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T cells in abdominal aortic
aneurysm: immunomodulation
and clinical application

Wei Gong †, Yu Tian † and Lei Li*

Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian,
Liaoning, China
Abdominal aortic aneurysm (AAA) is characterized by inflammatory cell

infiltration, extracellular matrix (ECM) degradation, and vascular smooth

muscle cell (SMC) dysfunction. The inflammatory cells involved in AAA mainly

include immune cells including macrophages, neutrophils, T-lymphocytes and B

lymphocytes and endothelial cells. As the blood vessel wall expands, more and

more lymphocytes infiltrate into the outer membrane. It was found that more

than 50% of lymphocytes in AAA tissues were CD3+ T cells, including CD4+,

CD8+T cells, gd T cells and regulatory T cells (Tregs). Due to the important role of

T cells in inflammatory response, an increasing number of researchers have paid

attention to the role of T cells in AAA and dug into the relevant mechanism.

Therefore, this paper focuses on reviewing the immunoregulatory role of T cells

in AAA and their role in immunotherapy, seeking potential targets for

immunotherapy and putting forward future research directions.
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1 Introduction

Abdominal aortic aneurysm (AAA) is defined as a aneurysm with permanent

aneurysm that is more than 50% larger than normal or larger than 3 cm in diameter (1).

Epidemiological studies show that with the aging of the population, the smoking

population increases, and the incidence of AAA increases year by year. The main
Abbreviations: AAA, Abdominal aortic aneurysm; ECM, Extracellular matrix; SMC, Smooth muscle cell;

Tregs, Regulatory T cells; NK, Natural killer; Tfh, Follicular helper T cells; Th cell, Helper T cell; IFN-g,

Interferon; IL, Interleukin; SOCS, Suppressor of cytokine signaling; COX-2, Cyclooxygenase-2; CTLA-4,

Coinhibitory molecule cytotoxic T-lymphocyte-associated antigen-4; Foxp3, Forkhead/winged-helix family

of transcription factor 3; DCs, Dendritic cells; SIRT1, silencing information regulatory factor 1; PPE, Porcine

pancreatic elastase; VDR, Vitamin D receptor; DBZ, Dibenzazepine; SCFAs, Short-chain fatty acids; cLP,

Colonic lamina propria; TNF-a, Tumour necrosis factor-a; PBMC, peripheral blood mononuclear cell; AP-1,

activating protein-1.
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treatment for AAA is surgical repair, but more than 90% of

aneurysms are small aneurysms (3.0cm < diameter < 5.5cm) (2).

For these patients, surgical treatment is not appropriate, so drug

therapy has aroused great concern. Unfortunately, the drug options

so far have been very limited, and further exploration of the

underlying mechanisms of AAA is urgent (3). AAA is

characterized by inflammatory cell infiltration, extracellular

matrix degradation, and SMC dysfunction, which are associated

with the infiltration of inflammatory cells in the outer and inner

membranes of blood vessels. These factors together promote

vascular remodeling and the weakening of the aortic wall (4).

Vascular inflammation in AAA involves chemotaxis of

inflammatory cells and release of pro-inflammatory factors, thus

initiating a series of inflammatory responses (5). The inflammatory

cells involved in AAA mainly include immune cells including

macrophages, neutrophils, mast cells, natural killer (NK) cells,

dendritic cells (DCs), B cells and T cells (6). T cells play a

prominent role, in which CD4+T helper cell plays a leading role

(7). Th1 cells typically produce interferon-gamma (IFN-g), IL-2,
and tumor necrosis factor (TNF), while Th2 cells secrete IL-4, IL-5,

IL-10, and IL-13. Th1 cytokines frequently cause cellular

inflammatory responses, such as activation of macrophages.

Activated macrophages infiltrate aortic tissue and secrete

e x t r a c e l l u l a r ma t r i x d e g r a d a t i o n s u ch a s ma t r i x

metalloproteinase-1 (MMP-1), 2 (MMP-2) and 9 (MMP-9),

which directly contribute to AAA formation (8). The M1 and M2

macrophage phenotypes also have a significant impact on AAA. M2

macrophages are anti-inflammatory, whereas M1 macrophages

exhibit pro-inflammatory characteristics. Interventions that

prevent M2 from transiting to M1 or promote the transformation

of macrophages into M2 may be of great help to AAA treatment.

