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C-reactive protein (CRP) is well-recognized as a sensitive biomarker of

inflammation. Association of elevations in plasma/serum CRP level with

disease state has received considerable attention, even though CRP is not a

specific indicator of a single disease state. Circulating CRP levels have been

monitored with a varying degree of success to gauge disease severity or to

predict disease progression and outcome. Elevations in CRP level have been

implicated as a useful marker to identify patients at risk for cardiovascular disease

and certain cancers, and to guide therapy in a context-dependent manner. Since

even strong associations do not establish causality, the pathogenic role of CRP

has often been over-interpreted. CRP functions as an important modulator of

host defense against bacterial infection, tissue injury and autoimmunity. CRP

exists in conformationally distinct forms, which exhibit distinct functional

properties and help explaining the diverse, often contradictory effects

attributed to CRP. In particular, dissociation of native pentameric CRP into its

subunits, monomeric CRP, unmasks “hidden” pro-inflammatory activities in

pentameric CRP. Here, we review recent advances in CRP targeting strategies,

therapeutic lowering of circulating CRP level and development of CRP

antagonists, and a conformation change inhibitor in particular. We will also

discuss their therapeutic potential in mitigating the deleterious actions

attributed to CRP under various pathologies, including cardiovascular,

pulmonary and autoimmune diseases and cancer.

KEYWORDS

C-reactive protein, monomeric CRP, CRP antagonists, CRP lowering therapies,
inflammation, cardiovascular disease, autoimmunity, cancer
Introduction

The prototypic acute-phase reactant C-reactive protein (CRP), discovered as a protein

that precipitates C-polysaccharide of Streptococcus pneumoniae, has long been recognized

as a sensitive biomarker of inflammation (1). Elevations in baseline serum CRP level have

been detected in numerous pathologies, and have been suggested to being useful to monitor

disease progression. CRP has received considerable attention as a diagnostic and prognostic
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marker in autoimmune diseases (2, 3), cardiovascular diseases (4–

6), chronic kidney disease (7), cancer (8) and COVID-19 (9, 10) as

well as for guiding therapy (8, 11). Although there is a continuing

debate over whether CRP is primarily a passive indicator of

inflammation or is a “culprit” mediating disease (12–18), CRP

plays important roles in host defense against invading pathogens,

autoimmunity and inflammation. CRP exhibits many, often

conflicting pro- and anti-inflammatory activities (14, 19–21),

which makes delineating its pathogenetic roles even more

challenging. Results from structure-function studies challenge the

long-held and rather simplistic view of CRP as a stable pentameric

protein and identified conformationally distinct forms, including

native pentameric CRP (pCRP) and modified/monomeric CRP

(mCRP), which exhibit distinct functional properties and may

explain many of the opposing biological activities attributed to

CRP (21, 22). CRP synthesis, structure and biological activities have

been reviewed in detail elsewhere (19, 21, 23–25). In this review, we

aimed to critically assess the competing views on the role of CRP

isomers in disease pathogenesis and therapy, focusing on recent

advances that may provide a rationale basis for guiding therapy

and/or therapeutic targeting of CRP isomers to limit inflammation

underlying various diseases.
CRP expression, structural properties

Native CRP is member of the pentraxin family, an

evolutionarily highly conserved class of pattern recognition

molecules. The human CRP gene, located on chromosome 1, q23-

q24 encodes for a CRP subunit of a single polypeptide chain of 206

amino acids (23). CRP is composed of five identical non-covalently

bound subunits forming a planar ring with a central pore (23). The

two opposite faces of the pentamer, and thus each protomer, have

distinct binding properties. The A-face binds and activates

complement C1q, whereas the B-face contains the Ca2

+-dependent binding pocket for phosphocholine, expressed by

bacterial, fungal and eukaryotic cells (24, 26). CRP also binds to

nuclear antigens, the oxidized LDL receptor, apoptotic cell

membrane, glycan components of microorganisms, and many

other ligands (24, 27, 28), though some of these interactions have

been disputed.

Native CRP is predominantly synthesized in hepatocytes under

transcriptional control by cytokines (IL-6 and to a lesser extent IL-

1b and TNF-a), the transcription factors hepatic nuclear factor

(HNF) 1a and HNF3 as part of the “reorchestration” of hepatic

gene expression in response to infection or tissue injury (19),

promoter methylation and a distal enhancer (29). Hepatic

secretion of pCRP accounts for rapid increases in serum pCRP

levels during the acute-phase reaction. The serum half-life of pCRP

is about 19 h under both physiological and pathological conditions

(30), thus directly reflecting the rate of its hepatic synthesis.

