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Normally, the host immunological response to viral infection is coordinated to

restore homeostasis and protect the individual from possible tissue damage. The

two major approaches are adopted by the host to deal with the pathogen:

resistance or tolerance. The nature of the responses often differs between

species and between individuals of the same species. Resistance includes

innate and adaptive immune responses to control virus replication. Disease

tolerance relies on the immune response allowing the coexistence of

infections in the host with minimal or no clinical signs, while maintaining

sufficient viral replication for transmission. Here, we compared the virome of

bats, rodents and migratory birds and the molecular mechanisms underlying

symptomatic and asymptomatic disease progression. We also explore the

influence of the host physiology and environmental influences on RNA virus

expression and how it impacts on the whole brain transcriptome of seemingly

healthy semipalmated sandpiper (Calidris pusilla) and spotted sandpiper (Actitis

macularius). Three time points throughout the year were selected to understand

the importance of longitudinal surveys in the characterization of the virome. We

finally revisited evidence that upstream and downstream regulation of the

inflammatory response is, respectively, associated with resistance and

tolerance to viral infections.
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1 Introduction

The devastating Severe Acute Respiratory Syndrome

Coronavirus 2 (SARS-CoV-2) pandemic has killed more than

6.88 million people worldwide [for details see COVID 19 online

data https://www.worldometers.info/coronavirus/and (1, 2)].

SARS-CoV-2 was first identified in China, in December 2019

(World Health Organization, WHO, March 28, 2023). On March

11, 2020, WHO declared COVID-19 a pandemic, and on December

18, 2020, Pfizer/BioNTech vaccines and Moderna received

emergency use authorization from the Food and Drug

Administration (FDA). However, by this time, the virus had

already caused 1.7 million deaths and had spread to 216 countries

(3). Globally, there have been severe knock-on effects on the

economy, owing to the restrictive measures put in place to

attempt to prevent SARS-CoV-2 from spreading, which have

increased unemployment, poverty, hunger, and inequalities (4),

particularly in low and middle income countries (5–10).

Arguably, the extent the pandemic was controlled by the

administration of non-replicating RNA-vaccines that were

designed to induce immunoprotection in survivors (11–14).

If the ongoing pandemic could have been anticipated, few

scientists would have expected the magnitude and speed of its

spread (15) or the number of people that are still experiencing post-

COVID-19 syndrome or post-acute sequelae of SARS-Cov-2 (16)

and still need ongoing medical attention (17–19). These individuals

regularly require the input of costly multidisciplinary teams for

individualized rehabilitation and therapy (20, 21).

The Pandemic has encouraged government throughout the

world to prepare public health policies to anticipate zoonotic

diseases and those transmitted by arthropods, the main causes of

worldwide outbreaks (22). Ongoing international efforts indicate

that the most likely profile for the next pandemic will be similar to

the last where another zoonotic RNA virus passes from non-human

animal to humans and then to sustained human-to-human

transmission (23, 24).

Understanding interspecies viral transmission and the ability

to model the environmental factors that contribute to the spread

of viral diseases to humans is central to the prevention of future

pandemics (25). To begin to understand these processes, a broader

characterization of the animal virome and an improved

understanding of the host response to the presence of the virus

is essential (26, 27). Unbiased metagenomic next-generation

sequencing (mNGS) is helping to shed new light on virus

evolution (28). mNGS applied to bats (29), migratory birds (30,

31), rodents (32) and arthropods (33) to characterize their

viromes, and the transcriptomic analysis of gene expression of

these large groups of non-human animals is well underway. Here

we reanalyzed the virome of bats, rodents and birds to search for

mechanistic insight into tolerance and resistance to virus

infection. We also highlight the importance of understanding

and regulating a dysfunctional innate immune system and

inflammasome to control tissue damage (34).
Frontiers in Immunology 02
2 Virus reservoirs in mammals
and birds

In the wild, an enormous number of viral species circulate in

specific niches and very little is known about their biology and

transmission (35–39). Many of these viral species have a severe

impact on livelihoods and the trade in livestock (40). The

commercial trade in wildlife that is associated with hunting and

consumption of wild animals has been recognized as an important

route for the emergence of human zoonotic diseases (41, 42).

In a viral ‘reservoir’ species there is normally an organized

immunological response to the virus, but often there is no apparent

disease activity (43–46). In these situations, there is usually a low

level of viral infection, and the host is able to tolerate some viral

replication. Indeed, as mentioned above, many viral ‘passengers’ are

carried by hosts for a lifetime (47).
2.1 The immune system of the bat: a
prototypic model for virus tolerance

The pandemic placed bat immunology in the spotlight and it

has been suggested that further detailed study may help prevent

future pandemics (48). Bats harbor many viruses and share human

and domestic animal environments. They have a long-life

expectancy and their diversity and winged locomotion favors the

emergence and dispersal of new viral species (49). As bats are the

only autonomous flying mammals, they are, possibly, the only non-

human mammals to occupy almost all regions of the planet, except

the Arctic and Antarctic poles (50).

Bats may (like any other mammal) become sick when infected

by certain viral species, and the spread of new pathogens into bat

colonies be fatal for them (51). However, previous studies on the

diversity and evolution of viruses in bats have revealed that they

exhibit unique immunological approaches to enable coexistence

with viral infections, showing minimal or no overt clinical signs,

while allowing enough replication for transmission (26, 52–57).

Many of these bat-borne viruses induce several zoonotic human

diseases (e.g. Ebola virus, Marburg virus, Nipah virus (NiV),

Hendra virus (HeV), SARS-coronavirus (SARS-CoV), MERS

coronavirus and (MERS-CoV) (38, 58–60) and all viral species

associated with these diseases were found in apparently healthy

bats (61).

