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The challenge of making
the right choice: patient
avatars in the era of
cancer immunotherapies
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and Anna Maxi Wandmacher1,2‡

1Group of Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, University
Hospital Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany, 2Department of Internal Medicine
II, University Hospital Center Schleswig-Holstein, Kiel, Germany
Immunotherapies are a key therapeutic strategy to fight cancer. Diverse

approaches are used to activate tumor-directed immunity and to overcome

tumor immune escape. The dynamic interplay between tumor cells and their

tumor(immune)microenvironment (T(I)ME) poses a major challenge to create

appropriate model systems. However, those model systems are needed to gain

novel insights into tumor (immune) biology and a prerequisite to accurately

develop and test immunotherapeutic approaches which can be successfully

translated into clinical application. Several model systems have been established

and advanced into so-called patient avatars to mimic the patient´s tumor

biology. All models have their advantages but also disadvantages underscoring

the necessity to pay attention in defining the rationale and requirements for

which the patient avatar will be used. Here, we briefly outline the current state of

tumor model systems used for tumor (immune)biological analysis as well as

evaluation of immunotherapeutic agents. Finally, we provide a recommendation

for further development to make patient avatars a complementary tool for

testing and predicting immunotherapeutic strategies for personalization of

tumor therapies.
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Extracellular matrix; GvHD, Graft-versus-host disease; hPDX, Humanized patient-derived xenografts; ICI,

Immune checkpoint inhibitors; NOD-scid, Nonobese diabetic/severe combined immunodeficiency; NRG,

NOD-Rag1nullIL2rgnull; NSG, NOD scid gamma mice; PBMC, Peripheral blood mononuclear cells; PDAC,

Pancreatic ductal adenocarcinoma; PD-1, Programmed cell death protein-1; PD-L1, Programmed-death

ligand 1; PDO, Patient derived organoids; PSC, Pancreatic stellate cells; OOC, Organ-on-a-chip; OTSC,

Organotypic slice cultures; SRG, Sprague Dawley-Rag2em2heraIl2rgem1hera/HblCrl; TIL, Tumor infiltrating

lymphocytes; T(I)ME, Tumor (immune) microenvironment; TME, Tumor microenvironment.
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Introduction

Immunotherapy has emerged as an important pillar in cancer

therapy comprising multiple strategies, e.g. cell-based approaches as

chimeric antigen receptor T cells (CAR T cells) (1–4) or tumor

infiltrating lymphocytes (TIL) (5), immune checkpoint inhibitors

(ICI) (6–13), oncolytic viruses (14) and tumor vaccines (15).

However, despite promising preclinical data, only a very low

percentage of oncological treatments reach phase III trials or even

clinical application (16, 17) and even those strategies that have

entered clinical routine often exert less pronounced anti-tumor

effects than observed in model systems. In addition, clinicians are

faced with great heterogeneity in terms of patient responses to

therapy even if levels of predictive biomarkers (e.g. specific

mutations or immunohistochemical staining of protein

biomarkers) are comparable. This highlights the limitation of

personalizing treatment strategies solely based on genomics and

single biomarkers as well as the need for valid co-clinical testing

systems. Functional drug testing in those co-clinical models

representing the individual tumor biology of a patient as

accurately as possible (also termed “patient avatars”) to predict

the individual susceptibility to drugs appears as a desirable

approach to truly personalize patient treatment (18). Increasing

efforts are therefore made to improve preclinical tumor models in

order to optimally represent the complex and dynamic interplay

between tumor cells and the immune system, especially in the

tumor microenvironment (TME) of solid and hematologic

malignancies. Irrespective of whether the model system is used

for tumor immunological studies or individualized therapy

prediction, an optimal patient avatar needs to reflect intra- and

intertumoral heterogeneity (19) and comprise the entire tumor

(immune) microenvironment (T(I)ME) (20–22). Particularly, to

test immunotherapeutic strategies, the whole spectrum of innate

and adaptive immune cells should be present in the patient avatar to

mimic the direct and indirect cellular interactions of tumor cells and

all stromal (cell) components of the tumor.
Tumor model systems and
patient avatars