CD4 (+) CD25 (+) Treg cells play a key role in the transformation of

macrophages into M2 (9). IL-4 and IL-13 can enhance the

proliferation of B cells and activate Mast cell. AAA usually shows

local deposition of immunoglobulin (10), which reflects that
Frontiers in Immunology 02
humoral immunity may participate in the pathogenesis of AAA,

and promote the formation of AAA by secreting Collagenase and

Elastase (11). The activated Mast cells release their granular

contents, such as histamine, protein Hydrolase and inflammatory

cytokines (IFN-g, IL-6) is involved in the degradation of

extracellular matrix, apoptosis of smooth muscle cells and

angiogenesiss (12). (Figure 1) Among them, T cells play a

prominent role.

Due to the important role of T cells in inflammatory response,

an increasing number of researchers have paid attention to the role

of T cells in AAA and dug into the relevant mechanism. Therefore,

this paper focuses on reviewing the immunoregulatory role of T

cells in AAA and their role in immunotherapy, seeking potential

targets for immunotherapy and putting forward future

research directions.
2 Immunomodulation of T cells in AAA

As the blood vessel wall expands, more and more lymphocytes

infiltrate into the outer membrane. It was found that more than 50%

of lymphocytes in AAA tissues were CD3+ T cells, including CD4+,

CD8+T cells, gd T cells and Tregs (13). Based on their

immunophenotypes, T cells can be split into a number of subsets,

primarily cytotoxic CD8+ T cells and CD4+ T helper cells. CD4+ T

cells can be further divided into Th1(T-bet), Th2(GATA3), Th9

(PU.1 IRF4), Th17(RORt), Th22(AhR RORgt), follicular helper T
cells (Tfh), and Tregs (CD4+ CD25+ FoxP3+), each of which

produce specific effector cytokines under unique transcriptional

regulation (14). While CD4+ helper T cells are generally identical in

terms of shape and cell membrane structure, their unique cytokine

profiles, transcription factor expression patterns, and functional

roles in immune responses distinguish them from each other (15).

Different T helper cell (Th cells) subsets have distinctive cytokine

production patterns. The main source of IFN-g, which supports
FIGURE 1

Immune cells involved in the progression of AAA and their interactions. (LPS, lipopolysaccharide; IFN-g, interferon-g; IL, interleukin; TGF-b,
transforming growth factor-b; TNF-a, tumor necrosis factor-a; MMP, matrix metalloproteinase; Treg, regulatory T cell).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1240132
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gong et al. 10.3389/fimmu.2023.1240132
cell-mediated immune responses, is TH1 cells. Contrarily, TH2 cells

generate cytokines such interleukin-4 (IL-4), interleukin-5 (IL-5),

and interleukin-13 (IL-13), which are essential for allergic reactions

and anti-parasite immunity. TH17 cells release the inflammatory

mediators interleukin-17 (IL-17) and interleukin-22 (IL-22), which

aid in the immune system’s defense against fungus (14). On the

other hand, by the release of transforming growth factor-beta (TGF-

b) and interleukin-10 (IL-10). Treg cells play a critical role in

immune response control and maintenance of immunological

tolerance (16). CD8+ T cells are a type of T lymphocyte that

expresses the CD8 protein on their cell surface. The main

function of CD8+ T cells is cytotoxicity, also known as cell killing.

When they encounter cells infected with viruses or other

intracellular pathogens, CD8+ T cells can recognize and bind to

specific antigens presented by infected cells (17). This triggers the

activation of CD8+ T cells and leads to the release of cytotoxic

molecules, such as perforin and granzymes, which induce apoptosis

(cell death) in the infected cells (18). Unlike conventional CD4+ or

CD8+ T cells that use alpha beta (ab) TCR, gdT cells possess a TCR

comprised of gamma and delta chains. They can detect a variety of

antigens without the aid of molecules from the major

histocompatibility complex (MHC), thanks to their own TCR (19).