Experimental infection with Egyptian rousette bats with

Marburg virus (MARV) or Ebola virus followed by mRNA

expression analysis, revealed the concentration of virus transcripts

in the liver and many transcriptional changes in multiple tissues

(62). These tissue changes included a robust overexpression of the

ANXA1 gene, involved in the regulation of inflammation and cell

signaling pathways (63), as well as of MRC1 (CD206) gene

associated to a subset of tissue resident macrophages regulating

inflammation (64). MARV severe disease includes inflammatory

gene dysregulation (cytokine storm) and immune response
frontiersin.org

https://www.worldometers.info/coronavirus/
https://doi.org/10.3389/fimmu.2023.1239572
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pereira et al. 10.3389/fimmu.2023.1239572
suppression followed by systemic damage and death in humans,

which is avoided in the Egyptian rousette bats by the upregulation

of antiviral genes IFN-stimulated gene 15 (ISG15), IFN Induced

Protein With Tetratricopeptide Repeats 1 (IFIT1) and 2′,5′-
oligoadenylate synthase (OAS) 3 gene in the absence of any

significant induction of proinflammatory genes, such as C-C

Motif Chemokine Ligand 8 (CCL8), FAS (also called CD95 or

APO-1 or TNFRSF6) and interleukin(IL)-6 (27). Because these

viruses do not elicit a robust immune responses, it seems to prevent

immunopathology, but it also prevents viral clearance that (65)

leads to immunological tolerance. Thus, while it has been suggested

that viral zoonotic risk seems to be homogeneous among

mammalian and avian reservoirs hosts (66), it has been

demonstrated that bats harbor significantly higher proportion of

zoonotic viruses than all other mammalian orders (49, 67). A broad

metagenomic analysis, recently conducted in China, to screen the

virome in pharyngeal and anal swab samples of 4440 apparently

healthy bats (no overt signs of disease) from 40 major different bat

species revealed the presence of a diverse set of viruses (59). The

most widely distributed families of mammalian viruses found were

Herpesviridae, Papillomaviridae, Retroviridae, Adenoviridae and

Astroviridae (~61% of the total viral sequence reads). Many reads

related to other families were also found and included Circoviridae,

Paramyxoviridae, Coronaviridae, Caliciviridae, Polyomaviridae,

Rhabdoviridae, Hepeviridae, Bunyaviridae, Reoviridae,

Flaviviridae and Picornaviridae, and the subfamily Parvovirinae.

These authors identified in the swabs of a few genera, Rhinolophus

spp. Miniopterus spp., and Myotis spp., 16, 10 and 13 virus families

respectively, suggesting that these three genera are the major

reservoirs for mammalian viruses in China (59).

These data confirmed previous findings that bats are indeed

unique reservoirs of diverse virus with immune tolerance (15,

61, 68).

The ability of bats to control intracellular pathogens does not

mean that they are not susceptible to extracellular infections (69).

Indeed, environmental exposure of small, hibernating brown bats to

Pseudogymnoascus destructans has been shown to cause infection

and high mortality in colonies associated with white nose

syndrome (70).
2.2 Migratory birds, tolerance, resistance,
and virus long-distance dissemination

Free-living migratory birds can also be zoonotic reservoirs and

can contribute to the dispersion of microorganisms as biological

carriers, mechanical carriers, or carriers of infected hematophagous

ectoparasites (71–73). As for bats, migratory birds also host viruses

and can be the long-distance transmitters or local amplifiers of a

variety of viruses that may induce severe disease in humans,

domestic animals, and other wildlife (74–78).

Virome investigations of free-living birds and exploration of the

impact of environmental factors on viral infection in the hosts may

help to detect virus species with potential translation into human

risk (79, 80). In keeping with these ideas, the virome of cloacal swab

specimens collected from 3182 birds including more than 87
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different species (mostly wild species), from 10 different avian

orders was investigated (81). They identified 707 viral genomes

from 18 defined families and 4 unclassified virus groups, with 265

virus genomes comprising new virus families, genera, or species.

The authors provided evidence for the potential cross-species

transmission of certain viruses in wild birds, showing > 95%

amino acid sequence identity with previously reported viruses in

domestic birds.

Several avian species sharing the variants of the Influenza A

virus, except H17N10 and H18N11 subtypes, have been isolated

exclusively from bats (82). Influenza viruses of types A and B lead to

seasonal influenza epidemics, but only type A is linked to

pandemics (83, 84). Migratory birds directly contribute to the

maintenance and dissemination of avian influenza A virus within

the Northern Atlantic flyway of North America (85).

Owing to the detection of rearrangements and mutations of the

Influenza virus in wild birds, public concern about the potential

pandemic risk posed by this viral species and its mutations is

growing significantly (77, 86, 87). Indeed, evidence of

transmission from avian viral species to humans has previously

been described for A/H7N9, A/H6N1 and A/H10N8 variants, and

approximately 35% of patients infected with A/H7N9 succumbed to

zoonotic infection (87).

Although most people with influenza exhibit acute respiratory

symptoms and muscle aches, with or without fever, which disappear

within 1 week (88), avian species do not always have symptomatic

infection, facilitating human exposure to the virus. Wild birds also

play significant roles in the ecology and circulation of Eastern and

Western Equine Encephalomyelitis and Sindbis alphaviruses, West

Nile, Usutu, and St. Louis Encephalitis flaviviruses (71, 89, 90).

The inflammatory response to viral infections in migratory

birds has also been well documented in several different domestic

and aquatic birds (91). Gallinaceous poultry species, domestic ducks

and various aquatic and terrestrial birds are vulnerable to avian

influenza viruses (92–96) and host inflammatory response seems to

contribute to morbidity and mortality in all species investigated so

far (96, 97). Avian influenza (AI) viruses for example, have been

detected in more than 105 species of birds of different taxa but the

species most frequently found harboring influenza virus belong to

Charadriiforms (gulls, terns and shorebirds) and Anseriformes

(ducks, geese and swans) orders, where no apparent disease signs

or lesions were found (97). It has been suggested that the

recognition and elimination of invading pathogens (resistance)

(98, 99) or the control of the infection associated tissue damage

(tolerance)(100) may explain asymptomatic or minimally

symptomatic infections.