2D tumor cell models

Two-dimensional (2D) tumor cell models comprise established

and often immortalized cell lines or primary cell cultures directly

established from fresh tumor material. Established cancer cell lines

derived from solid tumors, leukemias and lymphomas have been

extensively used for basic cell biology experiments and drug

discovery since the early 1950s (23). As these cells grow in

monolayers, culture maintenance is comparatively simple,

inexpensive and analyses (including imaging) are easy to perform

due to limited complexity.

To improve the representation of the complex TME, monolayer

cell cultures have been advanced into co-cultures enriched by

coating with defined extracellular matrix (ECM) proteins or
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addition of distinct stem, stroma or (allogeneic) immune cell

populations to allow the study of direct cell-cell interactions of

different cell types or paracrine interactions in indirect cultures

mostly using transwell inserts. The presence of immune cell

populations (e.g. peripheral blood mononuclear cells (PBMC) or

purified effector cells) is a prerequisite to study the preclinical effect

of immunotherapies that aim to activate present immune cell

populations. Alternatively, the cellular therapy itself (e.g. CAR T

cells) constitutes the immune cell component within the co-culture

model. Immunotherapeutic strategies including ICI (12), CAR T

cells (1), CD3-targeted bispecific antibodies (24, 25) or oncolytic

viruses (14) have been tested within 2D co-cultures. Of note, the

cellular composition, activation and fitness status of circulating and

tumor infiltrating immune cells often differs between healthy

donors and cancer patients as they often display signs of reduced

effector function and increased levels of exhaustion (26–30).

Therefore, the integration of immune cells isolated directly

from tumor tissue or PBMC of cancer patients into 2D cell

cultures (as well as 3D co-culture models) is of great interest to

approximate the functional capacity of the patient´s immune

system. However, the use of allogeneic co-cultures to test

respective immunotherapeutics is limited to a short experimental

period up to a few days to avoid MHC-mediated alloreactions.

Another critical point of this model system is that intratumor

heterogeneity is not well reflected, as established tumor cell lines

undergo clonal selection and genetic drift (31–33). Moreover, the

complex tumor architecture with respect to spatial and cellular

composition, ECM, gradients of oxygen, nutrients and other soluble

factors including cytokines is obviously lacking (34, 35).

Subsequently, these models have shown to have limited predictive

value (36–38) as they do not optimally represent the complex

tumor biology.

To improve the representation of patient’s tumors, primary

tumor cells may be used instead. For example, Kodack et al.

established mono cell cultures with primary cells isolated from

tumor tissues of different tumor entities and advanced them into co-

cultures with fibroblasts for drug testing of tyrosine kinase

inhibitors (39). However, their success rate was limited to 26%

with differing rates between tumor entities (39). Kornauth et al.

demonstrated the potential of leukemia and lymphoma cell

suspensions as a predictive tool for individualized treatment in

aggressive hematologic malignancies (40). Within a clinical trial,

single cell suspensions of tumor material (biopsies, blood or bone

marrow aspirates) were generated and directly subjected to

treatment with 139 drugs circumventing the time-consuming and

failure-prone establishment of cancer cell lines. In this approach,

the drug response of tumor cells within the cell bulk was determined

by immunofluorescent microscopy and quantification of the

surviving proportion of tumor cells in comparison to controls

(40). Of note, 56 heavily pretreated patients were treated based on

the results of this testing resulting in a clinical benefit in 54% (30

patients) including a relevant number of exceptional responses.

