impedance
sensing (ECIS) over the entire duration of the experiment. (n=4 per group; *:p<0.05 vs. RBD for both RBD+TIP and RBD+gp91dstat groups).
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factor (TF) is a major mediator of thrombosis, since it interacts with

circulating coagulation factor VII to trigger extrinsic coagulation.

Under conditions of severe infection and inflammation, as in severe

COVID-19, TF can be released in the lungs not only by monocytes,

macrophages and epithelial cells, but also by endothelial cells. TF

pathway inhibitor (TFPI) -predominantly expressed by endothelial

cells- may be consumed and degraded in these conditions, as e.g. in

patients with sepsis (38, 39). TF generation is significantly increased

in plasma and lungs from severe COVID-19 patients as compared

to mild COVID-19 or control patients (8, 39, 40). Endothelial cells

were recently proposed to be a critical player contributing to severe

thrombosis in the lungs of COVID-19 patients (5). NF-kB-

dependent induction of TF gene transcription in endothelial cells

requires increased NOX activity (40), as such providing a link

between endothelial oxidative stress and coagulopathy. Whether

SARS-CoV2 RBD, which increases ROS generation in HL-MVEC,

augments TF generation in human lung MVEC has not been

investigated. Our data from a representative Western blotting

study in Figure 6A and from densitometry from three

independent experiments in Figure 6B demonstrate that RBD (5

mg/ml) increases TF protein generation within 6h in HL-MVEC and

that this can be blunted by TIP peptide-mediated ENaC activation.

Using a TF ELISA kit with a special extraction buffer, the difference

between the RBD and the vehicle or RBD+TIP groups is found to be

even more pronounced (Figure 6C).
RBD sensitizes S. pneumoniae-infected
hACE2 mice for pulmonary fibrin
deposition and capillary leak

Although mice are not hosts for SARS-CoV-2, expression of

human ACE-2 is sufficient, in itself, to confer susceptibility to the

virus in this species (41). In order to investigate whether RBD can

sensitize lung endothelium for pneumococcal pneumonia-induced

ARDS and coagulopathy, we have generated transgenic mice, in

which mouse ACE2 has been globally replaced with human ACE2

(global hACE-2 knock in mice), using CRISPR-Cas9 (Figures 7A, B).

These mice also express human ACE-2 in pulmonary endothelial

cells. 8-10 wk old female global hACE2 knock in mice (hACE2 KI)
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are injected on day 0 intraperitoneally (i, p.) with RBD of SARS-

CoV2 Spike protein (500 µg/kg), followed 1h later by either TIP

peptide (2.5 mg/kg) or Saline i.p. On day 1, mice receive intratracheal

instillation of either a low dose of Streptococcus pneumoniae (Sp., 106

CFU) or saline and on day 2 animals are euthanized. In a first pool of

mice, lungs are flushed intravenously with warm PBS, inflated

intratracheally with 1-1.5 ml of 10% formalin and excised en bloc

after trachea ligation. Lungs are fixed in formalin overnight and

included in paraffin for histology evaluation and immunostaining for

fibrin deposits. The second pool of mice is selected for capillary leak

measurements following euthanasia, which is performed by

intravenous infusion of Evans Blue dye, as described (24). As

shown in Figure 8A, at 48h after the start of the study, both RBD

(given i.p), and Sp. (i.t. instillation) induce a minor increase in fibrin

deposits (red arrows) in lung tissue. However, the combination of

both induces a significantly higher fibrin signal. TIP peptide

treatment, 1h after RBD, significantly reduces lung fibrin

deposition in the combined RBD/Sp. group (Figure 8A).

Intraperitoneal injection of 500 mg/kg RBD induces a significant,

but modest increase in capillary leak in 8-10 wk old female global

hACE2 KI mice 48h post injection (Figure 8B). However, when RBD

is combined with an i.t. instillation of a low dose of S. pneumoniae

(106 CFU, does not induce significant barrier dysfunction by itself)

24h post RBD, a profound capillary leak occurs. TIP peptide, given 1h

post RBD i.p., significantly mitigates capillary leak induced by the

RBD/S. pneumoniae combination. Taken together, these data indicate

that RBD can sensitize hACE2 mice for indirect and direct barrier

dysfunction in pneumococcal pneumonia.
Discussion

Although therapeutic strategies to blunt lung damage in

COVID-19 have mainly focused on the airway and alveolar

epithelium -the main points of entry for the virus- COVID-19,

particularly in the later complicated stages, is a disease of

endothelial cells, and this is particularly prominent in the

pulmonary microvasculature (30, 33, 42). Using automated

quantitative CT measures and dynamic contrast-enhanced MRI,

microvascular perfusion abnormalities can be detected in COVID-
A B

FIGURE 7

Generation and confirmation of hACE2 knock-in founder mice. (A) hACE2 knock-in targeting strategy by CRISPR/Cas9. (B) PCR genotyping of
hACE2 knock-in founder. PCR reactions are performed to identify the unique 1.5 kb of 5’ external, 2.2 of 3’ external, and 0.27 kb of internal products
in the correctly targeted founder, respectively. Additional PCRs are used to genotype Ace2 wild-type (2.2 kb) and hACE2 knock-in (5.5 kb) alleles.
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19 patients, even months after infection, but the main cause of these