Virus infections were associated with liver diseases in chickens

raised in scaled farms causing significant economic losses and this

was associated with multiple virus infections. Indeed, panvirome

profiling of livers, spleens, kidneys, and recta revealed coinfection of

chicken infectious anemia virus, avian leukemia, avian

encephalomyelitis virus (AEV) and multiple fowl adenoviruses,

with a higher abundance of the last two virus species in the liver

(101). Many other virus infections with novel strains and variants

caused economic losses to the poultry industry worldwide and these

included infectious bronchitis virus (102), bursal disease virus
frontiersin.org
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(103), H5Nx avian influenza viruses in Europe, Africa and the

Americas (104–106), H5N8 and H5N1 avian influenza viruses

(107–111). Similarly, the host response to pigeon paramyxovirus

type I (PPMV-1) infection (associated with New Castle disease, a

great threat to the pigeon industry), induces strong innate immune

responses and intense inflammatory responses at an early stage and

this is associated with viral pathogenesis (112). After infection,

pigeons showed upregulated expression of toll-like receptors

(TLRs), such as TLR2, TLR3 and TLR15, together with interferon

(IFN) gamma (IFNɣ) and IL-6, whereas IL-18 expression was found

down- regulated (112). PPMV-1 is now worldwide disseminated

causing extensive infections in domestic and feral pigeons, wild

birds and poultry (113).

Differential host responses to avian influenza viruses in avian

species with differing susceptibilities were analyzed by

transcriptomics, and susceptible birds showed strong neuro-

inflammatory responses associated with greater viral load (114).

Ducks are natural hosts and reservoirs of influenza A virus and

transcriptomic analysis in infected individuals showed this

condition associated with downregulation of a distinct set of

proinflammatory cytokines in lung, key elements of leukocyte

recruitment and complement in intestine (115).

Comparative analysis of chickens and ducks following high

pathogenic avian influenza virus infection was associated with

increased proinflammatory responses in chickens whereas

downregulation of inflammatory response in ducks was associated

with mild or asymptomatic profiles (116). In line with these

observations mallard ducks are permissive to low pathogenic avian

influenza viruses in their intestinal tissues without overt disease signs,

thus limiting the duration of proinflammatory cytokine expression,

whereas in chickens, respiratory and systemic disease is associated

with enhanced virus replication and associated tissue damage (117).

While the co-evolution of Mallard ducks with influenza virus have

allowed host-pathogen interaction and resistance through retinoic

acid-inducible gene I (RIG-I) pathway, providing asymptomatic or

minimally symptomatic infections with robust IFN response,

chickens lacking the key sensors of RIG-I pathway, with

compromised host response, show significant inflammatory

changes, associated clinical signs and lesions to the skin,

respiratory, digestive, reproductive and nervous systems following

high pathogenic influenza virus (HPAIV) infections (117–119).
2.3 Tolerance and resistance to virus
infections in rodents

Rodentia is the most diverse order of mammals, representing

more than 40% of mammalian species including 33 families and

2,600 species (120). They are natural virus reservoirs of a variety of

species associated with human severe diseases (121–124).

At the molecular level, Cohn and collaborators performed

transcriptional and physiological monitoring across 33 mouse

strains during in vivo infection with the influenza virus (125).

They identified two host-defense gene programs associated with

disease tolerance and resistance respectively, providing a paradigm

for exploring these immune responses in different species.
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At the cellular level, a key subset of specialized T cells for

regulation of immune responses and maintenance of the immune

tolerance in the periphery, the Treg cells, are recruited and expanded,

undergoing functional and molecular reprogramming (126). These

changes may protect against exacerbated immune responses while

providing tissue homeostasis (127).

Dual RNAseq differential expression analysis following HIN1

infection in two mouse strains with contrasting resistance to

influenza virus infections enabled investigation of both the viral

and host gene expression profile in the same individual and revealed

that host genes were involved in the development of severe

pathology, viral replication and immune responses (128). From

this report it emerges that IFN Regulatory Factor 7 (Irf7) gene

deletion (obtained in the knock-out line on a C57BL/6J

background) was associated with greater susceptibility to H1N1

infection with significant body weight losses and increased

mortality compared to wild controls (128).

Furthermore, it has been demonstrated using lymphocytic

choriomeningitis and Influenza A virus models in mice, that the

Treg-dependent immunosuppression is associated with the effector

state of Treg cells, which maintain stability and functionality while

exposed to IFNɣ. The stability of regulatory T cells may be

diminished or reinforced by different Type-1 cytokines (127). The

deletion restricted to regulatory T (Treg) cells of the IFNɣ receptor,
but not to the IL-12 receptor, prevents Th1-type polarization and

promotes Th2-type polarization, avoiding long inflammatory

process, and adequate response from memory T cells (129).