Although these results are promising in terms of a co-clinical

model, evaluation of immunotherapeutic strategies was not

included in this trial and requires further advancement of this

model by adding effector cell types or cellular therapies.
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3D spheroids

A further improvement of the above mentioned 2D cultures are

spheroids which are three dimensional aggregates of one or multiple

cell types. Spheroids can be comprised of tumor cells (primary cells

or cell lines) only or of mixtures of tumor and stroma/immune cells

(41). Furthermore, ECM can be supplemented. The 3D structure

results in formation of a hypoxic zone in the spheroid core as it is

commonly observed in tumors where the tumor center is often

hypoxic (42). Different culture techniques are used to generate

spheroids, e.g. using low-adherent surface plates or the hanging

drop method, but all of them are based on preventing attachment of

tumor cells to the culture plate and promoting 3D cell-cell

aggregation (43, 44). The fast and easy way to generate spheroids

from established tumor cell lines along with established readout

assays (45) allows high throughput drug screens which can be

particularly beneficial for testing novel therapeutic approaches.

Recently, 3D spheroids have been used to evaluate different

immunotherapeutics, e.g. CAR NK cells against triple negative

breast cancer (46), ICI targeting of PD-L1 in pancreatic ductal

adenocarcinoma (PDAC) (41) or a strategy to activate tumor

associated macrophages via CSF1R inhibition and CD40

activation in Her2-positive breast cancer (47).

However, besides most of the limitations mentioned for 2D

cultures, the uncontrollable arrangement of the cells in the

spheroids and the reduced complexity of the spheroids with

regard to an incomplete cellular and acellular composition (42)

limit the usage of 3D spheroids as co-clinical model particularly for

testing immunotherapeutic strategies.
Patient-derived organoids

Organoid technology has rapidly developed as a transformative

3D model since Clevers et al. established an intestinal 3D culture

system from intestinal stem cells in 2009 (48). Organoid technology

is now vastly used for modeling of physiological tissue but also of

different cancers in patient-derived organoids (PDO). To generate

organoids, small tissue fragments from surgical specimen or

biopsies are dissociated into single cells and subsequently

cultured, most often embedded in 3D matrices providing ECM

support and in complex culture media enriched with multiple

growth factors (49, 50). Today, PDO are available for multiple

tumor entities, including prostate cancer (51), colorectal cancer (48,

52), or PDAC (53). Compared to 2D and spheroid cell cultures,

PDO offer an improved insight into tumor biology as the

heterogeneity of driver mutations and phenotypes of the primary

tumor are better retained (53) and thus, tumor cell complexity,

differentiation, and functionality are better represented (54, 55).

Furthermore, PDO allow genetic engineering and genomic analyses

that cannot be accurately modeled in animals (22, 56). However,

major limitations of PDO remain the lack of vascularization and the

complex TME (57) which sometimes constitutes the major

compartment of a tumor, e.g. in cancers like PDAC (58, 59).

Furthermore, time of establishment (currently weeks to months)

is still time-consuming and the success rates are highly variable
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(16% to > 90%) differing between patients and tumor entities (60–

64). Despite these limitations, PDO have been constantly advanced

and increasingly used for preclinical testing of immunotherapies

including ICI (7–9), bispecific antibodies (65), CAR T cells (66) or

TIL generation (67).

For co-clinical evaluation, co-culture models of PDO with

autologous immune cells and additional components of the TME

appear to be ideal (68–70). To this end, Forsythe et al. established

co-culture PDO models of appendiceal cancer with autologous

immune cell populations to evaluate the efficacy of ICI nivolumab

and pembrolizumab and identified 10-20% of PDO to be susceptible

to ICI therapy (71). PDO may also offer a cost-effective opportunity

to select for and expand TIL or generate patient specific cellular

therapies. Dijkstra et al. successfully enriched autologous tumor

reactive T cells from peripheral blood of colorectal and lung cancer

patients (67). Similarly, Parikh et al. used organoids derived from

metastases of multiple solid cancers to identify and generate TIL

directed against individual tumor neoantigens with highly effective

anti-tumor activity (72). These TIL co-cultured PDO could be

established within two months for 75% of resected samples (72).