findings (microvascular thrombosis, remodeling, inflammation)

remains to be determined (42–44). As such, it is highly significant

to better characterize pathophysiological pathways involved in

COVID-19-associated vasculopathy and to identify novel

therapeutic strategies to curb endothelial dysfunction in both

acute SARS-CoV-2 infection and in post-acute sequelae, as can

occur in long COVID. The ACE/Angiotensin 2/PKC/NOX2

pathway, which is initiated by RBD-induced hACE2 shedding,

represents a major therapeutic target in COVID-19 vasculopathy.

Indeed, NOX2 is found activated in serum from severe COVID-19

patients (36) and it can activate the TF pathway in lung capillaries

-which in turn fosters coagulopathy (31, 39) and barrier

dysfunction (32). Although reduced surface expression of

endothelial hACE2 by SARS-CoV2 RBD would be expected to

decrease infectivity of the virus in capillaries and as such protect this

compartment, a dysregulated renin-angiotensin system due to a

disturbed ACE2/ACE balance will rather aggravate endothelial

dysfunction in COVID-19 (33).

Our findings from this study suggest that SARS-CoV2 RBD

-mainly by increasing oxidative stress-can sensitize lung capillaries

towards barrier dysfunction and microthrombus formation, which

synergizes with lung injury induced by pneumococcal infection.

HL-MVEC express the main entry receptor for SARS-CoV2, i.e.

hACE-2 (33), as well as the protease furin (both in the Golgi and at

the plasma membrane (2)), required for spike protein maturation.

Intriguingly, SARS-CoV2 spike protein shares an eight-residue

furin cleavage site only with one other mammalian protein, i. e.

human ENaC-a (45), where it is necessary for maturation of the a
and g subunits (46, 47). It has been proposed that hijacking of furin

by spike protein is one of the mechanisms by which SARS-CoV2

can interfere with ENaC activity (29, 45). This also questions the

potential value of furin inhibitors in COVID-19, since these would

not only impair spike protein but also ENaC a and g subunit
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maturation. Another mechanism by which spike protein can affect

ENaC activity is through PKC activation (28, 48). Several

observations from our study convince us that HL-MVEC express

low conductance ENaC channels: (1) we have shown that they

contain amiloride sensitive currents; (2) single channel records have

the low current and long open times characteristic of low

conductance ENaC and (3) the current-voltage relationship has

the inwardly rectifying current characteristic of a sodium channel,

in particular, ENaC. Since our results in HL-MVEC show a potent

inhibition of ENaC open probability (Po) with RBD, to the same

extent as what we observed with full length recombinant spike

protein (2 mg/ml, Creative Diagnostics, data not shown), this

indicates that impaired furin cleavage is not the main inhibitory

mechanism, at least in HL-MVEC. We demonstrate here for the

first time that direct ENaC activation by the TIP peptide (a mimic of

the lectin-like domain of TNF), which binds to the a subunit of the

channel (49), potently restores hACE2 surface expression in RBD-

treated HL-MVEC.