It is important to highlight, however, that although many

significant immunological discoveries have been obtained in

laboratory mice, they do not directly mimic the physiology of

wild mice living in their natural environment. To circumscribe

this limitation, a newmurine model named “wilding” was generated

by transferring embryos of C57BL/6 into wild mice (130). This

approach revealed that the immune profiles of wilding mice,

laboratory mice, and wild-type mice showed that wilding

individuals and laboratory mice exhibit a different epithelial

barrier microbiome, gut microbiome, virome, and repertoire of

pathogens. Interestingly, immunological phenotypes of wildings

and wild-type mice were closer to and seemingly a better mimic

of the human immune system. In agreement, the first phase 1

clinical trial in multiple laboratory mouse models of autoimmune/

inflammatory diseases, using CD28 monoclonal antibodies, which

are able to activate regulatory T cells, resulted in human life

threatening activation of inflammatory T cells and cytokine

storms (131). Similarly, laboratory mice born from wild mice

(wilding mice) after treatment with a CD28-superagonist showed

an inflammatory cytokine response and an absence of Treg

expansion (130).
2.4 Lessons from arthropods

In addition to the sustained virome surveillance of bats, rodents

and migratory birds, arthropods are another essential source of

information for the future control of pandemics (132–134). As in

mammals and birds, arthropods also react to potential threatens
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with an innate immune system response comprising both cellular

and humoral components (135). Arthropods harbor numerous

arboviruses that may spread through migratory birds and bats, at

stopover sites, to other species, or to other individuals of the same

species, and many of these arboviruses are of great epidemiological

interest (136, 137). For example, mosquito-borne and tick-borne

viruses cause some of the most severe diseases with high fatality

rates in humans and animals and continue to threat human and

livestock health globally (135, 138, 139).

To understand the emergence of arboviruses and the dynamics

of potential outbreaks, it is essential to reconstruct the virome of the

species of interest and understand its composition and potential

modulatory actions on arbovirus transmission (140, 141). For

example, mosquito vector competence for dengue is modulated

by insect-specific viruses (142). Using virome analysis of 815 urban

Aedes mosquitoes collected from 12 countries worldwide it was

demonstrated that two mosquito-specific viruses were the most

abundant (Phasi Charoen-like virus and Humaita Tubiacanga

virus). The spatiotemporal analysis of virus circulation in an

endemic urban area revealed a 200% increase in chances of

having DENV in wild A. aegypti mosquitoes when both Phasi

Charoen-like virus and Humaita Tubiacanga virus were

present (142).

Metagenomic analysis of mosquitoes can provide valuable

information, including new or unsuspected arboviruses, as well as

non-arboviral pathogens ingested from hosts on which they feed

(143). Next generation sequencing of RNA extracted from excreta

of Aedes vigilax and Culex annulirostris reversed for cDNA and

sequenced, allowed the assembly of near-full-length viromes of

Australian Anopheles totivirus, Wuhan insect virus 33, and Hubei

odonate virus 5 and 7 new viruses, closely related to members of the

order Picornavirales and to previously described, but unclassified

RNA viruses (143).

At least 500 arboviruses have been identified so far, 100 of

which may induce human diseases and 40 of them cause domestic

animal diseases (144, 145), and the Amazon is a spotlight for

emergence of new arboviruses and this has been associated with

disturbance of the natural ecosystem (146).

Emergent viruses may involve urbanization - in which humans

have become the amplification hosts - and peridomestic mosquitoes

(mainly Aedes aegypti) mediate human-to-human transmission

(dengue, yellow fever, chikungunya and Zika viruses) (147, 148).

Secondary amplification, for example, has occurred in outbreaks of

Japanese encephalitis, Venezuelan equine encephalitis, and Rift

Valley fever viruses (149, 150). Alternatively, simple spillover

from enzootic cycles may occur as it is observed in West Nile

fever (151), Crimean-Congo hemorrhagic fever (152, 153), tick-

borne encephalitis (154, 155) and Alkhurma hemorrhagic fever

virus (156, 157).

Vector-borne viruses enter the vector, infect, and replicate.

Escaping from the gut and reaching the salivary glands, they

infect vertebrate host through saliva during blood feeding (136,

158, 159). Sialotranscriptomes of unfed and fed ticks showed that

blood feeding alters the expression profiles to facilitate the feeding

process and pathogen transmission (160).
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3 The influence of host
physiology and environmental
influences on virome

Human pathogens often originate from other species that act as

reservoirs/hosts and from where eventual spillover and sustained

human-to-human transmission takes place (161). Indeed, around

89% of the 180 recognized RNA viruses with the potential to harm

humans are zoonotic (162) and the global effort for emergent

infectious disease surveillance and investigation is currently in the

wrong place and must migrate to hotspots in lower latitudes, such as

tropical Africa, Latin America and Asia (163). The spread of

humans into new ecosystems owing to the requirement for more

land, climate change, loss of biodiversity, and the trade and

consumption of wild animals have all enhanced the risk of

transmission of these pathogens from animals to humans and

increases the likelihood of pandemics (41, 164, 165).

To identify the intermediate host from where viruses may

spillover, pathogen screening of animals, animal products and

their movements as well as diagnostic of emerging infectious

disease is required along the human-wildlife interface (157, 162).

In these surveillance studies (birds, bats, rodents or arthropods

viromes), the collection of ecological and physiological parameters

in different environments and at different times throughout the year

is also essential to understand whether a host response is resistant or

tolerant of a virus (166). Indeed, host and environmental factors

throughout the year influence seasonal virus transmission and

highlighting the importance of longitudinal surveys at multiple

time points in many hosts (167). Stopovers in bird may contribute

to the recovery of constitutive immune function, which is

compromised during migration (168). For example a non-stop

transatlantic flight may not allow the innate immune system to

recover before arrival at the final destination and may affect the

ability of the bird, in this instance, to clear a virus (169).

Virome descriptions are generally based on cross-sectional space-

time sampling limited to a single time point (166, 167), thus

precluding how intraspecific variation and host physiology and

ecology affect viral communities (170). As few reports have

highlighted the importance of these influences on virome studies, as

an exemplar, we show here how viral material in the brain of two long-

distance migratory birds with contrasting migratory flights (Calidris

pusilla andActitis macularius) has provided an exciting opportunity to

explore phenotypic variations influencing host physiology and

environmental factors on the virome. The semipalmated sandpiper

(C. pusilla) leaves the Bay of Fundy in Canada and arrives on the coast

of South America 5-6 days later in a single non-stop flight with no

opportunity to feed (171). While the Actitis macularius arrives at the

wintering places with overland flights, after multiple stopovers for

feeding and rest (migratory map at https://explorer.audubon.org/

explore/species/1566/spotted-sandpiper/migration?sidebar=collapse).