To test CAR T cell treatment strategies in solid cancers, Schnalzger

et al. used colorectal cancer PDO for evaluation of tumor cell killing

and established a protocol to test the tumor cell specificity in

competition assays using spiked-in organoids derived from

healthy intestinal tissue (73). Beyond preclinical testing of

immunotherapeutics, PDO can be employed to produce tumor

cell specific T cells from induced pluripotent stem cells. This

strategy may enable the production of allogeneic “off-the-shelf”

CAR T cells circumventing the laborious and expensive generation

of autologous CAR T cells (74). Moreover, large drug screens were

successfully conducted implementing automated organoid seeding

using automated microscopy or destructive viability assays as read-

outs for drug efficacy paving the way for applications within the

highly regulated clinical setting (75, 76). Recent studies indicate that

PDO can be also used as co-clinical models for the prediction of

treatment responses (60, 77, 78) and clinical trials are underway

using functional testing in PDO to guide treatment decisions (79).

Hence, several smaller collectives have been already established

indicating a moderate to good correlation of drug responses in

organoid-based patient avatar models with clinical responses (60,

77, 80). Guillen et al. combined mouse PDX and matched PDO of

treatment resistant metastatic breast cancer to improve accuracy of

modeling and combination of in vitro and in vivo drug testing (81).

However, to incorporate PDO-based treatment prediction into

clinical workflows, PDO need to be improved in terms of reducing

establishment time and optimizing generation success rates (61–

64), highly varying among cancer patients and entities (60) not

ensuring PDO generation from every patient. Finally, to accelerate

meaningful implementation of PDO-based patient avatars into

clinical application, prospective and systematic evaluation of their

accurate representation of biological properties of the disease of

origin and their predictive properties need to be considered in

translational programs accompanying prospective clinical trials.

Additionally, the implementation of the TME requires further

developments, PDO generation needs to be methodologically

standardized following standard operating procedures and
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predefined cut-offs for treatment response need to be defined to

guide clinical decisions (82). Here, synthetic ECM substitutes have

been already used to significantly reduce batch variability of ECM

components ensuring a higher degree of standardization (83, 84).

Hopes are high to use living PDO biobanks (52, 81, 85) for testing

immunotherapies to build the translational bridge between basic

research and patient care.
Humanized patient-derived xenografts

To evaluate novel immunotherapies and identify biomarkers,

humanized patient-derived xenografts (hPDX) are an important

platform (86–92). Meanwhile, more than 45 PDX models are

available including NSG, NOD-scid, NRG, BRGS, SRG and next-

generation humanized mice (86, 89). Besides therapeutic responses,

possible side effects as well as tumor progression and metastasis can

be studied in these whole organism models. In hPDX, almost all

histological, genetic, molecular, and immunological characteristics

are at least represented at low passages (93, 94), fulfilling several key

requirements of patient avatars (95–98). Particularly, testing of

immunotherapies demands the patient’s immune system which

can be activated towards the patient’s tumor. For this purpose,

hPDX models require humanization of mice and full engraftment

with the patient’s immune system. However, it has not been

possible to reconstitute mice with the complete operational

immune system of cancer patients, yet (86, 90, 91, 99). For testing

immunotherapies based on T cells, the engraftment with patient’s

PBMCs is of great interest. However, this is only feasible for short-

term experiments due to the rapid onset of graft-versus-host disease

(GvHD). This issue has been diminished by eliminating MHC-I and

-II expression (100) or using mice lacking murine CD47 (101). Of

note, PBMC-engrafted mice can undergo a switch in immune

cellular composition within 7 days. As a result, T cells might

dominate and concomitantly myeloid as well as B and NK cells

are underrepresented (89) thereby not fully representing the

immune system of patients. Alternatively, engraftment can be

achieved by CD34+ human hematopoietic stem cells to study

immunotherapies in hPDX (91, 102, 103).