Ethnicity, sex and polymorphism in the apoliprotein E and CRP

genes are known to influence baseline serum pCRP levels in

humans (31, 32). CRP gene polymorphism influences gene

expression and may predispose to systemic lupus erythematosus

(31), but do not appear to be associated with increased risk for
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cardiovascular diseases (33, 34). Additionally, the kidney has been

reported as a second site of pCRP formation in humans (35).

Expression of CRP mRNA and pCRP synthesis has also been

detected in the diseased vessel wall, coronary artery bypass grafts

and neurons (35–37). The contribution of these sites to circulating

pCRP remains to be investigated.

Under physiological conditions, pCRP appears to exist in a

NaCl concentration-dependent pentamer-decamer equilibrium

(38). Another form of CRP, characterized by multiple-size

lettuce-like structures of about 300-500kDa, were detected in the

serum of obese patients (39). The origin and pathological

significance of these CRP forms are not known.
Elevated plasma CRP levels

Although not specific for a single disease process, CRP is

commonly used as a static measurement and CRP levels have

been correlated with disease activity and to some degree, severity

and prognosis in several diseases. CRP has been promoted as an

independent predictor of cardiovascular events and metabolic

syndrome (40–42), though the association is considerably weaker

than previously thought (43, 44). The data from Mendelian

randomization studies (33, 34) coupled with animal studies with

injection of human pCRP and transgenic mice over-expressing

human CRP may support an association between CRP and

cardiovascular disease, but provide no direct evidence for a

causative role for pCRP. In the Dallas Heart study hs-CRP was

not independently associated with atherosclerotic burden in the

coronary artery and abdominal aorta (45), whereas the REVERSAL

trial reported that lower hs-CRP levels were independently and

significantly correlated with atherosclerosis progression (46). Other

studies have concluded that hs-CRP likely serves as a biomarker of

vascular inflammation underlying atherosclerosis (14, 44). Thus,

whereas the potential of therapeutic targeting of pCRP in

cardiovascular disease remains unresolved, hs-CRP has clinical

usefulness in guiding therapy as discussed below.

Other clinical studies reported positive correlation between

elevated plasma CRP levels and myocardial infarct size (47),

reduced lung function in chronic obstructive pulmonary disease

(48) or the severity of COVID-19-evoked respiratory distress (49,

50). Higher plasma CRP levels were found to predict flares in

systemic lupus erythematosus (2) and to portend poor prognosis in

melanoma (51). Patients with non-small cell lung cancer who

received the immune checkpoint PD-1 inhibitor nivolumab, early

increases in hs-CRP and IL-6 were predictive for the efficacy of

treatment (52). Nivolumab evoked a CRP flare-response (defined as

a rapid, more than twofold increase in CRP levels followed by

decrease below baseline values within 3 months) in about 25% of

patients with metastatic renal cell carcinoma and this was associated

with significant tumor shrinkage and improved 1-year survival

rate (53).

The association of CRP with prognosis should, however, be

interpreted with caution as an indication of direct causal

contribution of CRP to disease pathogenesis. A definitive way to

test this is the use of compounds that specifically block binding of
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CRP to its ligands and/or receptors to assess its pro-inflammatory

effects in vivo.
Modulation of the inflammatory
response by CRP isomers

While pCRP has been postulated to be stable under

physiological conditions (24), compelling evidence indicates that

CRP exists in conformationally distinct forms and conformational

changes in pCRP results in expression of potent pro-inflammatory

activities (Figure 1) (21). The mild acidic environment within

inflamed tissues confers pCRP binding specificities for factor H

(55) and conformationally altered proteins, such as oxidized LDL

and complement C3b (56) that do not bind to pCRP at

physiological pH. Binding of circulating pCRP to phosphocholine

or phosphoethanolamine head groups of membrane lipids

expressed on the surface of activated platelets or apoptotic cells

induces the formation of a partially dissociated pentamer (pCRP*),

which then dissociates into the monomeric subunits, mCRP (57–

59). pCRP* and mCRP exhibit potent pro-inflammatory activities,
Frontiers in Immunology 03
including stimulation of IL-8 secretion from neutrophils and

human coronary artery endothelial cells (60, 61), promote

neutrophil adhesion to platelets and endothelial cells (62, 63),

delay neutrophil apoptosis (64) and trigger extrusion of

neutrophil extracellular traps (65), characteristic features of the

inflammatory response. pCRP* binds and activate complement C1q

(66), which, in turn, can amplify pre-existing inflammation and

tissue damage (21, 57, 67). Accumulation of pro-inflammatory CRP

isoforms with in inflamed/injured but not in healthy tissues, and

local expression of mCRP, for example within arteriosclerotic

plaques (68) and in circulating microparticles (69, 70) would

ensure localization of inflammation (57) and precipitate tissue

injury (21).