We compared differential gene expression of viral species

quantifying virus transcripts in the brain of different individuals

of these trans-oceanic and trans-continental overland long-distance

migratory birds. All individuals were captured within three-time
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windows of the wintering period. Four birds were collected between

September and October (recently arrived birds), four between April

and May (pre-migratory birds) and four in the intermediate time

window (wintering birds). All birds were collected in Otelina Island

(0°45’42.57”S and 46°55’51.86”W), in the mangrove area of the

Amazon estuary at Bragança municipality, Brazil.

We searched for virus transcripts using the pipeline VIRTUS

(v.1.2.1) and VIRTUS2 (v.2.0) using as reference the genome and

transcriptome of Calidris pugnax (Accession code ASM143184v1)

followed by NCBI Ref-Seq Viral Genomes (172).

C. pusilla and A. macularius telencephalon transcriptomes

(FASTQ files) subjected to VIRTUS 2 (v.2.0) pipeline, revealed

the presence of 370 and 626 virus species respectively (see

Supplementary Tables S1, S2). The differential virus transcripts

expressions were quantified with VIRTUS (v.1.2.1) by comparison

of gene expressions in the three time points: recently arrived,

intermediate and pre-migratory birds are shown in Figure 1.

Table S3 indicates capture dates for each bird.

While stopover may contribute to recover constitutive immune

function, that is compromised during migration (168), non-stop

transatlantic flight may not allow innate immune recovering before

arrival (169).

In addition, adaptive mutations in the viral genome over time as

it occurred with SARS-CoV-2, may result in the emergence of

multiple variants which may alter virus interactions with host cell

receptors for better or worse (173, 174).
4 Avoidance, resistance, and
tolerance to viruses

Avoiding, resisting, or tolerating viruses are different

mechanisms that ultimately must act to protect organisms from

the homeostatic associated imbalance owing to infections (98, 99).
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Avoidance requires that the pathogen must be detected before

host infection and this may be acquired through social information

and chemical signals to recognize infected conspecifics (175–177).

Olfactory cues that induce aversive behavior exude from animals

with acute inflammatory processes or infected, pushing away their

conspecifics (178, 179). Formyl peptide receptor 3 is a G protein-

coupled receptor expressed in subsets of sensory neurons of murine

vomeronasal organ that act as pathogen sensor (180). Indeed, Fpr3

expression in the immune system is upregulated after

lipopolysaccharide and bacterial MgrB peptide, driving avoidance

behavior through the stimulation of a subset of vomeronasal

sensory neurons (179).

The primary function of the immune system is, however, the

recognition and elimination of invading pathogens (resistance) (98,

99) or alternatively, the control of the damage induced by a given

burden (tolerance) (100).

When the pathogen is a virus species, its early detection in host

cells is accompanied by activation of antiviral effector mechanisms,

including type I IFN production (181, 182), natural killer (NK) cell

activation (183), and B and T cell responses (184, 185).

Bats, as other eutherian mammals, synthesize anti-viral effector

molecules including type I IFN, T and B cell responses, and innate

responses to pathogen-associated molecular patterns (PAMPs)

derived from viruses, bacteria or parasites (61, 186, 187). RNA

sequencing in tissues and cells from different bats confirmed, at

molecular level, these similarities (188), and this included receptors

and molecules associated with innate and adaptive immunity, and

microRNAs (189).

The IFN system provides the first line of defense against viral

infection in vertebrates with type I IFN promoting humoral

immunity (190) and both type I and III IFNs associated with the

adoption of an anti-viral state in infected and neighboring cells (53,

191). However, the innate and adaptive immune systems that detect

and respond to invading pathogens in eutherian mammals must be
FIGURE 1

Differential expression of virus transcripts in the whole brain transcriptome of different birds captured at three-time windows of the wintering period:
recently arrived, intermediate (wintering) and premigratory. Note the existence of marked differences in the heat maps of Actitis macularius (left) and
Calidris pusilla (right). We divided the wintering period into three equal time windows: newcomers (August–November), wintering (December–
March), and pre-migration (April–July). RC = recently arrived birds (captured between August and November); PM = premigratory birds (captured
between April and July); WIN = wintering birds (captured between December and March).
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integrated to guarantee efficient protection. The role of integrating

these two systems in both bats and humans belongs to the

lymphocytes of the innate immune response, which share both

adaptive and innate features, and are abundant in the peripheral

circulation and in barrier tissues (192, 193).

Innate lymphocytes (“unconventional” or “innate-like T cells”),

including innate lymphoid cells, natural killer cells, ɣd T cells and

mucosal-associated invariant T cells (194), were detected in a

number of bat species (192).

Sequencing, assembly and the analysis of the genome of

Rousettus aegyptiacus (Marburg virus reservoir) demonstrated the

differential expansion of NK cell receptors, MHC class I genes, and

type I IFN, as compared to other mammals, suggesting an

inhibitory immune state (tolerance), rather than enhanced

antiviral defenses (resistance) in bat immune system (195).

However, many aspects of innate and adaptive immune responses

of bats differ from human response, and these include a reduction of

several immunoglobulin subclasses and contraction (fewer IFN

genes compared with any other sequenced mammal genomes) of

the type I IFN locus, and unusual constitutive expression of IFN-a
in tissues and cells, unaffected by viral infection. This unique

constitutive expression of IFN-stimulated subset of genes

associated with anti-viral activity and resistance to DNA damage,

may contribute to the coexistence of bats with viruses (53).