An important limiting factor of hPDX as patient avatar is the

generation duration of months up to a year (91) depending on

tumor entity, technology and mouse strain (89). In most cases, this

time frame is not feasible to establish a patient avatar as co-clinical

model as patient´s treatment must start within a short period of

time (i.e. most often within a few weeks, in cases with high tumor

burden even faster). Additionally, it is necessary to take into

account potential effects of patient’s pre-treatment in terms of

acquired resistance mechanisms (104) or cumulative toxicity,

which remains difficult to model in hPDX (105). Finally, even if

tumors are transplanted with their respective human stroma, the

TME in hPDX will be remodeled, e.g. by conversion from human to

murine ECM (94).

Weighting the above-mentioned improvements and remaining

limitations, good correlations between tumor responses in hPDX

models and clinical responses of the corresponding patients were

observed suggesting that this model is principally suitable as co-
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clinical model for therapy prediction (106–108). Moreover, hPDX

have been used as major models to study CAR T cell therapies (2–

4), ICI (5, 6, 11) and TIL (5).
Organ-on-a-chip

As a strategy to avoid animal experiments, organ-on-a-chip

(OOC) models have been designed to mimic physiological

functions of different organs or tissues (109, 110). OOC can be

based on established cell lines or organoids co-cultured with

immune cells, fibroblasts or endothelial cells (111, 112).

Additionally, epithelial and endothelial linings as well as ECM

proteins may be included. In contrast to a conventional direct co-

culture, in OOC cells are assembled on a chip containing a chamber

and channels allowing for medium influx and efflux. Adding

microfluidics via constant pumping of media allows to maintain

gradients (e.g. of growth factors) and micromechanics (e.g. shear

stress) while ensuring culture conditions for multiple cell types

simultaneously. Geyer et al. modeled the physical barrier formed by

pancreatic stellate cells (PSC) that prevent PBMCs, especially T

cells, to migrate towards PDAC cells in a PDAC OOC. This barrier

was overcome by treatment with Halofuginon inducing PSC death

thereby increasing PBMC migration (113). These findings again

illustrate the importance to consider the TME in the model system

to properly test immunotherapeutic strategies. An additional layer

of functional complexity can be added by including cell types that

mediate drug metabolism, i.e. hepatocytes allowing the study of

prodrugs (114). Cui et al. used a patient specific OOC to analyze the

efficacy of anti-PD1 immunotherapy in different glioblastoma

subtypes (10), Nyen et al. examined the response to trastuzumab

and the impact of the tumor stroma in a breast cancer OOC (115)

and Paterson et al. evaluated a CAR T construct in another breast

cancer OOC (116). These studies clearly indicate the potential of

OOC as patient avatar for individual therapy response prediction.

Although OOC is a promising model for this purpose as it allows

the combination of different cell types in one system and

microscopic analysis is enabled by transparent polymers (109,

110), the most critical point is again the time needed for model

establishment. Tumor cell isolation, organoid formation, OOC

generation and treatment are all time-consuming steps, limiting

its potential application as a patient avatar particularly for fast

progressing and advanced cancers.
Organotypic slice culture

Finally, patient derived organotypic slice cultures (OTSC) have

emerged as a sophisticated patient avatar with a great potential to

reduce the number of animal experiments (117, 118). OTSC are

derived from tumor tissues obtained during surgical resection or via

core needle biopsy (118–120). Afterward, tissues are cut mostly

using a vibratom into tissue slices (117, 119, 120) The slice thickness

varies from 150-500 µm and depending on tissue origin and

cultivation method, OTSC remain intact for distinct time periods.

Thus, it has been shown that OTSC remain viable for 5-9 days for
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PDAC (119–122), up to 10 days for non-small cell lung cancer

(123), up to 6 days for breast cancer (124) and up to 16 days in

glioblastoma (125). However, changes in the T(I)ME over time were

not always characterized in detail (117, 119, 120, 122). Cultivation

often takes place on inserts at the air-liquid-interface to ensure

sufficient oxygenation and to prevent cell death due to hypoxia

(120, 126). Here, the composition of the medium is a critical factor,

as certain media can support growth of certain cell types and thus

influence the original tissue composition by driving selection of

certain cell clones and phenotypes (119, 127).