While purified human pCRP itself does not evoke inflammation

when injected into healthy individuals (71), it can amplify tissue

injury in animal models, induce the expression of adhesion

molecules and production of IL-6 and IL-8 (24, 72–75). Caution

should be exercised in interpreting these observations because many

of these effects can be attributed to contaminants (endotoxin or the

preservative sodium azide) in commercial CRP preparations not to

pCRP itself (13, 21). By contrast, other studies documented pCRP
FIGURE 1

Proposed model for regulation of the inflammatory response by conformationally distinct CRP isomers. In the circulation, native CRP exists in a disc-
shaped pentameric form (pCRP) and exhibits predominantly anti-inflammatory activities (e.g. opsonization) that are critical for clearance of invading
bacteria and damaged cells by phagocytes. Thus, pCRP may limit further damage and prevent autoimmunity. Mild acidosis within the inflammatory
locus unmasks additional binding sites in pCRP for complement factor H, which modulate coagulation and for conformationally altered proteins,
thereby promoting their removal. Binding of pCRP to phosphocholine or phosphoethanolamine head groups exposed on the surface of activated or
damaged cells, or microvesicles, leads to formation of a partially dissociated pentamer (pCRP*) followed by dissociation into its monomeric subunits
(mCRP). Unlike pCRP, pCRP*/mCRP exhibit potent pro-inflammatory actions, including stimulation of thrombus formation, activation of endothelial
cells, monocytes, platelets and neutrophils, neutrophil and monocyte adhesion to endothelial cells, enhanced formation of neutrophil-platelet and
platelet-monocyte aggregates, production of pro-inflammatory cytokines IL-1b and IL-6, and extrusion of neutrophil extracellular traps (NET). These
may contribute to excessive, non-resolving inflammation and to aggravation of tissue injury. This multistep mechanism would uncouple the local
effects of pCRP*/mCRP from those of circulating pCRP, therefore contribute to localization of inflammation. Of note, microvesicle-associtaed
pCRP*/mCRP may contribute spreading the inflammatory reaction to distant sites. EC, endothelial cells; mCRP, monomeric CRP; NETosis, extrusion
of neutrophil extracellular traps; pCRP, pentameric CRP; pCRP*, partially dissociated pentameric CRP; PMN, polymorphonuclear neutrophil
granulocytes. Modified from Wu et al. (21) and Filep (54).
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protection against the assembly of the terminal complement attack

complex (27) and bacterial sepsis (76), reversal of proteinuria in

autoimmune mice (77), and prevention of autoimmunity (78).

Recently, pCRP was found to reduce immune complex-triggered

type I interferon response, consistent with a protective action in

systemic lupus erythematosus (79). This action was lost in mCRP,

further highlighting the complexity of regulation of immune

response by CRP isomers in autoimmune diseases.

CRP isomers bind to distinct receptors. Thus, pCRP binds

primarily to the low affinity Ig receptor FcgRIIa (CD32) and to

some extent to the high affinity IgG receptor FCgRI (CD64) on

phagocytes and endothelial cells (21, 80), and aIIbb3integrin on

platelets (81), whereas mCRP binds to FcgRIIIb (CD64) on

phagocytes and lipid rafts on human endothelial cells (82).

The concept of activation-induced conformational changes

could explain why pCRP itself is not pro-inflammatory in the

absence of infection or tissue injury. Conformational changes in

pCRP, and generation of pCRP* and mCRP, would unmask

“hidden” pro-inflammatory activities that may collectively amplify

the initial inflammatory signal evoked by infection or tissue injury,

leading to exacerbation of tissue damage and more severe disease

(21, 73). However, further studies are needed to explore the clinical

importance of mCRP or other CRP conformers.
CRP as a target for therapy

Therapeutic lowering of serum CRP

The association of persisting modest elevations in plasma CRP

level (detected by high sensitivity assays) with chronic diseases has

attracted considerable clinical interest and often contradictory

interpretations. CRP is generally recognized as a biomarker of

ongoing inflammation and to a varying degree as a predictor of

clinical outcome. Although conclusive evidence for a causal role for

pCRP (and/or CRP isomers) is still lacking, lowering pCRP levels is

widely anticipated to reduce the adverse effects attributed to CRP.

