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Tuberculosis (TB), also known as the “White Plague”, is caused byMycobacterium

tuberculosis (Mtb). Before the COVID-19 epidemic, TB had the highest mortality

rate of any single infectious disease. Vaccination is considered one of the most

effective strategies for controlling TB. Despite the limitations of the Bacille

Calmette-Guérin (BCG) vaccine in terms of protection against TB among

adults, it is currently the only licensed TB vaccine. Recently, with the evolution

of bioinformatics and structural biology techniques to screen and optimize

protective antigens of Mtb, the tremendous potential of protein subunit

vaccines is being exploited. Multistage subunit vaccines obtained by fusing

immunodominant antigens from different stages of TB infection are being

used both to prevent and to treat TB. Additionally, the development of novel

adjuvants is compensating for weaknesses of immunogenicity, which is

conducive to the flourishing of subunit vaccines. With advances in the

development of animal models, preclinical vaccine protection assessments are

becoming increasingly accurate. This review summarizes progress in the

research of protein subunit TB vaccines during the past decades to facilitate

the further optimization of protein subunit vaccines that may eradicate TB.

KEYWORDS

tuberculosis, protein subunit vaccines, antigen epitopes, adjuvants, clinical trials,
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1 Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), has afflicted humans

for thousands of years.Mtb is highly contagious and colonizes the respiratory tract through

airborne droplets (1). TB remains a serious threat to public health, with 10.6 million new

cases and 1.6 million deaths reported worldwide in 2021 (2). In addition, enormous

challenges for TB prevention and treatment are posed by the emergence of multidrug-

resistant TB (MDR-TB) (3), the lack of effective methods for the differential diagnosis of

latent TB infection (LTBI) (4), immune disorder caused by co-infection with HIV (5).

The development of the Bacille Calmette- Guérin (BCG) vaccine was a major milestone

in the history of global TB control. Even though it has been more than 100 years since BCG
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was developed, BCG is still the only licensed TB vaccine worldwide.

However, its protective efficiency is still controversial due to its

limited immune protection in adults (6). Therefore, a more effective

TB vaccine that protects against different stages of the disease’s

development is urgently needed.

The main TB vaccine candidates include live attenuated

vaccines, inactivated vaccines, recombinant viral vector vaccines,

and protein subunit vaccines. Since both whole-cell-based and

virus-based vaccines pose potential risks to human health,

protein-subunit vaccines consisting of protective antigens may be

safer and more attractive (7). However, the biggest concern with

protein subunit vaccines is inadequate immunogenicity, therefore,

optimizing the vaccine composition to trigger a potent and long-

lasting immune response is crucial. Novel vaccine adjuvants are

powerful tools that may overcome the immunogenicity limitations

of protein subunit vaccines.

In this review, we focus on the advances in antigen

optimization, adjuvant selection, clinical trials, animal models,

and vaccination strategies of protein subunit vaccines, which may

foretell the future of TB vaccine research and development.
2 Protein epitope
optimization strategy

The complex genetic composition, multiple immune evasion

strategies, and the lack of rigorous immune markers make the

identification of key protective epitopes against Mtb a major

challenge. Several methods have been used to predict the optimal

epitopes for vaccine design.

Although CD4+ T cells are necessary to protect against TB, they

may not be sufficient to obtain a completely protective immune

response (8). Many researchers have focused on identifying

antigens that stimulate the CD8+ T-cell-mediated responses that

also play a protective role against TB and latent TB infection (LTBI)

(9). Additionally, a growing number of studies have shown that

antibodies produced by B cells contribute to the fight against TB

(10). Therefore, vaccines that induce combined CD4+, CD8+ T-,

and B-cell immune responses may be the most effective.

Bioinformatics tools enable the rapid analysis of the entire

genome and proteome of pathogens to predict potentially

protective T- or B-cell epitopes and the character of their specific

binding to major histocompatibi l i ty complex (MHC)

molecules (11).

The structure of an antigen determines the specificity, affinity,

and accessibility of the binding sites to MHC or antibody, which

affects the potency of the immune response (12). Therefore, antigen

geometry can be another critical factor in vaccine design (13).

“Reverse vaccinology” was proposed 20 years ago, based on the

availability of genome sequence information to design vaccines.

With the development and application of immunology, proteomics,

systems biology, and structural biology, we have entered the era of

“Reverse vaccinology 2.0”, in which the structural features of

antigens and antibodies are used to guide the design of

recombinant vaccine antigens. Developments in X-ray

crystallography, electron microscopy, and computational biology
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have all contributed (14). Currently, AlphaFold2 is the most

advanced protein 3D structure prediction tool (15). By predicting

and analyzing the higher configuration of the 3D antigen structure,

the linear epitopes for T-cell receptors and the conformational

epitopes for B-cell receptors can be comprehensively optimized to

improve vaccine protective efficiency (16).