As previously described, humans and bats react in contrasting

ways to the presence of SARS-CoV-2 (15, 196). While the

inflammatory response is the major cause of deaths associated

with the SARS-CoV-2 infection in humans, infected bats

downregulate the genes associated with the inflammatory

response avoiding its deleterious effects (26, 61, 197, 198).

Macrophages of the bat Myotis myotis and the domestic mouse

(Mus musculus) when stimulated with polycytidylic acid, Poly (I:C)

(ligand of toll-like receptor 3 – TLR3) mimicking a virus infection,

or lipopolysaccharides from bacterial membrane (ligands of toll-like

receptor 4 - TLR4) showed high levels of mRNA of IFNb, tumor

necrosis factor (TNF) and IL-1b. However, the bats exhibited

sustained high-level transcription of the anti-inflammatory

cytokine IL-10, which was not detected in the house mouse (197).

In addition, bats produce the innate potent IFN-inducible

restriction factor tetherin that restricts the replication of diverse

enveloped viruses (including retro-, filo-, herpes- and arenaviruses).

As a consequence, the release of budding virions from infected cells

may be inhibited (199–201) that would normally stimulate antiviral

IFN response through the nuclear-factor kappa B (NF-KB)

signaling pathway (202, 203).
4.1 Disease progression and dysfunctional
inflammatory response to virus infection

More than two years after its emergence, the SARS-CoV-2 virus

continues to affect a subgroup of patients. These patients, who have

recovered from the acute phase of the disease, report a diverse

repertoire of symptoms that characterize chronic or long COVID-

19 (204, 205). During the acute phase, as part of the virus replicative

cycle, SARS-CoV-2 induces the death and injury of virus-infected
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cells and tissues, followed by a wave of local inflammation

associated with increased secretion of the pro-inflammatory

cytokines and chemokines IL-6, IFNɣ, MCP1 (monocyte

chemoattractant protein-1) and IP-10 (interferon gamma

inducible protein) (206). In most individuals, the recruited cells

clear the infection in the lung, the immune response subsides, and

patients recover (207). However, in some patients, a dysfunctional

immune response occurs, that is characterized by augmented

cytokine production, that leads to widespread lung inflammation

and multi-organ failure (207–209).

Indeed, severe acute respiratory syndrome induced by SARS-

CoV-2 induces proinflammatory immune responses in the

periphery and/or in the brain via classical TL receptor

inflammatory pathway and this event is crucial for the onset of

acute and chronic neuroinflammation and sickness-related

behavior (210). Dysregulated immune responses resulting in

lymphopenia and increased proinflammatory cytokine production

seems to be the principal cause of the pathophysiology in COVID-

19 and patients. High concentrations of IL-6 accompany the most

severe cases (211).

The humoral immune response by B-lymphocytes is part of the

adaptive immune mechanisms, controlling viral infections through

the neutralizing antibodies and antibody-dependent cellular toxicity

(212, 213). The elimination of viral infection and the apoptosis of

virally infected cells is also provided by B lymphocytes through

effector molecules, exhibiting antibody-independent functions

(214). However, lack of B cells has been associated with a mild

form of COVID-19 suggesting that inflammatory cytokines,

especially IL-6, may have a central role in the disease severity

(213). In fact, patients with agammaglobulinemia (caused by a lack

of B lymphocytes), show mild symptoms, short duration, and no

need of treatment by IL-6 inhibitors, while patients exhibiting

variable immune deficiencies with dysfunctional B lymphocytes,

(also showing significant low levels of immunoglobulins in the

serum), show severe outcomes and require mechanical ventilation,

antiretroviral agents and IL-6-blocking agents (215).

Survivors from acute phase may exhibit a form of post-acute

sequelae characterized by atypical chronic persistence of symptoms

that may last for months resulted in the long-COVID syndrome

(204). Long COVID appears to be a multi-organ disease and with a

spectrum of symptoms (systemic, neuropsychiatric, cardiac, and

respiratory) have been associated with persistent inflammation,

induced autoimmunity, and putative organ reservoirs of SARS-

CoV-2 RNA or antigens (216–219). Recent evidence supports,

however, the hypothesis that the persistence of the inflammatory

response for a long period after the acute phase is closely correlated

with the post-acute sequelae of COVID-19 (PASC). Actually, the

combination of digital epidemiology with selective biobanking

recent analysis suggested that instead of autoantibodies, the

elevated plasma levels of IL-6, IL-1b and TNF-a is in the core of

the clinical symptoms of PASC COVID-19 (220). While

rheumatoid factor, antinuclear antibodies, and antiphospholipid

antibodies showed no correlation with post-acute COVID-19

sequelae, analysis of blood samples from participants with

ongoing post-COVID19 sequelae, revealed at 6 and 8 months

after infection, increased levels of the pro-inflammatory cytokines
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TNF-a, IL-1b and IL-6 in close correlation with symptoms of the

post-acute COVID-19 syndrome (220).
4.2 Virus infections, NLRP3-mediated
inflammation, RIG-I, ISGs, SOCs
and JAK STAT

4.2.1 NLR family pyrin domain-containing
protein 3

The important inflammasome sensor, NLR family pyrin

domain containing protein 3 (NLRP3), has been linked to both

viral-induced and age-related inflammation (221). Inflammasomes

activate inflammatory caspases promoting the maturation of IL-1b
and IL-18, while inducing cell death by pyroptosis (222).

Dysregulation of the inflammasome is associated with several

autoinflammatory syndromes and autoimmune diseases.