This section will discuss the roles and specific mechanisms of

different T cell subsets in the formation and progression of AAA.
2.1 CD4+ T cells

2.1.1 T helper cells
Xiong et al. found that CaCl2 could not induce AAA formation in

mice with CD4+ T cell defects, suggesting that CD4+ T cells play an

integral role in the progression of AAA (20). However, the regulation

mechanism of Th cells subgroup 1 (Th1),2 (Th2) and 17 (Th17) and

their secreted cytokines involved in AAA is very complex. The most

common CD4+ T cell in human AAA tissue is Th2, while Th1 cells are

rare, so Th2 cells are believed to play a dominant role in the

progression of human AAA (21). Th2 cells are characterized by the

production of type 2 cytokines such as IL-4, IL-5, IL-9 and IL-10.

Atherosclerotic lesions have been demonstrated to be impacted by

these cytokines. Some research indicates that the use of rIL-9 market

increased the plaque area, which was connected to a rise in VCAM-1

expression and a propensity for macrophage and T cell infiltration.

Downregulation of IL-9 by anti-IL-9 mAb and LncRNA CASC11

induced the opposite effect (22, 23) and research by Brown and

colleagues suggests that IL-9 reducing smooth muscle 22a and may

promote phenotype transformation of SMC through the STAT3

pathway, which may exacerbate vascular dysfunction and lead to

the formation of AAA (24). The development of AAA is slowed down

by IL-10 (25).The vulnerability of IL-10(-/-) mice to Ang II-induced

AAA and aortic rupture was observed to be enhanced (26). However,

a lack of IL-4 just minimally changes how atherosclerosis develops (27,

28), IL-5 deficiency, however, has been proven to hasten

atherosclerosis (28). Notably, IL-4 and IL-5 produced by invading

Th2 cells in AAA tissue were thought to be harmful, especially because

they can cause vascular smooth muscle cells to undergo apoptosis (29,

30). Additionally, Shimizu et al. showed that Th1/Th2 cytokine
Frontiers in Immunology 03
balance plays an important role in regulating matrix remodeling

and is significant in the pathophysiology of aneurysms and

atherosclerosis, indicating that the transformation of Th1 cells to

Th2 cells is related to AAA augmentation (31). However, IL-4 and IL-

5 may also be secreted by ILC2 and NK cells and perform similar

functions to Th2 cells (32). Because NK cells and ILC2 also release

type II cytokines, it is difficult to say if the unique role of Th2 cells in

AAA is connected to this. Type 2 cytokine sources unique to particular

cells have not been thoroughly investigated in AAA, so it will be

crucial for future investigations to address cell specificity (33, 34).

Th1 cells have been shown to play a pro-inflammatory role in

atherosclerosis mainly through the production of IFN-g (35, 36).

According to earlier research, intraperitoneal IFN-g may partially

restore AAA in CD4(-/-) mice. Furthermore, MMP production is

reduced and AAA development is inhibited in mice with a targeted

ablation of IFN-g (20). Confusingly, King et al.’s angiotensin II-

induced mice model found that IFN-g insufficiency was linked to

AAA enhancement (37), suggesting that this cytokine plays a

protective effect in AAA. In particular, IFN-g regulates the

production of CXCL10 in AAA, which in turn regulates the

attraction of protective T cells (37). These two contrasting results

make the role of IFN-g in AAA unclear. Further studies are needed

to investigate its role in different stages of the disease, its induction

mechanism, cell-specific IFN-gR signaling, and cell-type-specific

mechanisms of IFN-g production. In addition, Zhang et al. (38).

used recombinant leptin to intervene in angiotensin II-induced

AAA mouse model and found that leptin attenuates AAA

formation. According to the study, leptin increases T-bet, a

crucial transcription factor for Th1 polarization (38), suggesting

that intervention of T-bet expression can also regulate the

progression of AAA. Another proinflammatory cytokine released

by Th1 cells called IL-2 is capable of accelerating atherosclerosis.

According to prior research, intraperitoneal IL-2 injection into

ApoE/mice fed an HF diet increases atherosclerosis while anti-IL-

2 antibody treatment has a protective effect (39). However, IL-2

appears to be advantageous in AAA. Foxp3+Treg is produced by IL-

2 complex therapy, which also slows the growth of angiotensin II-

driven AAA and lowers mortality in ApoE -/- mice (40). The

mechanism of action of Th1 and Th2 cells is shown in Figure 2.