Combining bioinformatics, structural information, and the

AlphaFold2 prediction model to obtain the structural basis

underlying protective immune responses to key epitopes is now a

popular design strategy to get efficient, long-term, and broad-

spectrum responses with multi-epitope TB protein subunit

vaccine candidates (14–17).
3 Protective antigens of Mtb

The composition of Mtb is complex, and many components

exhibit immunogenicity. According to different characteristics and

associated growth states, Mtb antigens are mainly divided into the

following types:
3.1 Antigens on the cell wall and capsule

The cell wall and capsule of Mtb contain a large number of

glycolipids, lipoproteins, and glycoproteins such as cord factor,

phthiocerol dimycocerosates, phosphatidylethanolamine, diacyl

trehaloses, lipoarabinomannan, phosphatidyl-myoinositol

mannosides, and heparin-binding adhesin, etc. (18, 19) They can

activate immune responses and serve as candidate antigens or

adjuvants for TB vaccines.
3.2 Secretory antigens

Mtb can secrete numerous proteins, some of which can inhibit

or induce the host immune response by promoting immune escape

or activating immune signaling pathways, respectively. Most of the

candidate proteins for existing TB vaccines are based on those

found as secreted antigens during logarithmic growth of Mtb, such

as Ag85A/B, ESAT-6, CFP10, TB10.4, MPT64, and PPE18 (20). The

secretory antigens are ideal candidate antigens for the recombinant

protein subunit vaccine because of their strong immunogenicity

and ease of heterologous expression and amplification.
3.3 Dormancy phase antigens

The antigens modulated under the DosR regulon are the main

proteins involved in the dormant survival process ofMtb. A total of

48 structural proteins are known to be involved in aerobic

respiration and carbon monoxide inhibition; representative genes

include HspX, Rv2623, Rv2660c, etc. (21) Members of the durable

hypoxia response (EHR) regulon are structural genes induced after

exposure to hypoxia. EHR proteins are presumed to be involved in

the adaptation and survival of bacteria during a long-term
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bacteriostatic process (22). Members of the DosR and EHR regulons

are considered promising antigens to be incorporated into protein

subunit vaccines for treating LTBI (23).
3.4 Resuscitation phase antigens

Resuscitation promotion factors (Rpfs) are involved in the

resuscitation and reactivation of dormant Mtb infection and

induce specific humoral and cellular immune responses in

individuals with LTBI (24). There are 5 Rpf-like proteins (RpfA,

RpfB, RpfC, RpfD, and RpfE) with partially overlapping functions

inMtb. Rpfs, especially RpfB, can trigger a memory T-cell response

and has been hypothesized to be an essential antigenic target

controlling bacterial activation. Rpfs can be used as candidate

antigens for protein subunit vaccines against LTBI infection (25).
3.5 BCG regions of difference (RD) antigens

BCG strains have structures similar to Mtb, but 16 genomic

region of difference (RD) antigens are deficient in BCG compared to

Mtb (26). The RD1 gene products contain a variety of potential

virulence factors, such as ESAT-6 and CFP10 (26). They play

multiple roles in Mtb progression and pathogenicity, and are

considered suitable candidates for use in treatment and diagnosis

(27). The poor protective effect of BCG may be related to the loss of

a large number of genes encoding protective antigens. Therefore,

RD antigens should be emphasized in constructing recombinant

protein subunit vaccines.
4 Adjuvants

With the limitations in immunogenicity and bioavailability,

excellent adjuvants are critical for protein subunit vaccines. Alum

has been the only licensed adjuvant in human vaccines for several

decades. However, it has been considered unsuitable for vaccines

against intracellular pathogens such as Mtb due to its insufficient

ability to induce Th1 cellular immunity and CD8+ cytotoxic responses.

TB-specific adjuvants that induce a strong immune response in the

lungs but minimize the corresponding tissue damage are ideal. In order

to meet the needs of TB vaccine development, a workshop entitled

“Vaccine Adjuvants for Advancing the treatment of Mycobacterium

tuberculosis” was held in July 2020, and factors correlates of protective

immunity, targeting specific immune cells, immune evasion

mechanisms, and animal models were identified as four research

areas critical to the development of optimal TB vaccine adjuvants

(28). In recent years, a variety of novel adjuvants have been developed,

andmost available protein subunit vaccine adjuvants are based on Toll-

like receptor (TLR) agonists and use liposomes and emulsions as

delivery vehicles as shown in Table 1. In addition, nanoparticle-based

adjuvants have received extensive attention in recent years, and various

novel nanoadjuvants have been used in some of these vaccines.
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4.1 CAF01

CAF01 comprises cationic surfactant lipid-based liposomes

dimethyldioctadecylammonium (DDA) and glycolipid

immunomodulator trehalose-6,6-dibehenate (TDB). DDA is a

potent adjuvant capable of eliciting cellular and humoral immune

responses (46). TDB is a synthetic analog of mycobacterial cord

factor that is located in the cell wall of mycobacteria and has

intrinsic immunostimulatory properties that activate Mincle (47).

TDB incorporated with DDA creates a stable liposome by forming

hydrogen bonds between the liposome membrane and the

surrounding water. CAF01 has been shown to generate a Th1/

Th17 polarization response via Mincle-dependent IL-1 production

and subsequent MyD88 signaling (48).
4.2 AS01 and DMT

AS01 is a liposome-based adjuvant that consists of the 3-O-

desacyl-4′-monophosphoryl lipid A (MPL) and the saponin QS-21

(Quillaja saponaria extract), co-prepared in the presence of

cholesterol (73). MPL acts as a TLR4 agonist, stimulates NF-kB
transcriptional activity, and induces a Th1 response. QS-21 can

enhance the antigen presentation ability of antigen-presenting cells

(APCs) and activate/differentiate T cells towards Th1 immune

responses. DMT is a combination of the MPL, DDA, and TDB

that provides more potent and longer-lasting protective efficacy,

including antigen-specific CD4+ Th1 response, IFN-g+ CD8+ CTL

response, and limited humoral response (42).
4.3 GLA-SE

GLA-SE is a mixture of the TLR4 agonist glucopyranosyl lipid A

(GLA) and squalene emulsion (SE) (56). GLA is a synthetic

lipopolysaccharide (LPS) derivative that maintains vigorous

immunostimulatory activity and has low toxicity (57). SE is able

to increase the secretion of proinflammatory cytokines such as IL-6,

IL-12, and TNF (58). Both GLA and SE alone can promote IgG2

response, while the combination of GLA-SE can induce

considerable Th1 response (56).
4.4 IC31

IC31 comprises the synthetic, positively charged antimicrobial

peptide KLKL5KLK and oligodeoxynucleotide 1a (ODN1a) (64).