Indeed, several approaches have been developed and tested for

lowering plasma pCRP level or countering CRP`s actions (Table 1).

Observational studies reported a relationship between life style

changes, encouraging cessation of smoking, weight loss, more

physical activity and Mediterranean diet, with concurrent

reduction in hs-CRP levels and the risk for future cardiovascular

events (83–86). Studies with angiotensin converting enzyme

inhibitors, angiotensin II (type I) receptor blockers, vitamins E

and C, and the anti-platelet agents clopidogrel and aspirin, yielded

conflicting results in regard with their efficiency to lowering hs-CRP

levels (94, 107). Unlike insulin, the anti-diabetic drugs rosiglitazone

and pioglitazone have been found to significantly decrease serum

CRP, though the molecular mechanisms and the potential clinical

benefits remain largely unknown (94).

Evidence derived mainly from trials with statins support the

potential value of hs-CRP for primary and secondary prevention of

cardiovascular disease, though this notion still remains

controversial. The landmark JUPITER trial demonstrated the

benefits of rosuvastatin therapy in primary prevention as well as
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the utility of hs-CRP for identifying a population at risk for

cardiovascular disease (88–90). A new meta-analysis from the

PROMINENT, REDUCE-IT and STRENGTH trials (which were

originally designed to test triglyceride-lowering) showed that

inflammation, and thus hs-CRP is more tightly linked than LDL

cholesterol to future adverse effects in patients already on statins

(91). Limitations of this analysis include the effects of confounding

bias (e.g. high intensity statin use and diabetes) and lack of attention

to primary versus secondary prevention (108). These concerns

notwithstanding, the meta-analysis would argue for routine hs-

CRP testing to assess residual inflammatory risk (109) and a

combined approach to aggressive l ipid-lowering and

inflammation-inhibiting therapy with colchicine, IL-1 or IL-6

inhibitors or bempedoic acid (91, 93).
Antisense oligonucleotides

Another approach to reduce CRP production is the use of

antisense oligonucleotides (ASO) to specifically inhibit mRNA

translation in particular in the liver, the predominant site of

pCRP synthesis (23) where ASOs have a propensity to

accumulate (110). Lowering plasma CRP level with rat-specific

ASO ISIS 197178 was associated with reduction of infarct size

and improved cardiac function in a rat model of myocardial

infarction (111). Human-specific ASO ISIS 353512 reduced

neointima formation in human CRP transgenic mice subjected to

carotid artery ligation (98). In healthy subjects, ASO ISIS 329993

(ISIS-CRPRx) reduced by about 70% of the peak plasma CRP

response to endotoxin challenge without affecting cytokine

production and coagulation (100). Treatment with ISIS-CRPRx of

patients with rheumatoid arthritis also decreased plasma CRP level,

but did not reduce disease activity (99). Unexpectedly, another

ASO, ISIS 353512 increased IL-6 and CRP levels in healthy

volunteers (112), illustrating the challenges with CRP-ASO therapy.
Selective CRP apheresis

Another strategy to investigate pathogenetic roles for pCRP (and

arguably other CRP isomers) is reducing plasma pCRP level by

selective apheresis, which appears to be a relatively simple, efficient

and clinically safe approach (49, 113). In this protocol, patients are

subjected to a 4-6 h extracorporeal circuit and blood plasma is applied

to phosphocholine-linked resin. A case report and studies on small

cohorts of patients with ST elevation myocardial infarction (STEMI)

demonstrated efficient lowering of plasma CRP levels (47, 102, 114,

115). However, results from the multi-center pilot CAMI-1 (CRP

Apheresis in Acute Myocardial Infarction-1) study were inconclusive

in regard with correlation of reduced CRP levels with myocardial

infarct size (47) because the study was not randomized. The ongoing

trials on the effects of CRP apheresis on the course of STEMI

(NCT04939805) and ischemic stroke (CASTRO-B, NCT03884153)

are anticipated to address this issue. There are several case reports with

mixed results on reducing lung injury with CRP apheresis in patients

with COVID-19-evoked respiratory distress syndrome (49, 103–105).
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TABLE 1 CRP targeting strategies.