The Th17 subgroup is also involved in immune regulation of

AAA progression (13) and is regulated by the transcription factor

RORgt, characterized by the production of cytokine IL-17A, IL-17F,

and IL-22 (41). Th17 cells primarily have an immune-stimulating

and pro-inflammatory role, which accelerates the development of

several inflammatory illnesses, including atherosclerosis (42–44). In

the elastase perfusion model of AAA constructed by Sharma et al.,

CD4+ T cell-produced IL-17 promoted the occurrence of

inflammation, thus inducing the formation of AAA, while the

absence of IL-17 limited the progression of the disease (45). The

considerable attenuation of TNF, IFN, and MCP-1 in elastase-

perfused IL-17/IL-17 mice aortas were of special interest.These

cytokines are elevated in human AAA and have been proven in

animal studies to induce aneurysm development (20, 46, 47). The fact

that IL-17 controls the production of these inflammatory cytokines

shows that IL-17 produced by CD4+ T cells is a key player in the early

stages of the AAA-related inflammatory cascade. Similarly,
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researchers observed a similar phenotype in the angiotensin II-induce

AAA model, in which genetic and pharmacological neutralization of

IL-17 or use of RORgt antagonists restricted the disease (48, 49). In

contrast, overexpression of suppressor of cytokine signaling (SOCS) 3

in Th17 cells reduces IL-17A and accelerates atherosclerosis. It is

significant that SOCS3 has other downstream targets in addition to

IL-17A, namely IL-10, which serves its own protective role in

AAA (50).

2.1.2 Tregs
Tregs have been reported to be detected in aortic tissue and have

been shown in multiple studies to be able to play a protective role in

atherosclerosis (51). As for AAA, Yodoi et al. found that the

accumulation of macrophages in aneurysm tissue decreased and the

number of Foxp3+Tregs increased, suggesting that the expansion of

tregs may inhibit inflammatory cell infiltration in the blood vessel wall

to prevent the formation of AAA (40). In addition, Barhoumi et al.

found that Tregs play a protective role in AAA by inhibiting the

infiltration of macrophages and effector T cells, accompanied by

decreased plasma levels of proinflammatory cytokines IFN-g, TNF-
a and IL-6 (52). These studies suggest that through preventing the

buildup of inflammatory cells and the release of pro-inflammatory

chemicals, Tregs contribute to the pathophysiology of AAA. Tregs also

limit AAA progression by inhibiting Cyclooxygenase-2 (COX-2)

expression in bone marrow cells (53). Specifically, COX-2 is an

enzyme that regulates the conversion of arachidonic acid to

prostaglandins and eicosanoic acid (essential inflammatory

mediators associated with the development of AAA) (54).

Further studies revealed the possible ways and mechanisms of

regulating AAA by Tregs. As we all know, Coinhibitory molecule

cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), a

coinhibitory protein that binds to CD80 and CD86 on antigen-

presenting cells and adversely controls T cell activity, is only
Frontiers in Immunology 04
expressed in CD4+ forkhead/winged-helix family of transcription

factor 3 (Foxp3)+ Tregs (55).. Interestingly, Amin et al. found that

CTLA-4 had a protective effect on Ang II-induced AAA formation

in mice, which was related to the decrease in the number of efficent

CD4+ T cells and the down-regulated expression of CD80 and

CD86 co-stimulatory molecules of CTLA-4 ligand on CD11c+ DCs

in lymphoid tissue (56). In addition, the inhibitory function of Treg

cells is closely related to the acetylation level of Foxp3, which is

specifically regulated by silencing information regulatory factor 1

(SIRT1) (57, 58). Jiang et al. found that EX-527, an inhibitor of

SIRT1, could restore the acetylation of Foxp3 and increase the

number of active Treg cells, thus restoring the inhibition ability of

Treg cells to AAA (59). Notably, defective Foxp3 expression on

Tregs during atherosclerotic development, resulting in switch to

exTregs and up-regulation of transcription factors typical of other

Th subsets, such as Th1 or Tfh (60–62). However, whether this

transition will also occur in AAA has not been determined and may

be a line of inquiry in the future.