ODN1a is an immune stimulatory molecule that promotes Th1-

biased immune responses through the TLR9/MyD88 pathway. KLK

can act as an immune stimulator that aids transfer into cells in the

absence of cell membrane permeability, allowing more efficient

functioning of intracellular TLRs (65). KLK induces a Th2 immune

response when used alone and a stronger Th1 and Th2 immunity

when combined with ODNla (66, 67).
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4.5 Dextran/CpG

Dextran/CpG is a novel adjuvant developed with diethyl

aminoethyl (DEAE)-dextran and CpG ODN (83). CpG is a TLR9

agonist with the ability to promote Th1 immune responses
Frontiers in Immunology 04
(secretion of IFN-g, TNF-a, and IL-12 cytokines), opsonizing

antibodies (IgG2a), and potent CD8+ T cell responses (84).

Dextran interacts with DC-SIGN family receptors, mannose

receptors, and langerin, all triggering innate immunity that

promotes inflammation. Furthermore, Dextran/CpG adjuvant
TABLE 1 Protein subunit vaccine candidates undergoing pre-clinical and clinical trials.

Vaccine
Candidates

Antigens Adjuvants Adjuvant
components

Adjuvant
targets

Immune
responses

Immunization
strategies

Trial
phases

References

CysVac2/
Advax

CysD, Ag85B Advax Delta isoform of
inulin formed
cationic particles (1-
2 mm)

– IL-17-secreting
lung-resident CD4+

memory T cells
(IFN-g, TNF-a, IL-
2, IL-17)

Prevention, and
therapeutic

Pre-
clinical

(29–35)

LT70 ESAT-6,
Ag85B, peptide
190–198 of
MPT64,
Mtb8.4,
Rv2626c

DDA/PolyI:
C

DDA and PolyI:C TLR-3 CD4+ T cells (IFN-
g, IL-2) and
antigen-specific
IgG1 and IgG2c

BCG booster
Therapeutic

Pre-
clinical

(36–41)

CFMO-DMT Rv2875,
Rv3044,
Rv2073c,
Rv0577

DMT DDA, MPL and
TDB

TLR-4 CD4+ T cells (IFN-
g, IL-2, TNF-a, IL-
17A) and IFN-g+

CD8+ T cells

Prevention,
therapeutic, and
prevent recurrence

Pre-
clinical

(42–45)

H64/H74:
CAF01

H64 (EsxA,
EspD, EspC,
EspE, EspR,
PE35); H74
(EspB, EsxA,
EspD, EspC,
EspA, EspR)

CAF01 DDA and TDB Mincle CD4+ T cells (TNF-
a, IL-2)

BCG booster Pre-
clinical

(46–49)

H107 PPE68, ESAT-
6, EspI, EspC,
EspA, MPT64,
MPT70,
MPT83

– – – Less-differentiated
CD4 Th1 cells and
increased Th17
responses

BCG booster Pre-
clinical

(50)

AEC/BC02 Ag85B, ESAT-
6-CFP10

BC02 CpG DNA fragment
and aluminum salt

TLR-9 CD4+ T cells (IFN-
g, IL-2) and
antigen-specific
IgG, IgG1, and
IgG2a

Prevention, and
therapeutic

Phase I (51–55)

ID93+GLA-SE Rv2608,
Rv3619,
Rv3620,
Rv1813

GLA-SE GLA in a stable oil-
in-water SE

TLR-4 CD4+ T cells (IFN-
g, TNF-a, IL-2)
and antigen-specific
IgG1 and IgG3

BCG booster,
therapeutic, and
prevent recurrence

Phase
IIa

(56–63)

H56:IC31 Ag85B, ESAT6,
Rv2660c

IC31 Antimicrobial
peptide KLKL5KLK
and ODN1a

TLR-9 CD4+ T cells (IFN-
g, TNF-a, IL-2)
and antigen-specific
IgG

BCG booster,
therapeutic, and
prevent recurrence

Phase
IIb

(64–72)

M72/AS01E Mtb 32A, Mtb
39A

AS01E MPL and the
saponin component
QS21 co-prepared in
cholesterol

TLR-4 CD4+ T cells (IFN-
g, IL-2, TNF-a, IL-
17), CD8+ T cells
(IFN-g or TNF-a),
NK cell IFN-g, and
antigen-specific IgG

BCG booster, and
therapeutic

Phase
IIb

(73–82)

Gam TBvac ESAT-6,
CFP10,
Ag85A

Dextran/
CpG

DEAE-dextran
polymer associating
with BCG-derived
unmethylated CpG
oligodeoxynucleotide

TLR-9 CD4+ T cells (IFN-
g, IL-2, TNF-a),
CD8+ T cell IFN-g,
and antigen-specific
IgG