In contrast to organoids and other cell culture models, which

often represent only a reconstruction of the original tumor cell

compartment, OTSC preserve the tumor and stroma heterogeneity

thereby representing the tumor in its native environment,

comprising epithelial/tumor cells, entire ECM as well as stroma

and immune cells (117, 121, 128). In this way, all cells retain their

function (hormone secretion, vascular contractility, cytokine

secretion) along with their proteome and secretome (e.g. for

immunological functions), and neurons also remain viable due to

the presence of nerve growth factor (117, 129). This high similarity

to the original tumor tissue creates unique conditions for analyzing

the interplay of tumor cells with their TME thereby providing

improved insights into tumor biology. Embedding of glioblastoma

spheroids in brain tissue slices, Decotret et al. showed that the brain

TME has a decisive influence on glioblastoma cell invasion (130).

Besides, OTSC also appear to be well suited for the development

and testing of novel therapeutic approaches (117, 118, 131). Thus, a

combination treatment targeting carcinoma associated fibroblasts

(CAF) by CXCR4 blockade and immune cells by ICI, increased T

cell migration and activation towards tumor cells was observed

resulting in tumor cell apoptosis (118). In line with these results,

ECM reduction in OTSC improved T cell invasion towards tumor

cells and increases the efficacy of blockade of the immune

checkpoint molecule PD-1 (13). As OTSC are the only model

system preserving the entire patient’s tumor contexture over a

distinct time period, it can be considered the best patient avatar

to date. Importantly first studies indicate that OTSC are suitable for

testing immunotherapies (123), although data on the correlation

between treatment responses in patients and corresponding OTSC

is still scarce. Therefore, the predictive power of OTSC has to be

proven yet.
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Besides these important advantages of OTSC, some critical points

still deserve optimization. As mentioned above, the medium

composition impacts survival and proliferation of cells thereby

selecting certain cell populations (127). Furthermore, despite

cultivation at the air-liquid-interface, longer cultivation might lead

to hypoxia resulting in culture-induced cell death in certain areas of

the section (120, 126). The limited culture duration in turn also

impedes long-term studies including studies analyzing long-term

effects of applied treatments. Furthermore, long-term storage of

viable OTSC for future analyses is not possible yet, and the limited

number of OTSC which can be obtained from one patient limits high

throughput drug screening (120). Finally, to properly assess

treatment responses, appropriate and reliable readout parameters

have to be identified and quantified. Here, (live cell) imagingmight be

difficult due to the thickness of the OTSC (117).

However, since the response to (immuno)therapies often varies

among cancer patients, OTSC have a high potential to play a role in the

development of patient tailored therapy. The rapid availability of OTSC

after surgery or core needle biopsy allows for rapid drug testing and, at

the same time, characterization of the entire tumor including its T(I)

ME even in patients with advanced tumor diseases. This offers the great

opportunity to allow a prompt therapy prediction for the patient.
Discussion and future perspectives

Significant progress has been made advancing existing in vitro, ex

vivo and in vivo tumor models into patient avatars containing the

patient´s T(I)ME thereby trying to mimic the patient´s tumor

characteristics in the best possible manner. These efforts have led

to invaluable insights into tumor (immune) biology and the efficacy

of immunotherapeutic strategies. However, as outlined above and

summarized in Table 1, every model system bears its advantages and

disadvantages which need to be carefully weighed in order to make

the right choice of the patient avatar for research or co-clinical

therapy testing and prediction. Accordingly, further efforts are

needed to focus on the following two aspects: First, addressing

remaining limitations in the representation of the T(I)ME in

existing models and second, advancing existing models towards co-

clinical patient avatars that support clinical decision making based on

functional assays. Results from these assays may then complement
TABLE 1 Overview of key features of currently used patient avatars and their suitability as co-clinical models for testing of immunotherapies.