Overall, further mechanistic investigations with better cell type-

specific response analysis are required to clarify the relative

involvement of Th1 versus Th2 versus Th17 or other CD4+ T cell

subsets in contrast to other cell types producing related cytokines in

AAA (63).
2.2 CD8+ T cells

Although there have been relatively few studies on the role of

CD8+ T cells in AAA, serum of AAA patients has been found to

have relatively high levels of CD8+ T cells compared to normal

subjects. More so than patients with minor AAA, patients with large

AAA had a higher level of CD8+ T cells (64). Early research

discovered CD8+ CD28+ IFN-g producing T cells in circulation
FIGURE 2

Mechanism of action of T cells in AAA formation.
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and AAA tissue. A population of CD8+ T cells without CD27 was

also found in human AAA lesions but not in peripheral blood,

suggesting that this subgroup of CD8+ T cells may have a special

function in AAA (65). Additonally, in a recent study, Zhou et al.

demonstrated for the first time the pathogenicity of CD43+ CD8+ T

cells in AAA by constructing a mouse AAA model induced by

elastase. The study revealed that CD43 on the membrane surface of

CD8+ T cells can induce the production of IFN-g, which in turn

participates in the inflammatory cascade, eventually promoting the

development of aneurysms (65). This suggests that in addition to

CD4+ T cells, CD8+ T cells can also secrete IFN-g and participate in

the regulation of AAA progression.
2.3 gd T cells

gd T cells are T cells that perform innate immune function, and

their TCR consist of g and d chains. gd T cells in atherosclerotic

aortas were found, and it was hypothesized that they control

neutrophil activation in an IL-17-dependent manner (66).. More

recently, gd2+ T cells were found to be more significantly in aortic

aneurysm tissue compared to normal aortic tissue and peripheral

blood mononuclear cell (PBMC) in AAA patients (67). Further

studies showed that these gd2+ T cells were the major source of IL-

17A in AAA tissum, indicating that the etiology and development of

AAA may be influenced by elevated IL-17A-producing gd2+ T cells

(67). In addition, another study by Zhang et al. revealed the specific

mechanism of gdT cells in regulating the progression of AAA. The

team used the porcine pancreatic elastase (PPE)-induced AAA

model to reveal the pathogenicity of gd T cells in AAA (66).

Subsequently, microarray analysis found that phosphoinositide 3-

kinase/AKT signaling mediated this process, providing a potential

target for targeted therapy of AAA (66).
3 Potential therapeutic strategies
targeting T cells for AAA

It is reported that homocysteine may up-regulate the expression

and secretion of endogenous classifiers in endothelial cells, thereby

recruiting T cells into the vascular wall and causing vascular
Frontiers in Immunology 05
inflammation, thus accelerating the onset of AAA (68). This

indicates that lowering serum homocysteine is helpful to reduce T

cell infiltration in AAA tissue, thus playing a therapeutic role. In

addition, Resolvins (69), PNU-282987 (a selective a7-nAChR
agonist) (70) and infliximab (TNF-a antagonist) (46) are also

reported to reduce T-cell invasion in AAA, thus inhibiting the

progression of AAA. These studies suggest that targeting T cells in

AAA can help inhibit the progression of AAA. Therefore, it is

important to find strategies to target T cells. In this section, we will

discuss potential therapeutic strategies for T cells in AAA and

briefly summarize the relevant drugs and mechanisms in Table 1.
3.1 Targeting CD4+ T cells

In the previous section, we have summarized the mechanisms

by which various subgroups of CD4+ T cells participate in

regulating the formation of AAA. Therefore, drugs targeting

CD4+ T cells may act to inhibit the progression of AAA. Since

the vitamin D receptor (VDR) has been demonstrated to have

potent immunomodulatory properties in vitro and in vivo studies,

researchers are interested in exploring the role of activating VDR-

agonists in regulating the progression of AAA (71). Nieuwland et al.

collected aneurysm wall samples during surgery and studied

inflammatory footprints. It was found that a brief intervention

with paricalcitol (VDR-agonists) resulted in a 73% selective

reduction in CD4+ T helper cells, demonstrating that the VDR

agonist paticalcitol significantly lowers local inflammation by

inhibiting the calcineurin/NFAT signaling cascade and CD4+T

cell activation (71). In another study, the Notch g-secretase
inhibitor dibenzazepine (DBZ) clearly blocked Ang II-stimulated

macrophage and CD4+ T cell accumulation in an Ang II-induced

mouse model, simultaneously reversed Th2 response in vivo

through Notch signaling, demonstrating the potential for DBZ as

a new therapeutic agent for the treatment of AAA (72).