Agent Species Disease/Model Effect Reference

CRP lowering approaches

Lifestyle changes

- Exercise
- Diet
- Weight loss
- Vitamin supplementation
- Smoking cessation

Human Healthy
Cardiovascular disease
Metabolic syndrome

↓ CRP levels
↓ cardiovascular events
↓ body weight

(83–87)

Medication-associated decreases in CRP level

Statins Human Cardiovascular disease ↓ CRP levels (15-60%)
↓ Cholesterol
↓ cardiovascular events

(88–92)

Bempedoic acid Human Cardiovascular disease ↓ CRP levels by 27%
↓ Total cholesterol by 15%

(93)

Rosiglitazone
Pioglitazone
Dipeptidyl peptidase 4 inhibitors

Human Diabetes ↓ CRP levels (94, 95)

Angiotensin-converting enzyme inhibitors Human Cardiovascular disease
Metabolic syndrome

↓ CRP levels
↓ IL-6 levels

(94, 96)

Antisense oligonucleotides

CRP-mRNA antisense oligonucleotides Human Primary hepatocytes ↓ CRP mRNA (97)

Mouse CRP transgenic mice with collagen-induced arthritis ↓ human CRP levels
↑ arthritis clinical score

Rat Acute myocardial infarction ↓ CRP levels by >60%
↑ heart function

(98)

Human Healthy
Rheumatoid arthritis

↓ CRP levels
No effect on arthritis clinical score

(99)

Healthy
Endotoxin challenge

↓ CRP level (100)

Atrial fibrillation ↓ CRP levels by 64%
No effect on atrial fibrillation burden

(101)

CPR selective apheresis

PentraSorb® Human ST-segment Elevation Myocardial Infarction ↓ CRP levels by 50%
↓ infarct size
↑ wound healing

(47, 49, 102)

Severe COVID-19 ↓ CRP levels by 50-90%
↓ mortality

(49, 103–105)

Small-molecule CRP inhibitors

(1,6-bis (phosphocholine) -hexane) Rat Acute myocardial infarction ↓ mortality
↓ infarct size
↓ cardiac dysfunction

(72)

LPS-inflamed cremasteric tissue ↓ CRP deposition
↓ leukocyte adhesion

(59, 67)

Acute myocardial infarction ↓ CRP deposition
↓ leukocyte infiltration
↓ caspase 3 expression
↓ TNF-a and IL-6 expression

Renal ischemia- reperfusion ↓ lesions
↑ excretory function
↓ monocyte infiltration

(75)

Human THP-1 or Jurkat cell-derived microvesicles ↓ calcium-dependent binding (59)

(Continued)
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The subsequently planned trial on pulmonary, myocardial and/or

renal injury in COVID-19 (NCT04898062) has been withdrawn

[https://www.clinical.trials.gov, as of June 4, 2023].

Similar to other CRP lowering strategies, the fundamental

question whether the beneficial effects can be attributed to

lowering pCRP level directly or to reduction of formation of

conformationally altered CRP secondary to reduced availability of

the parent molecule pCRP remains unanswered. While short-term

reductions of plasma CRP levels may be beneficial under certain

circumstances, markedly lower CRP levels over prolonged periods

of time may impair antimicrobial defense, and thus augmenting the

risk of bacterial or viral infection. Whether this would limit the

clinical utility of CRP apheresis and what plasma CRP levels after

CRP apheresis will be still sufficient to support innate defense

functions remain to be investigated.
Small molecule CRP inhibitors

Two distinct CRP targeting strategies have been developed. In

2006, the Pepys group has designed and synthesized the first small-

molecule inhibitor of CRP (72). The bivalent compound, 1,6-bis

(phosphocholine)-hexane (bis-PC) bridges the phosphocholine-

binding pockets on the B-face of two separate CRP pentamers,

bringing the phosphocholine-binding surfaces together in a parallel

fashion (72). The resulting decamer structure stabilizes

conformation of pCRP and prevents binding of other ligands to

the B-face. Bis-PC has also been reported to inhibit dissociation of

pCRP to mCRP on the surface of circulating microparticles isolated

from the blood of patients with myocardial infarction (69).

Pretreatment with bis-PC abolished the increase in infarct size

and cardiac dysfunction produced by injection of human pCRP in a
Frontiers in Immunology 06
rat model of myocardial infarction (72). A controversy exists

whether rat CRP can activate rat complement and whether rat

factor H, the native complement-control protein, could interact

with human CRP (116, 117). Hence, the translational implication of

these observations remains to be clarified. Binding of CRP decamers

to Fcg receptors or possible deposition of large CRP complexes

might trigger immune reactions, thereby limiting the therapeutic

use of bis-PC. This compound is apparently no longer being

considered for clinical development [http://pentraxin.word-

press.com/rd-programs/].