BCG booster Phase
IIb

(29, 83–87)
DDA, dimethyldioctadecylammonium; PolyI:C, polyinosinic-polycytidylic acid; MPL, ligand3-O-desacyl-4′-monophosphoryl lipid A; TDB, trehalose-6,6-dibehenate; CpG, cellular guanine
phosphate; GLA, Glucopyranosyl Lipid A; SE, squalene emulsion; ODN1a, oligodeoxynucleotide (ODN) 1a; DEAE, Polycationic diethylaminoethyl.
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enhances activation of lymph node-resident APCs, thus enhancing

T-cell priming (29, 83).
4.6 Advax

Advax is a novel cationic adjuvant based on the Delta inulin

isoform and has a diameter of about 1-2 mm (30). Advax-based

adjuvants have been shown to promote protective immunity against

several pathogens in various animal species (31, 32). The potent

chemotactic effect induced by Advax enables leukocyte recruitment

to the site of inoculation and elicits a broad range of immune

responses, including humoral response, Th1, Th2, and Th17 T-cell

responses (31).
4.7 BC02

BC02 consists of BCG-derived unmethylated CpG DNA

fragments and aluminum salts (Al(OH)3) (51). CpG tends to

induce Th1-type immune responses, while alum skews the

response to promote the Th2 response to secrete IL-4 and IL-5

cytokines and produce IgG1 and IgE-type antibodies (52). BC02

induces robust Th1 and Th2 responses with acceptable safety (51).
4.8 DDA/poly(I:C)

DDA/poly(I:C) is composed of cationic liposome vector DDA

and polyriboinosinic acid–polyribocytidylic acid, poly(I:C). Poly(I:

C) mimics viral dsRNA and is a promising immune stimulator

candidate for vaccines against intracellular pathogens. Poly(I:C)

signaling primari ly depends on TLR3 and melanoma

differentiation-associated gene-5 (MDA-5) (36). Moreover, poly(I:

C) induces strong Th1-skewed immune responses, with enhanced

IFN-g, IL-6, IL-12p70 as well as high antigen-specific IgG antibody

(37, 38).
4.9 Nanoadjuvants

With the development of nanotechnology and the increasing

understanding of immune responses to metals, different types of

inorganic nanoadjuvants have been developed, including

manganese (88), iron (89), silicon (90), magnesium (91), and

gold-based adjuvants (92), etc. The commonly used polymers are

poly-lactic-co-glycolic acid (PLGA), which can be constructed into

nano- or larger particles to improve immune response efficiency

(93). Compared with the traditional adjuvants, the novel inorganic

nanoadjuvants can better activate both humoral and cellular

immunity, induce a more balanced Th1/Th2 immune response

and improve the safety and effectiveness of vaccines (94). Inorganic

nanoadjuvants have been used in vaccines for various diseases, such

as coronavirus (95), cancer (91, 96), and pertussis (97).

Nanoadjuvants for TB vaccines are also being developed to
Frontiers in Immunology 05
enhance the immune response and extend the duration of

protection (98, 99).
5 Pre-clinical and clinical trials

Pre-clinical and clinical trials are always needed to evaluate the

safety and efficacy of novel vaccine candidates. We summarize the

significant progression of protein subunit vaccines in recent trials.
5.1 Pre-clinical phases

5.1.1 CysVac2/Advax
CysD is an important protein in the sulfur assimilation pathway

of Mtb that is up-regulated during LTBI (33). CysVac2, which

consists of CysD and the acute phase antigen Ag85B, is an effective

prophylactic and therapeutic vaccine, particularly effective in

controlling an advanced infection (34). Notably, administration of

CysVac2 to mice previously infected with TB significantly reduced

bacterial load and immunopathological damage in the lungs

compared to mice vaccinated with BCG (33). CysVac2 with

Advax elicited multifunctional CD4+ T cells with enhanced

secretion of IFN-g, TNF, and IL-2. Moreover, CysVac2/Advax

induced the accumulation of lung-resident memory T cells

expressing IL-17 and RORgT before and after the Mtb aerosol

challenge (35). Thus, CysVac2/Advax was shown to be a suitable

vaccine candidate for the control of TB pulmonary infection.

5.1.2 LT70
LT70 is a multistage protein subunit vaccine composed of

antigens prominent at different metabolic stages of the Mtb life

cycle, including ESAT-6, Ag85B, peptide 190-198 of MPT64,

proliferative phase antigen Mtb8.4 and latency-associated antigen

Rv2626c, with DDA/Poly(I:C) as an adjuvant (39). In a murine

model, LT70 induced robust antigen-specific humoral (secretion of

IgG1 and IgG2c antibodies) and Th1 cell immunity response (IFN-

g, IL-2) with immune protection against Mtb infection superior to

that provided by BCG. When used as a booster vaccine, it enhanced

the protective effect of BCG by reducing the bacterial load in the

lungs of mice (39). Another study showed that LT70 had a

significant therapeutic effect on LTBI in mice (40). In addition,

prolonged LT70 inoculation intervals (0-4-12w) produced stronger

protective effects and tended to induce long-term central memory T

cells (TCM, stronger IL-2 secretion capacity) rather than effector

memory T cells (TEM, stronger IFN-g secretion capacity) (41).

5.1.3 CFMO-DMT
CMFO is a multistage subunit vaccine (containing Rv2875,

Rv3044, Rv2073c, and Rv0577) administered subcutaneously

adjuvanted with DMT (43, 44). CMFO-DMT could induce the

immune response of IFN-g+ or IL-2+ CD4+ T cells and IFN-g+

CD8+ TEM cells in spleen more effectively than BCG (43–45).