Unfortunately, these drugs are still in the preclinical stage and

have not yet entered clinical trials. Further clinical trials are needed

to verify their efficacy in the future.

To date, drugs targeting Tregs to inhibit the progression of AAA

are still in preclinical studies. IL is a lymphoid factor that interacts

between white blood cells and immune cells. It is crucial for
TABLE 1 Potential therapeutic strategies targeting T cells for AAA.

Potential drugs Targeted T cells Mechanism Ref.

Paricalcitol CD4+T cells Activating VDR (71)

Dibenzazepine CD4+T cells Inhibiting Notch-g-secretase (72)

Doxycycline CD8+T cells / (81)

Metformin CD8+T cells Inhibiting CD8+ T infiltration by lowering blood sugar (86)

Ulinastatin CD8+T cells / (87)

Paeonol CD8+T cells Inhibiting the NF-kB pathway (90)

Interleukin Tregs / (77)

SCFAs Tregs / (80)
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information transmission, for engaging and controlling

immunological responses, for influencing T and B cell activation,

proliferation, and differentiation, and for playing a significant part

in inflammation (73). Particularly, endothelial and epithelial cells at

barrier sites express the IL-1 family member IL-33 constitutively,

and its expression is stimulated in inflammatory cells infiltrating the

inflammatory site (74–76). Li et al. used C57BL/6J mice to construct

the AAA model. The results confirmed IL-33 suppresses AAA by

enhancing Tregs expansion and activity, indicating that regimens

that reprogram IL-33 or increase endogenous IL-33 expression may

limit the progression of mature AAA or prevent the development of

human AAA (77). However, although recombinant IL-19 was

shown to inhibit the formation and progression of experimental

AAA, it did not affect the invasion level of Tregs (78). This indicates

that the mechanism of intervention of different interleukins in

aortic aneurysm is quite different, and not all interleukins can

inhibit AAA by promoting the amplification of Tregs, so the search

for Tregs with immunomodulatory effects will be the direction of

future exploration. Short-chain fatty acids (SCFAs), a metabolite

produced by intestinal microbes, have been shown to enhance the

number of Treg cells in the colonic lamina propria (cLP) and to

protect against non-intestinal inflammatory disorders such

atherosclerosis and post-infarction cardiac inflammation (79).

Propionic acid protects against AAA, according to Yang et al., by

encouraging the recirculation of cLP-Tregs through colonic

draining lymph nodes to inflamed aorta (80). These findings

demonstrate the crucial part SCFAs play in aortic inflammation

and lay the groundwork for the creation and application of

prebiotic-based therapies for human AAA.
3.2 Targeting CD8+ T cells

Regarding CD8+ T cells, a prior clinical trial by Lindeman et al.

randomly assigned 60 patients to receive either no treatment

(control group) or two weeks of low-, medium-, or high-dose

doxycycline (50, 100, or 300 mg/d, respectively). Following that,

samples of the aorta wall were taken during surgery, and the impact

of doxycycline treatment on vascular inflammation was assessed

(81). Doxycycline has an inhibitory effect on AAA, which is usually

attributed to the inhibition of MMP-9. However, this study shows

that Doxycycline can still selectively reduce the content of 95% CD8

+ T cells in aortic wall through activating protein-1 (AP-1) (81).

The findings of this study have implications for the stabilization of

abdominal aneurysms by medication and perhaps for other

inflammatory diseases involving CD8+ T cells. In addition,

epidemiological evidence has shown that diabetics are less likely

to develop AAAs, and when AAAs are present, the progression or

expansion of AAAs is slower in diabetics (82–85). Based on this

evidence, researchers explored the effect of metformin on the

progression of AAA. This clinical study included 58 patients, and

in experimental modeling it was found that metformin significantly

inhibited the formation and progression of AAA, and reduced the

infiltration of aortic mural macrophages and CD8+ T cells (86).