Although restoration of hACE2 surface expression is likely

barrier-protective in the endothelial compartment, this may not

be the case in alveolar epithelial cells, which also express ENaC and

where hACE2 is an important point of entry for SARS-CoV2. As

such, if TIP peptide would increase surface expression of hACE2 in

alveolar epithelial cells, that could increase infectivity. It should

however also be noted that -on the positive side- ENaC activation in

type I and II alveolar epithelial cells, as occurs with TIP peptide, can

improve vectorial Na+ transport and subsequent alveolar fluid

clearance (AFC) (50, 51). AFC capacity was shown to inversely

correlate with mortality in ARDS patients (52) and TIP peptide was

shown to significantly reduce extravascular lung water in a sub-

group of ARDS patients with a SOFA score >11 in a double-blind

phase 2a clinical trial (53). Currently, a dose-escalating multi-center

phase 2 clinical trial with TIP peptide in both non-COVID and

COVID ARDS patients is underway (54). During COVID-19, apart
A B

FIGURE 8

RBD sensitizes mice to Sp.-induced lung fibrin deposition and capillary leak. (A) Increased fibrin deposition in lung sections from RBD+Sp.-treated
mice, as compared to vehicle, RBD alone or Sp. alone and reduction by TIP peptide treatment (applied 1h post RBD i.p.). Primary Ab: Anti-Fibrin,
clone 59D8, Cat. No. MABS2155 (Sigma-Aldrich), Secondary Ab: M.O.M.® (Mouse on Mouse) ImmPRESS® HRP (Peroxidase) Polymer Kit (Vector
labs). (B) RBD (i.p.) induces a modest increase in capillary leak by 48h in 8-10 wk old female hACE2 Knock In mice. Infection with 106 CFU S.
pneumoniae (Sp.), which by itself does not significantly increase capillary leak by 24h in these mice, induces a profound leak when combined with
RBD, given 24h before Sp. TIP peptide (i.p. 1h post RBD) significantly mitigates the leak induced by the RBD/Sp. combination (Mean + SD, n=3-6 per
group. *: p<0.03; ***: p<0.0002 and ¶: p<0.05 vs. Vehicle. #: p<0.004 vs. RBD; ±: p<0.02 vs. RBD+Sp.).
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from ENaC, also the Na+-K-ATPase, another crucial mediator of

vectorial Na+ transport, can be impaired (55). Although TIP

peptide can override the inhibitory effect of RBD on ENaC it

remains to be evaluated whether it can also restore activity of the

Na+-K+-ATPase. In conclusion, further studies are necessary to

investigate the outcome of ENaC activation in the alveolar epithelial

compartment in COVID-19 (56).

Imbalance of the hACE2/hACE activity ratio promotes Ang 2

generation and subsequent PKC activation. PKC in turn

phosphorylates cytosolic NOX subunits and recruits them to the

plasma membrane for full enzymatic activation. NOX activation has

also been proposed as a major driver of long COVID, thus

suggesting that anti-oxidative agents should be further studied as

therapeutic candidates (57). Our data show that RBD potently

induces oxidative stress in HL-MVEC and that ENaC activation

can override this, even when applied 1h after RBD, although the

mechanisms involved remain unclear. In our study, especially

NOX2 seems to be an important mediator of RBD-induced

barrier dysfunction, in view of the neutralizing effect of the

specific NOX2 peptide inhibitor gp91dstat. Global NOX2

inhibition however does not seem to be a plausible strategy in

COVID-19, since it would also abrogate the enzyme’s activity in

phagocytes, crucial for host defense to infections (58). Whether the

TIP peptide will also blunt NOX2 activity in phagocytes during

ARDS remains to be investigated.

Our study has several limitations. First, we obviously cannot

fully reproduce COVID-19 endotheliitis in the absence of live

SARS-CoV2. Second, although spike protein mediates a lot of

actions of SARS-CoV2 in mammalian cells, it does not account

for all of them. Indeed, apart from the spike protein, also the

envelope protein (E) of SARS-CoV and SARS-CoV2 has been

shown to impair ENaC activity28,29. Third, apart from viral

components, virally-induced host factors can also contribute to

barrier dysfunction. Here it is intriguing to note that no correlation

can be found between COVID-19 plasma levels of pro-

inflammatory cytokines and chemokines, such as TNF, IL-6 and

IL-8 and barrier disruption in HL-MVEC in ECIS20.

Our data also show that RBD by itself does not induce a

strong capillary leak in global hACE2 KI mice. At first glance, this

result may look different from the strong barrier-disruptive

effects reported in a recent study by others (18). However, there

are important differences between the two studies. First, these

researchers used a different mouse model, i.e. K18-hACE2 mice

(do not express hACE2 in endothelium) and second, they used a

different route of application (i.t.), which mainly targets the

airway epithelium. Intraperitoneal RBD treatment in our

studies sensitizes lung capillaries in hACE2 KI mice towards

coagulopathy and barrier dysfunction during mild pneumococcal

pneumonia. This finding might be relevant to the significantly

increased mortality in COVID patients co-infected with S.

pneumoniae (14).

In conclusion, our study demonstrates that RBD can sensitize

both hACE2 KI mouse and human lung capillaries towards

coagulopathy and barrier dysfunction, by a mechanism involving
Frontiers in Immunology 11
impairment of endothelial ENaC, shedding of hACE2 and activation

of NOX2. Since plasma RBD levels correlate with disease severity in

COVI-19, these results can at least partially provide an explanation

for the higher vasculopathy observed in COVID-ARDS, as compared

to non-COVID ARDS. Direct activation of endothelial ENaC can

override these RBD actions in lung capillaries and should be further

evaluated as a potential therapeutic strategy to curb SARS-CoV2-

induced vasculopathy and long COVID.
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