Interestingly, ASC2 that negatively regulates inflammasome

activation in both sterile and infectious settings was identified in

myeloid cell genomes of 13 bat species, whereas none or minimal

expression was found in most human tissues (223). Indeed, bats

dampen inflammation by enhanced innate immune tolerance with

implications for longevity and unique viral reservoir status (221). In

contrast, the NLRP3 inflammasome was found activated in

response to SARS-CoV-2 infection and identified in peripheral

blood mononuclear cells (PBMCs) and postmortem tissues of

COVID-19 patients (224). Moreover, NLRP3 inflammasome

activation and hyperinflammation is associated with COVID-19

severity, and Pan and collaborators demonstrated that SARS-CoV-2

nucleocapsid protein can directly interact with NLRP3 to promote

the assembly and activation of NLRP3 inflammasome (225).

Though some inflammasome genes were also expressed in birds,

little is known about the role of inflammasomes in avian responses

(226). However, we may speculate that NLRP3 inflammasome is a

potential target for therapy. Some similarities between the

inflammasomes of humans, rodents, and other animal species

suggest that the development of veterinary therapeutics may

consider the inflammasome modulation by small molecules once

the recombinant proteins used for human therapeutics are not

economically practical. Recently, it has been demonstrated that

ACS2 also suppresses SARS-CoV-2-immune-complex-induced

inflammasome activation (101). In recent years, food bioactive

compounds, in particular fruit and vegetables rich in flavonoids

and antioxidants, as NLRP3 inflammasome modulators, have been

discussed as a whole, rather than a single nutrient or functional

compound (227). However, there is a lack of human data on their

activity on the NLRP3 activation and there is a widespread opinion

that the inhibition of the inflammasome activation may only have a

minimal effect, and would only contribute more significantly if an

autoimmune response is already established (228).

4.2.2 Retinoic acid-inducible gene I
Virus species must introduce their RNA or DNA genomes into

the infected cell to replicate, and a number of nuclei acid sensors
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(229) including the retinoic acid-inducible gene I (RIG-I)-like

receptors (RLRs) are activated leading to convergent signaling

cascade and transcriptional expression of genes encoding Type I

IFNs (230, 231). RLRs are RNA sensor molecules that play essential

roles in innate antiviral immunity (232) Type I IFNs bind to IFN-a/
b receptor (IFNAR) which activates the Janus kinases (JAKs) and

the signal transducer and activator of transcription (STAT) 1 and 2,

which in turn lead to the expression of ISGs with a variety of anti-

virus effects (231).

Frequent spillover of animal influenza viruses to humans,

including, swine influenza viruses (233) and avian influenza virus

(234) represents risks of zoonotic outbreak and pandemic

(235, 236).

Birds are important reservoirs for RNA viruses and the innate

defense against RNA viruses in birds involves detection of viral RNA

including RIG-1 receptors, endosomal TLRs and their downstream

adaptor proteins (237). Aquatic birds and shorebirds are common

synanthropic species most commonly associated with avian influenza

viruses (238). Because of the complete absence of any detectable RIG-

I sequences in several galliform species, including the domestic fowl

(Gallus gallus) (239), waterfowl and shorebirds that occasionally are

associated with poultry facilities may become a source of significant

damage to poultry farming (238).

Although RIG-I is involved mainly in antiviral signaling

activated by RNA viruses, DNA virus infections (e.g. duck virus

enteritis virus) may also increase the expression of IFN- b and RIG-

I (240). RIG-I in infected cells by influenza A binds to virus genome

and these single-stranded viral genomes are the natural RIG-I

agonists that triggers a cascade of events leading to antiviral

cytokines production (241). In contrast, the Middle East

respiratory syndrome coronavirus (MERS-CoV), strongly inhibits

both MDA5- and RIG-I-mediated activation of IFN-b promoter

activity, while downstream signaling molecules are left largely

unaffected (242, 243).

RIG-I and MDA5 (melanoma differentiation-associated gene

5), collectively known as RLRs, differentially recognized viral

double-stranded RNA virus. For example, RIG-I seems to be

essential for IFNs production in response to paramyxoviruses

(244), influenza A virus (245) and Japanese encephalitis virus

(246, 247), whereas MDA5 is critical for picornavirus detection

(248) which is confirmed by high susceptibility of RIG-I-/- and

MDA5-/- mice to these viral infections (249).

Because of the bat immune system has the ability to clear or

maintain a number of viral infections without apparent clinical

signs, bat cell lines have been used to characterize the IFN response

to different viral infections in bat reservoirs (52, 250–253).

Following infection with Marburg virus (MARV) and Ebola virus

(EBOV) Egyptian fruit bats survived with no overt disease (254,

255) and it was demonstrated that MARV and EBOV replication

was inhibited in the Egyptian fruit bat cell line R06EJ, transfected

with Egyptian fruit bats innate immune genes. The overexpression

of Type I, II and III IFNs, as well as DDX58 (RIG-I), IFH1 and IRF1

were associated with virus inhibition and maybe responsible for

viral clearance (256).
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4.2.3 IFN stimulated genes
IFNs act as extracellular cytokines activating cell surface

receptors followed by intracellular kinase signal transduction and

phosphorylation of transcription factors leading to the induction of

ISGs allowing antiviral defense, antiproliferative activities, and

stimulation of adaptive immunity (257). All type I IFNs, type II

IFN (IFNɣ) and type III IFNs exhibit well-described viral inhibitory

properties (258–261).

Infectious bronchitis virus (IBV) is a single strand, positive

sense RNA virus (belonging to gammacoronaviruses) (262) that

induces infectious bronchitis and is responsible for significant

economic losses within the global poultry industry (263).

Infectious bronchitis is a good example of the effects of IFN-I

suppression where IBV – encoded nucleocapsid protein acts as an

antagonist of IFN-I, compromising the expression of IFN-

stimulated genes allowing IBV evasion from avian innate immune

responses (264).