Considering the role of native CRP in host defense, therapies

aimed at reducing serum pCRP level would likely impair defense

mechanisms and predispose to infection. Thus, an attractive

alternative approach is to selectively block expression of pro-

inflammatory properties “hidden” in pCRP without interfering

with its protective functions. As a proof of this concept, Zeller

et al. (65) developed a low molecular weight monovalent compound

C10M [3-(dibutyl amino)propyl) phosphonic acid]. C10M binds to

the phosphocholine binding pocket of pCRP and prevents pCRP

binding to phosphocholine residues exposed on the surface of

activated or damaged cells or microvesicles, and subsequently the

formation of pCRP*/mCRP (65). Apart from the occupied

phosphocholine binding pocket, the B-face remains accessible to

other ligands, including misfolded or aggregated proteins or

proteins whose secondary structure is predominantly b-sheet (56)
as well as neutrophils. Consistently, C10M inhibited pCRP*/mCRP-

stimulated activation of monocytes and neutrophils, extrusion of

neutrophil extracellular traps (NETs), monocyte adhesion to

activated endothelial cells, and formation of platelet-monocyte

aggregates (65). C10M reduction of pCRP*/mCRP-triggered,

presumably ROS-dependent NET release (i.e. via the suicidal

pathway) could contribute to preventing NET-mediated tissue
TABLE 1 Continued

Agent Species Disease/Model Effect Reference

Mouse Lethal influenza virus infection ↓ mortality
↓ viral titers
↓ lung lesions
↓ inflammatory cells infiltration

(106)

Phosphonate compound C10M Human ADP-activated platelets ↓ CRP binding to platelets (65)

Monocytes ↓ platelet–monocyte aggregates
↓ monocyte adhesion

Endothelial cells ↓ ICAM-1 and VCAM-1 expression

Neutrophils ↓ CD11b expression
↓ ROS production
↓ NET formation
No effect on phagocytosis

Rat Renal ischemia- reperfusion ↓ CRP deposition
↑ excretory function
↓ monocyte infiltration

Acute hindlimb allograft rejection ↓ graft loss
↓ monocyte infiltration
↓ CRP deposition
NET, neutrophil extracellular traps; ROS, reactive oxygen species.
↓ (arrow down) decreased.
↑ (arrow up) increased.
frontiersin.org

https://www.clinical.trials.gov
http://pentraxin.word-press.com/rd-programs/
http://pentraxin.word-press.com/rd-programs/
https://doi.org/10.3389/fimmu.2023.1237729
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Rizo-Téllez et al. 10.3389/fimmu.2023.1237729
damage under pathological conditions (54, 118). Importantly,

C10M did not impair antibacterial host defense as evidenced by

unaltered pCRP opsonization-mediated phagocytosis of bacteria by

monocytes and neutrophils (65). Furthermore, C10M efficiently

suppressed tissue deposition of human pCRP*/mCRP and

monocyte accumulation within the affected organs in murine

models of renal ischemia-reperfusion and allograft rejection of

hindlimb transplants (65). Consistently, C10M significantly

improved renal function following ischemia-reperfusion, and

prevented premature loss of allograft transplants driven by

human pCRP. While these findings would indicate the functional

importance of mCRP, further studies are needed to distinguish the

effects of CRP antagonists on endogenous CRP and injected human

CRP in these and other experimental models.
Concluding remarks

CRP is a well-established biomarker of inflammation and much

written about its association with disease state. Circulating hs-CRP

may identify patients at risk, predict disease progression and

outcome, and guide therapy in a context-dependent manner.

Nevertheless, since even strong associations do not establish

causality, further studies are clearly warranted to elucidate its

potential pathogenic roles. Activation-induced conformational

changes in pCRP would unmask “hidden” pro-inflammatory

properties as opposed to the largely protective role of pCRP. CRP

lowering strategies yielded promising, but often inconclusive data

on altering disease progression. Development of CRP antagonists,

and in particular recent development of a phosphocholine mimetic

that binds to pCRP and inhibits conformation change-mediated

expression of pro-inflammatory activities without impairing

pCRP’s defense function, should facilitate future investigations

into the full spectrum of the roles of CRP isomers in
Frontiers in Immunology 07
inflammatory pathologies. This approach has the potential of

opening a novel therapeutic avenue for preventing or limiting the

deleterious actions attributed to CRP.
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