in vitro – 2D in vitro – 3D ex vivo in vivo

Cell models Spheroids PDO OOC OTSC hPDX

Tumor cell
heterogeneity

limited for established
cell lines

limited for
established cell lines

improved improved high high

Microenvironment ECM has to be
exogenously added,
indirect & direct co-
cultures with allogeneic
immune or stroma cell
populations possible

ECM has to be
exogenously added,
direct co-cultures
with allogeneic
immune or stroma
cell populations
possible

ECM has to be
exogenously added,
indirect & direct co-
cultures with allogeneic
(autologeous) immune or
stroma cell populations
possible

ECM has to be
exogenously added,
Indirect & direct co-
cultures with allogeneic
(autologeous) immune or
stroma cell populations
possible

completely
preserved for
distinct time
(depending on
tumor entity)

completely
preserved
for distinct
time,
conversion
into
murine
stroma

(Continued)
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existing strategies to personalize tumor therapies based on genomics,

transcriptomics and immunohistochemical tumor analysis.

Finally, to advance patient avatars towards clinical application,

a critical and important point is the standardization, e.g. by using

harmonized protocols for generation and maintenance, reducing

batch variability in reagents, increasing throughput while reducing

costs for generation and characterization and defining experimental

endpoints that are clinically meaningful (82, 132). Organoid or

OTSC-based models may then even serve to develop patient specific

therapies such as TIL and CAR T cells.

The current dynamics of the field are reflected by a multitude of

ongoing clinical trials set up to evaluate the power of organoid or

PDX based-models to predict clinical outcomes in cancer patients

(133). Results from these mostly observational clinical trials will

provide novel insights into feasible strategies to advance and

implement personalized functional assays based on patient

avatars for evaluation of (immuno) therapeutics.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Author contributions

Conceptualization, CK, AB, AW, SS. Supervision, SS.

Visualization, CK, AB. Writing – original draft, AB, CK, AW, SS.

Writing – review and editing, AB, CK, AW, SS. All authors

contributed to the article and approved the submitted version.
Frontiers in Immunology 06
Funding

This project and its publication were supported by Deutsche

Forschungsgemeinschaft (DFG, German Research Foundation) –

Projektnummer 413490537) and the Stiftung für Krebsentstehung

und Immunologie. We acknowledge financial support by Land

Schleswig-Holstein within the funding programme Open

Access Publikationsfonds.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1237565/

full#supplementary-material
TABLE 1 Continued

in vitro – 2D in vitro – 3D ex vivo in vivo

Cell models Spheroids PDO OOC OTSC hPDX

Nutrient/oxygen
gradient &
vascularization

missing hypoxic zone in
spheroid core,
lack of
vascularization

missing possible nutrient &
oxygen gradient
observed,
lack of
vascularization

present

Model
establishment

fast fast time consuming time consuming fast time
consuming

Reproducibility high variable patient-dependent variable patient-
dependent

patient-
dependent

High throughput
screening

possible possible possible limited limited limited

Testing of
immunotherapies*

ICI (12)
Bispecific antibodies
(24, 25)
CAR T cells (1)
Oncolytic viruses (14)

CAR-NK cells (46)
ICI (41)
Macrophage
activation (47)

Therapy prediction (60, 77,
78)
ICI (7–9, 71)
Bispecific antibodies (65)
CAR T cells (66, 73, 74)
TIL (67, 72)

ICI (10)
CAR T cells (116)

Drug testing &
development
(117, 118, 131)
ICI (13, 118)

therapy
prediction
(81, 96,
106–108)
CAR T
cells (2–4)
ICI (6, 11)
TIL (5)
fr
*Only exemplary studies mentioned in the text are listed.
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