The host innate immune response mediated by IFN-1 results in

the up-regulation of hundreds of ISGs and provides early protection

against viral infection. Comparative studies have revealed that while

many ISGs are common to all mammals, each species displays its

own distinct repertoire of ISGs (265). Antiviral IFNs are responsible

for the high tolerance of bats to zoonotic viruses (266), with reduced

inflammatory phenotypes and bat species-specific adaptations

affecting innate immune responses, where genomic and functional

studies revealed unique subsets of ISGs (53, 265). For example,

camelids and bats are tolerant to MERS-CoV replication and

display no signs of sickness behavior. When the cervical lymph

node cells from MERS-CoV convalescent llamas were pulsed with

viral strains (clades B and C), although viral replication was not

supported in the lymph node cells, a cellular immune response was

mounted. Th1 responses (IFN-g, IL-2, IL-12) with a transient peak

of antiviral responses (type I IFNs, IFN-l3, ISGs, PRRs and TFs). In
addition, significant expression of inflammatory cytokines (TNF-a,
IL-1b, IL-6, IL-8) and inflammasome components (NLRP3, CASP1,

PYCARD) were suppressed (267). It was suggested that IFN-l3
counterbalances the inflammatory processes and integrate innate

and adaptive immune responses.

Recent studies in bats indicate that the unique balance between

host defense and immune tolerance may explain why bats are so

special virus reservoirs (15, 195, 221, 268). Previous studies

demonstrate that the innate immune system of unstimulated bat

tissues remain switched on due to constitutive expression of three

IFN-a gene that limit viral replication without the presence of high

antibodies titre (53, 65, 268). Moreover it has been demonstrated

that bat microbiome from Great Himalayan Leaf-nosed bats

(Hipposideros armiger) transplanted into H1N1 infected mice,

reduces the inflammatory response and increases survival rate

being that associated with increased production of flavonoid and

isoflavones as well as with the quick innate immune response

induced by the bat fecal transplanted microbiota, thus conferring

mouse tolerance to influenza virus (H1N1) infection (269).
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4.2.4 SOCS and JAK STAT pathways
Cytokines are secreted glycoproteins that act as intercellular

messengers essential for proliferation, differentiation and growth or

apoptosis of the target cells, being these process initiated after binding

to cell surface receptors and activation of intracellular cascades

including the JAK-STAT pathway (270, 271). Most cytokines use

JAK and signal transducers and activators of transcription (JAK/

STAT) pathway to promote gene transcriptional regulation resulting

in the expression of hematopoietic growth factors and

immunomodulatory and inflammatory cytokines (271). Their signals

are attenuated by multiple mechanisms and these include the

suppressor cytokine signaling (SOCS) family of proteins, which is the

principal negative regulation mechanism for the JAK-STAT pathway

(272). An important negative-feedback inhibitor of signaling induced

by cytokines that act via the JAK/STAT pathway is the SOCS family of

proteins (273). When a virus infects the host cells, the innate immune

receptors identify, distinguish, and react to the invader using nucleic

acid or viral protein sensors (274) inducing infected cells to produce

type I IFNs and proinflammatory cytokines (275). Cytokines stimulate

the expression of SOCS proteins, intracellular inducible inhibitors that

limit the signal magnitude of cytokines employing JAK and STAT

pathways (276, 277) or target ubiquitinated signal transduction factors,

avoiding potential tissue damage caused by excessive secretion of

cytokines, maintaining homeostasis (275). Several viruses, however,

have developed mechanisms to induce robust host SOCS protein

expression increasing inhibition of protective antiviral signaling

pathways allowing viruses to evade host immune response (276,

278). Indeed, the hijacking and subsequent upregulation of the SOCS

proteins upon viral infection, suppress the associated JAK-STAT

signaling activities, followed by reduction of the host antiviral

response and viral replication (279). SOCS proteins increased

expression was found in many viruses including SARS-CoV (279),

herpes simplex virus (280), hepatitis B virus (281), hepatitis C virus

(282), Zika virus (283), respiratory syncytial virus (284) and influenza

A virus (285).

Overexpression of SOCS1 leads to a decrease in phosphorylation

levels of JAK1, tyrosine kinase 2 (TYK2) while also inhibits antiviral

and antiproliferative responses induced by IFN-I. Consistent with

this, SOCS1 ablated cells and SOCS1−/− mice are resistant to viral

infection (286; 275). Similarly, porcine reproductive and respiratory

syndrome virus (PRRSV) (major threaten to global swine industry)

increases SOCS3 production via activation of p38/AP-1 signaling

pathway to promote viral replication and persistent infection

(287).To obtain a favorable outcome for viral infections, avoiding

the installation of an inflammatory pathology with eventual fatal

evolution, the host must have strict control of its expression (288,

289). For this, the innate immune system recognizes molecules that

identify many pathogens associated molecular patterns (PAMPs) or

damaged associated molecular patterns (DAMPs) and initiates a

rapid response producing inflammatory mediators that activate

programmed cell death pathways including pyroptosis, apoptosis

and necroptosis with significant crosstalk among them (290–292).
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5 Concluding remarks

Few scientists would have expected the magnitude and speed of

the spread of the COVID-19 pandemic. While the deaths, rightly,

have attracted the headlines, an unknown number of carriers of

post-acute sequelae of SARS-CoV-2 still require medical attention.

To anticipate pandemics in the future and avoid unnecessary

morbidity and mortality, it has been suggested that a broader

characterization of the animal virome, host physiology and the

underlying mechanisms associated with disease tolerance and anti-

viral defenses are essential. We reviewed the literature concerning

the virome of bats, rodents and migratory birds and highlighted the

potential mechanisms of tolerance and resistance to virus infection

in these groups. It is now clear that the type of host inflammatory

response to the presence of virus is central to these mechanisms. We

also emphasize the importance of understanding and controlling

the dysfunctional innate immune system and inflammasome to

deal with future outbreaks in the period before we have

effective vaccines.
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