CMFO-DMT prevented Mtb reactivation by eliminating the

bacterial load from the lung and spleen in LTBI mice (43),
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suggesting CMFO-DMT is a promising adult TB vaccine candidate

for preventive and therapeutic purposes.

5.1.4 H64/H74/H107
H64 (EsxA, EspD, EspC, EspE, EspR, and PE35), H74 (EspB,

EsxA, EspD, EspC, EspA, and EspR), and H107 (PPE68, ESAT-6,

EspI, EspC, EspA, MPT64, MPT70, and MPT83) are protein

subunit vaccines composed of Mtb–specific antigens (49, 50).

H64, and H74 showed comparable protection to H65 (consisting

of antigens also present in BCG) in mice and guinea pigs. However,

when used as a BCG booster vaccine, H65-induced highly

differentiated CD4+ T cells that did not contribute to the

protective effect of BCG, while H64 and H74 induced less

differentiated and versatile CD4+ T cells (secreting TNF-a alone

or TNF-a and IL-2 in combination) with a protective effect against

Mtb pulmonary infection (49). H107 vaccination also significantly

increased the clonal diversity of the BCG-induced CD4+ T cell

repertoire, including Th17-responsive and poorly differentiated

memory CD4+ Th1 cells (50). Therefore, protein subunit vaccines

containing Mtb-specific antigens may have more potential to serve

as booster vaccines in BCG-primed populations.
5.2 Phase I clinical trials

5.2.1 AEC/BC02
AEC/BC02 is a vaccine candidate for LTBI consisting of Ag85B

and the fusion protein ESAT-6-CFP10 with adjuvant BC02 (53).

Preclinical studies have shown that AEC/BC02 can induce long-

term antigen-specific cellular immune responses in mice. In

addition, AEC/BC02 reduced the risk of the Koch phenomenon

in a guinea pig LTBI model (51, 54). In a murine LTBI model, after

AEC/BC02 therapy, the bacterial load in the spleen and lung was

significantly reduced. Furthermore, AEC/BC02 induced a

significant Th1 response with antigen-specific release of IFN-g,
IL-2, and IgG (IgG1, and IgG2) (55). A phase Ib clinical trial

evaluating the safety and immunogenicity of AEC/BC02 in healthy

adults has been completed (NCT04239313), and volunteers are

currently being recruited for phase II trials.
5.3 Phase II clinical trials

5.3.1 ID93+GLA-SE
ID93+GLA-SE comprises four Mtb antigens (Rv2608, Rv3619,

Rv3620, and Rv1813) with GLA-SE as an adjuvant (59). In mice and

guinea pigs, ID93+GLA-SE protected against Mtb virulent strain

H37Rv and multidrug-resistant strain TN5904 (60). ID93+GLA-SE

combined with the first-line anti-TB drugs rifampicin and isoniazid

showed therapeutic efficacy in Mtb-infected mice and nonhuman

primate (NHP) models (61). ID93+GLA-SE was found to provide

long-lasting protection by inducing antigen-specific IgG1 and IgG3

and multifunctional CD4+ T cell responses with enhanced IFN-g,
TNF, and IL-2 secretion in a phase I trial (59, 62). A phase IIa trial
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showed that ID93+GLA-SE enhanced therapeutic efficacy and

reduced disease recurrence by inducing robust cellular and

humoral immune responses (63). Phase IIb trials that are aimed

at preventing TB recurrence are currently in preparation.

5.3.2 H56:IC31
H56:IC31 is formed by Ag85B, ESAT-6, and Rv2660c protein

fusion with adjuvant IC31. Due to the presence of the latency-

associated protein Rv2660c, a protective effect of H56 in the murine

LTBI model was expected and this was observed (68). In NHP

aerosol challenge models, H56:1C31 limited the development of

advanced infection and LTBI (69). In a phase I trial, the vaccine

induced antigen-specific IgG and CD4+ T cell responses (IFN-g,
TNF-a, IL-2) (70). In a phase I/IIa clinical trial, variations in the

dose and time of H56:IC31 inoculation were studied. Two to three

vaccination doses were optimal with acceptable safety and

tolerability (71). Phase IIb trials of H56:IC31 to reduce TB

recurrence in HIV-negative patients receiving anti-TB

chemotherapy are ongoing (NCT03512249) (72).

5.3.3 M72/AS01E
M72/AS01E is composed of two immunogenic Mtb fusion

proteins (Mtb32A and Mtb39A) with AS01E as an adjuvant. M72/

AS01E protected against Mtb invasion after aerosol infection when

administered intramuscularly to C57BL/6 mice and guinea pigs

(74). When used as a BCG booster vaccine, M72/AS01E provided

long-term protection and improved guinea pig and NHP survival

post Mtb infection (75, 76). The vaccine was protective against TB

in adults in a phase II trial, but the trial was suspended because local

reactions were observed in some vaccinated individuals (77). The

safety and immunogenicity of M72/AS01E were evaluated in HIV-

negative adolescents in TB-endemic areas. The results showed that

M72/AS01E was safe and could induce M72/AS01E -specific IgG

antibody, CD4+ (IFN-g, TNF-a, IL-2 and/or IL-17), CD8+ (IFN-g,
TNF-a) T-cells and antigen-dependent NK cell IFN-g production
(78). Another phase II trial, in India, showed elevated cellular and

humoral responses by M72/AS01E in both HIV-negative and HIV-

positive individuals that persisted for 3 years with no safety

concerns (79). Subsequently, a Phase II clinical trial showed that

M72/AS01E provided 54% protection against progression to active

pulmonary TB in LTBI adults, without significant adverse effects

(80). In a randomized placebo-controlled phase IIb study, M72/

AS01E protected adults against active TB by 49.7% for at least 3

years without serious safety concerns (81). However, it is doubtful

that the excellent protection of M72/AS01E is mainly based on data

from a single population, and large-scale long-term trials in a wider

population are needed (82).