However, the specific pathway of Metformin affecting AAA is still

unknown, and its effect on CD8+ T cells seems to lack specificity. In
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addition to the above clinical studies, preclinical studies conducted

in recent years have also identified drugs that target CD8+ T cells to

inhibit the progression of AAA. For example, Ulinastatin inhibited

CD8+ T cells in the aortic wall of AAA mice induced by PPE and

limited the formation and progression of experimental AAA (87).

However, this study did not directly prove the effect of CD8+ T cells

on AAA through depletion of CD8+ T cells or other interventions.

The solution could be to construct AAA models by depleting CD8+

T cells mouse and then compare the limiting effect of ulinastatin on

AAA. Paeonol, which has been shown to have anti-inflammatory

and cardiovascular protective characteristics, was used in another

investigation (88, 89), was shown to block the progression of

experimental AAA by inhibiting the NF-kB pathway, and the

infiltration of CD68+ macrophages and CD8+ T cells was

significantly reduced when paeonol was taken together (90).

There are not enough experiments to prove that Paeonol has a

specific inhibitory effect on CD8+ T cells on the AAA vascular wall.

This study has the same limitations as the above studies and may be

the direction of future research.
4 Conclusion and prospects

In the past ten years, it has become clear that immune cells play

a role in the pathogenesis of AAA, and specific immune cells have

been found in AAA lesions. Numerous mechanistic investigations

have offered proof of the part immune cells play in the etiology of

AAA. Given the unique role of T lymphocytes, additional research

utilizing cell type-specific knockouts and more physiologically

accurate models is required, which is still poorly known. This

article summarizes the animal and clinical evidence from various

T cell subsets in AAA, and summarizes potential therapeutic

strategies targeting T cell subsets. Existing evidence supports that

CD4+ T cells and CD8+ T cells play a pro-inflammatory role in

AAA, thus promoting the formation and progression of AAA, while

the amplification of Tregs restricts AAA. Several drugs targeting

CD8+ T cells have been carried out clinical studies and shown

certain efficacy. However, drugs targeting CD4+ T cells and Tregs

are still in the pre-clinical research stage and need further clinical

verification. At the same time, the targeted therapy for T cells in

AAA also has certain limitations and challenges. For example,

although Tregs amplification limits the progress of AAA, cell-

based therapy has high costs, difficulties in production or the

need for special equipment, which leads to difficulties in clinical

transformation. On the other hand, the dosage and

pharmacokinetics of cell therapy are also difficult to determine,

and there are differences in the survival and proliferation of cells

within different individuals, which may lead to differences in their

efficacy. How to target and deliver drugs targeting T cells to the

vascular wall of AAA is also an urgent problem to be solved.

Animal models of AAA formation have been created and are

frequently utilized in experimental research, however they do not

accurately represent human pathophysiology. Many therapeutic

drugs have achieved great success in animals, but are not effective

or even counterproductive in clinical practice. There are many

reasons for this. For example, unlike humans, mice often develop
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suprrenal AAA. The three classical animal models are still

insufficient to accurately simulate the formation process of

chronic AAA in humans, and the cellular and molecular

mechanisms are different in vivo and in vitro. The ideal of better

bioavailability and fewer side effects is still a long way off. Therefore,

how to select suitable and possibly effective targets from the

inflammatory network is still one of the major challenges. The

role and mechanism of novel anti-inflammatory factors and T cells

in AAA remain to be clarified, and the new mechanism may bring

new targets. A potential new field called “macrophage phenotype

polarization” may help find important AAA-related regulators of

chronic inflammation. It is being investigated if macrophages in

AAA tissue have a stronger M1 or M2 phenotype and how to

change the M1/M2 balance. In addition to changes in inflammation

of AAA blood vessel walls, the imbalance between protective factors

and pro-inflammatory molecules in perivascular adipose tissue may

also lead to vascular dysfunction. In the future, anti-inflammatory

therapy is expected to be a game-breaker for AAA prevention

and treatment.
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