5.3.4 GamTBvac
The GamTBvac vaccine combines TB antigens ESAT-6, CFP10,

and Ag85A with a novel adjuvant, dextran/CpG. GamTBvac

showed significant immunogenicity and protection in Mtb-

infected mice and guinea pigs when used as a BCG booster

vaccine (85). GamTBvac was found to be immunogenic and safe
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in a phase I trial in BCG-vaccinated, uninfected healthy people (86).

A completed phase IIa trial showed that GamTBvac was safe and

had considerable immunogenicity in inducing CD4+ T cells

expressing Th1 cytokines (IFN-g, IL-2, and TNF-a), CD8+ T cells

secreting IFN-g, and IgG responses (87). Phase III trials to evaluate

the vaccine’s protective efficacy against TB in large populations are

currently enrolling volunteers (NCT04975737).
6 Animal models

Evaluating vaccine safety and protection in animal models is

obligatory before a vaccine enters clinical trials. The development of

animal models of TB has advanced the understanding of host

responses to Mtb infection and accelerated the development of

TB vaccines. Currently, many animal models are used for TB

vaccine evaluation (Figure 1).
6.1 Mice

Mice provide the most widely used models due to the

advantages of relatively low price, short experiment cycle, mature

immunological evaluation indicators, abundant commercial

reagents and genetically modified inbred strains (100). The mouse

strains most commonly used in evaluating the immune efficacy of

TB vaccines are BALB/c and C57BL/6, which are sensitive to TB

vaccines immunization routes (101). However, the immune

response induced by TB vaccine was different in BALB/c and

C57BL/6 mice. M Carmen Garcia-Pelayo et al. found that
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although BCG present equally protective in BALB/c and C57BL/6

mice, it was display more enhanced Th1 and Th17 response in

BALB/c mice than C57BL/6 mice (102). In another study,

ChAdOx1.PPE15 as a booster vaccine for BCG improved the

efficacy of BCG in C57BL/6 mice, but not in BALB/c mice (103).

The susceptibility to TB and the protective responses to the vaccines

vary according to the route of infection and immunization.

Subcutaneous immunization is the most classic immunization

method for TB vaccine, but mucosal immunization has received

extensive attention in the pathogenic bacteria infected by mucosal

route. A multrivalent chimpanzee adenovirus vectored vaccine

developed by Sam Afkhami et al. showed strong protection

against both replicating and dormant Mtb through mucosal

immunization (104). Previous research by Claudio Counoupas

et al. have shown that intratracheal instillation of CysVac2/Advax

protected mice more effectively than the intramuscular vaccine (35).

However, despite a high genetic similarity between mice and

humans, significant differences in clinical immune responses

between mice and humans have stalled clinical trials of many

novel vaccines that had previously shown considerable efficacy in

murine models. To overcome this problem, humanized mouse

models have been extensively studied in recent years. Humanized

mice have a reshaped immune system, making the immune

responses more like those of humans. They have been widely

used in studies of epitopes and epitope-based TB protein subunit

vaccine development (105). Although the use of humanized murine

models has enabled many advances in TB vaccine research,

deficiencies in the models such as the inability to establish LTBI

and granulomas (100), abnormal T-cell responses, and the inability

to control bacterial load have limited their use.
FIGURE 1

Animal models of Tuberculosis.
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6.2 NHPs

NHPs can better represent the human immune responses for

assessment of the safety and efficacy of TB vaccines and adjuvants

due to the close genetic and pathophysiological similarities between

NHPs and humans. Rhesus macaques (RM) and cynomolgus

macaques (CM) are the most commonly used primate models for

TB vaccine research. It is well known that there are differences

between macaque species in their ability to control disease

progression, with RM showing higher rates of progression and

higher levels of bacterial burden compared to CM (106). RM are

often used in vaccine evaluation studies because the results of

infection are more uniform than CM, while RM are often used in

drug evaluation studies because they are better able to control the

disease (107). NHPs provide essential insights into host-pathogen

interactions during TB infection by simulating the pathogenesis of

TB in humans, including the occurrence of LTBI and granuloma

formation (108). NHPs can be used to evaluate the immune effect of

different vaccine administration pathways and immunization

strategies (75, 109).

The use of the NHP models has brought some breakthroughs in

TB vaccine development in recent years. First of all, the preclinical

evaluation of novel vaccines by the NHP model has facilitated the

transformation of vaccines to prevent and therapy Mtb infection

(110–112). The ultra-low dose aerosol-infected NHP model better

simulates the course of human infection with TB and can accurately

evaluate the vaccine immune efficacy (113). Moreover, using NHP

makes it possible to study the interactions of cells within lung

granulomas, which cannot be done in human samples. Laura

Hunter et al. used infection in RM and CM models to determine

the basic composition of granulomas induced after infection with

theMtb Erdman strain, as well as the spatial distribution of immune

cells in granulomas in RM and CM and changes over time (114).

This informs research into TB vaccines and treatments, and may

provide novel immunotherapy strategies against TB. Furthermore,

the development of body scanning technology, particularly the

combination of PET and CT scans, has made it possible to

quantitatively evaluate the protective efficacy of TB vaccines in

NHP models (115–117). This strategy allows vaccine evaluation in

less time and at a lower cost. However, the high cost of the animals

and experimental facilities, as well as the limited quantity available,

have hindered their widespread application.
6.3 Guinea pigs

Guinea pigs are also a commonly used animal model in the

study of TB. Guinea pigs are more susceptible toMtb than mice and

can form classical granulomas similar to humans (118). Therefore,

they are suited to studies of the pathogenesis of TB and the

assessment of vaccines and drugs (119). Guinea pigs have also

been used to study the response of Ag-specific T cells to

mycobacterium lipids and lipopeptide-rich Ag preparations (120).

Diabetes can fuel TB epidemics, and T2D co-infection with TB has

been modeled in guinea pigs in recent years and used to test novel

therapy approaches (121–123). However, guinea pigs are more
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expensive, lack test reagents, and are more difficult to genetically

manipulate than mice. Adjuvant subunit vaccines tend to be less

protective in guinea pigs than in mice, resulting in few successful

trials of adjuvants in guinea pig models (60, 124). The cause of the

limited protective immunity provided by adjuvants in guinea pig

models awaits clarification, and more tools and reagents are needed

for guinea pig models.
6.4 Pigs

The immunity toMtb infection in neonates is markedly distinct

from that in adults. Innate and adaptive immune responses in

infants cannot be inferred from adult human or animal models

(125). Due to their high similarity to humans in terms of anatomy,

genetics, and immune response, pigs are widely used in numerous

studies (126, 127). The isolated and sterile state of the porcine fetus

during pregnancy is conducive to the study of the interaction

between the immature immune system and microorganisms and

to determine the changes in the immune structure and function

during fetus development (128). Surprisingly, pigs can undergo

pathological changes to Mtb infection including caseous necrosis,

liquefaction, and cavitation and mimic the immune response of

vaccination BCG in humans (129). Mimicking the human neonatal

immune system in pigs could improve our understanding of the

infant immune response to TB. More neonatal and early-life animal

models are needed to advance the development of anti-TB vaccines

and drugs for neonates.
6.5 Other animal models

Other animal models, such as rabbits, rats, and zebrafish, have

also been used in Mtb vaccine evaluation. Depending on the

characteristics of each model, they have been used in different

ways. Rabbits are usually infected with Mtb by aerosol route (130),

and susceptibility to Mtb varies among different populations (131).

Most rabbits available today are highly resistant to infection with

Mtb (As Lurie’s - susceptible breed have become extinct), but highly

susceptible to infection with the closely related Mycobacterium

bovis. They can form granulomas, liquefaction, and cavities

similar to the events found in humans, making them suitable for

the study of processes leading to transmission of Mtb as well as for

vaccine and drug research. In addition, the rabbit model has been

used in studies of cavitary, spinal, joint, cutaneous, and meningeal

TB (132, 133). However, due to the high cost, lack of immune

reagents, and the inconvenience of genetic manipulation, the utility

of the rabbit model is limited.

The types of rats commonly used in TB studies are American

cotton rats, Wistar rats and diabetic rat strains. Several studies have

found that rats exhibit delayed hypersensitivity to Mtb infection

(134). Mtb infected rats can form well-organized granulomas,

including epithelioid cells, multinucleated giant cells and foam

macrophages, etc., which provide a common research object for

the study of host control of Mtb and the establishment of latent

infection (135). Rats are suitable for TB-related gene and protein
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research and have the advantages of low cost and simple blood

collection, befitting vaccine and drug research (135). Yet,

pathological changes in human lungs, such as caseous necrosis,

fibrosis, calcification, and cavitation, are not formed in rats.

Recently, zebrafish have attracted increased attention as an animal

model for TB. Zebrafish infected with M. marinum can form a typical

granulomatous structure, which provides an excellent model for

scientists to further study the mechanism of granulomatous

formation (136, 137). Moreover, zebrafish have the advantages of

visual monitoring, convenient genetic manipulation, fast

reproduction, and low cost, they are now widely used for bacterial

virulence studies and large-scale vaccine and drug screening. The

immune responses during granuloma formation and necrosis can be

well monitored, making zebrafish one of the best choices for studying

latent TB infection (138, 139). Nevertheless, anatomical and

physiological differences between zebrafish and humans impede the

application of zebrafish models for vaccine development.
6.6 Ultra-low dose infection models

TB is characteristically caused by respiratory infection when the

smallest aerosol droplets containing only 1 or 2 colonies reach the

alveolar spaces (1). Hence, the high-dose challenge that has been

typically used in animal models might have contributed to

discrepant results between pre-clinical and clinical trials. To better

simulate the natural human infection process, ultra-low dose infection

models have been developed. Infection of conventional mice with 1-3

CFU Mtb produced granulomas with well-defined boundaries similar

to human granulomas (140). In addition, the ultra-low dose aerosol-

infected NHP model more closely mimicked the process of human

natural TB infection. It is being used as a precise and sensitive system to

assess the effectiveness of TB vaccines (113).
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7 Vaccination strategies of protein
subunit vaccines

Vaccination strategies are critical to the effectiveness of protein

subunit vaccines (Figure 2).Mtbmetabolism is profoundly influenced

by the different pathophysiological states in different stages of

infection. Although current TB vaccines mainly consist of early

secreted antigens of Mtb and are used for prevention of infection,

they are less than ideal in controlling LTBI and active TB. Protein

subunit vaccines currently in clinical trials have jumped out of this

framework, with M72/AS01E prevents latent infected people exposed

to Mtb from developing active pulmonary TB disease, and ID93

+GLA-SE and H56:IC31 showing promise in the treatment of people

with active TB infection. Even more promising is the fact that several

multistage protein subunit vaccines comprised of Mtb antigens

expressed in early growth, dormancy, and resuscitation phases for

both prevention and treatment of TB infection have entered pre-

clinical (CysVac2, LT70, and CMFO) and clinical trials (H56 and

ID93) (35, 39, 43, 63, 71).

Protein subunit vaccines are often used as booster vaccines after

BCG priming, and when the antigen in the booster vaccine is shared

with BCG, its boosting effect is impaired. BCG vaccination induces

highly differentiated CD4+ Th1 cells, and the functional plasticity of

these cells is limited. Moreover, BCG-generated immunity impedes

the subsequent induction of additional protective T cells with

memory and lung homing potential by the booster vaccine (141).

Therefore, the development of protein subunit vaccine candidates

based on Mtb-specific antigens (such as H64, H74, and H107) may

circumvent this dilemma (49, 50).

Preclinical and clinical trials have shown that some protein

subunit vaccines (H56, LT70, CFMO) can elicit more robust

protection than BCG when used alone, suggesting that such a

vaccine could use as an alternative to BCG (39, 43, 68). However,
FIGURE 2

Vaccination strategies of protein subunit vaccines.
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BCG has definite efficacy against childhood TB and is almost

universally given to infants as soon as they are born, so that

replacement with an alternative vaccine presents ethical and

practical challenges. Consequently, a protein subunit vaccine is

more likely to use initially as a booster vaccine. Tests have shown

that the protective effect of a BCG-booster vaccine is more

pronounced when the immune response to BCG is attenuated

(49, 142). One explanation for this could be that reduced levels of

BCG-induced immunity open the opportunity for protein subunit

vaccines to initiate less differentiated T-cell responses. Therefore, it

seems more reasonable to administer the protein subunit vaccine

after the BCG-induced immunity has declined (49).

The dose and time of boosting with a protein subunit vaccine

are also pivotal factors affecting the effect. Multiple vaccinations are

usually required to obtain a substantial immune memory with

protein subunit vaccines. However, excessive enhancement

induces the production of Tregs, leading to a subdued protective

effect of the vaccine (143). Moreover, the interval between

vaccinations may impact the type of immunological memory. The

strategy with protein subunit vaccines is usually a 2- or 3-week

booster regimen, which elicits more TEM cells. A booster regimen

with longer intervals of 4 weeks appeared to favor the generation of

long-term TCM cells (41).

Finally, different vaccination routes exert a significant influence

on efficacy.Mtb is transmitted through the respiratory tract, and the

protective effect of specific B-cell and strong central memory CD4+

and CD8+ T-cell responses activated by respiratory mucosal

vaccination against Mtb infection should be an important

consideration (144, 145). Zhang Y et al. found that Ag85A-Mtb32

in adenoviral vectored TB vaccine was more likely to induce

systemic immune response through subcutaneous and muscular

inoculation, while oral and nasal mucosal immune pathways

induced stronger pulmonary immune response (105). Moreover,

trained immunity was more strongly induced by submucosal BCG

or MTBVAC vaccination than by standard intradermal vaccination

(146). A variety of immunostimulatory adjuvants (e.g., bacterial

toxins, TLR ligands, and cytokines) and nanoparticle adjuvants

(e.g., virus-like particles, liposomes, and protoplasts) have been

used in mucosal vaccines to enhance the immune responses (147).
8 Conclusion

Vaccines are powerful weapons for people to prevent and

treatment many diseases. The sudden outbreak of the COVID-19

has pushed the development of vaccinology to a climax, and also

provided valuable guidance for the development of TB vaccines.

The BCG vaccine is undoubtedly one of the most potent weapons

that humankind has acquired in the struggle against TB, but its

limited protective effect is not sufficient to win the war. Based on the

existing WHO-recommended immunization strategy for TB

vaccines, protein subunit TB vaccines for specific populations

(BCG-immunized, LTBI, and HIV-infected, etc.) have great

potential for development and utilization. By far, multiple protein

subunit TB vaccines have entered clinical or preclinical trials and
Frontiers in Immunology 10
have broken the barrier that BCG can only be used for pre-infection

prevention. And even some vaccines have shown surprising

protection in post-exposure prophylaxis in people with LTBI and

in the treatment of people with active TB infection. Rapidly evolved

bioinformatics and structural informatics technologies represent a

large reservoir to filter out plentiful numbers of Mtb-protective

antigens. Training immunity has been proposed in recent years and

has received extensive attention in the field of TB. Trained immune

cells are able to produce a rapid and effective protective response

against Mtb attacks. Therefore, the activation of trained immunity

should be considered in the development of vaccines and adjuvants.

With the participation of various novel adjuvants, as well as the

continuous optimization of animal models and vaccination

strategies, effective protein subunit vaccines can be expected in

the future to help achieve the grand goal of TB eradication.
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