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framework for prognosis and
immunotherapy response in
hepatocellular carcinoma
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1Colorectal and Anal Surgery Department, General Surgery Center, First Hospital of Jilin University,
Changchun, Jilin, China, 2Department of General, Visceral, and Transplant Surgery, Ludwig-
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Background: Hepatocellular carcinoma (HCC) represents a prominent

gastrointestinal malignancy with a grim clinical outlook. In this regard, the

discovery of novel early biomarkers holds substantial promise for ameliorating

HCC-associated mortality. Efferocytosis, a vital immunological process, assumes

a central position in the elimination of apoptotic cells. However, comprehensive

investigations exploring the role of efferocytosis-related genes (EFRGs) in HCC

are sparse, and their regulatory influence on HCC immunotherapy and targeted

drug interventions remain poorly understood.

Methods: RNA sequencing data and clinical characteristics of HCC patients were

acquired from the TCGA database. To identify prognostically significant genes in

HCC, we performed the limma package and conducted univariate Cox

regression analysis. Subsequently, machine learning algorithms were employed

to identify hub genes. To assess the immunological landscape of different HCC

subtypes, we employed the CIBERSORT algorithm. Furthermore, single-cell RNA

sequencing (scRNA-seq) was utilized to investigate the expression levels of

ERFGs in immune cells and to explore intercellular communication within HCC

tissues. The migratory capacity of HCC cells was evaluated using CCK-8 assays,

while drug sensitivity prediction reliability was determined through wound-

healing assays.

Results: We have successfully identified a set of nine genes, termed EFRGs, that

hold significant potential for the establishment of a hepatocellular carcinoma-

specific prognostic model. Furthermore, leveraging the individual risk scores

derived from this model, we were able to stratify patients into two distinct risk

groups, unveiling notable disparities in terms of immune infiltration patterns and

response to immunotherapy. Notably, the model’s capacity to accurately predict
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drug responses was substantiated through comprehensive experimental

investigations, encompassing wound-healing assay, and CCK8 experiments

conducted on the HepG2 and Huh7 cell lines.

Conclusions: We constructed an EFRGs model that serves as valuable tools for

prognostic assessment and decision-making support in the context of

immunotherapy and chemotherapy.
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1 Introduction

HCC stands as a prominent neoplasm within the realm of

gastrointestinal malignancies afflicting adults (1, 2). Notably, the

prognosis for HCC remains bleak. In cases where surgical resection

is deemed unsuitable for advanced HCC patients, radiation therapy

emerges as a strategic intervention to proficiently curb tumor

advancement and mitigate symptomatic presentations, including

postoperative radiotherapy. Nonetheless, the median survival rate

in the aggregate remains suboptimal (3–6). Thus, there exists an

imperative to discover efficacious biomarkers capable of

prognosticating the outcomes of HCC patients, including their

susceptibility to immunotherapy and chemotherapy. The

identification of such biomarkers would furnish clinicians with

invaluable guidance, facilitating the formulation of optimal

treatment strategies.

Efferocytosis, an indispensable immune cell function, assumes a

pivotal role in the elimination of aberrant cells, pathogens, and

cellular debris (7–9). The term “efferocytosis” denotes the

engulfment of one cell by another, commonly exemplifying the

phagocytic uptake of apoptotic cells by macrophages (10, 11). This

intricate process holds profound significance in upholding tissue

homeostasis and averting the onset of inflammation. Efferocytosis

constitutes a multifaceted process involving the recognition,

phagocytic engulfment, and subsequent degradation of apoptotic

cells by phagocytes. This intricate mechanism is meticulously

regulated by a complex interplay of molecular signals and cellular

receptors, serving to facilitate the prompt and efficient clearance of

dying cells while mitigating the risk of autoimmune responses (12–

14). Disruptions in the efferocytosis process have been implicated

in a broad spectrum of pathological states, encompassing

autoimmune disorders, chronic inflammatory conditions, and

neoplastic diseases. Gaining a comprehensive understanding of the

molecular mechanisms underlying efferocytosis presents substantial

potential for the advancement of therapeutic interventions aimed at

modulating immune responses and effectively addressing disorders

associated with immune dysregulation.

Numerous cell lineages partake in the process of efferocytosis,

each playing a role in the clearance of diverse cellular constituents
02
within specific biological contexts. Neutrophils, for instance,

possess the ability to release DNA fiber networks during

inflammatory processes and are adept at engulfing both these

networks and cellular remnants containing DNA (15, 16).

Neutrophils, an indispensable entity within the immune system,

exert cytotoxic effects on infected and cancerous cells, while also

participating in efferocytosis for the clearance of deceased cells (17).

Furthermore, dendritic cells and other immune cells actively

contribute to the intricate process of efferocytosis (18, 19).

Intriguingly, specific malignant tumor cells express receptors and

ligands associated with efferocytosis, facilitating their engulfment of

apoptotic cells within their microenvironment and aiding in immune

evasion (20, 21). The multifaceted involvement of efferocytosis in

tumor development exhibits a context-dependent role. During the

initial stages of tumorigenesis, efferocytosis may exert a promotive

influence on tumor growth by attenuating immune system attacks and

facilitating the survival and proliferation of neoplastic cells through the

clearanceof apoptotic cells in their immediate vicinity (22).Additionally,

tumorcells expressing receptorsand ligandsassociatedwithefferocytosis

can effectively evade immune responses, thereby fostering the

progression of tumorigenesis (23–25). Nevertheless, during the late

stages of tumor development, efferocytosis can switch its effect and

inhibit tumor growth by promoting immune system recognition and

attack against the tumor (26, 27). This dualistic function of efferocytosis

in tumor biology underscores its complexity and highlights its potential

as a therapeutic target for modulating immune responses and

manipulating tumor progression. However, the precise implications of

efferocytosis-associated genes in the progression and prognostication of

hepatocellular carcinoma remain inadequately comprehended.

In this study, a comprehensive examination of HCC

transcriptome dataset from the TCGA database was undertaken.

By employing univariate and LASSO Cox regression analyses, we

successfully ascertained nine distinctively expressed EFRGs,

enabling the construction of a prognostic model for HCC.

Remarkably, this model demonstrated significant predictive

efficacy with regard to both patient prognosis and immune

therapeutic response in the context of HCC. The expression

profiles of EFRGs in immune cells were unveiled through scRNA-

seq analysis. Furthermore, cellular experiments in the field of cell
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biology corroborated the potential of the EFRGs model as a

predictive determinant of drug sensitivity. As a whole, this study

constitutes the comprehensive bioinformatics exploration

illuminating the crucial involvement of efferocytosis in HCC

progression, encompassing aspects such as immune therapy

response and prognostic risk prediction. These findings offer

valuable insights to clinicians, aiding in the formulation of

optimal treatment strategies.
2 Materials and methods

2.1 HCC data acquisition

In this investigation, we used the TCGA-LIHC cohort (374

LIHC and 50 normal tissue samples) on the TCGA data portal

(https://portal.gdc.cancer.gov/) to acquire gene expression profiles

and clinical data, such as TNM classification, age, gender, and

overall survival (28). Additionally, we obtained the GSE14520

dataset from the GEO database (https://www.ncbi.nlm.nih.gov/

geo/), which had 221 HCC samples, and the ICGC dataset

(https://icgc.org/), which contained 240 HCC samples. For

analysis, only data with comprehensive clinical information were

used. Furthermore, single-cell data was sourced from the Tumor

Immune Single-Cell Hub (TISCH2; http://tisch.comp-

genomics.org), a comprehensive online repository of single-cell

RNA-seq data that specifically focuses on tumor microenviroment

(TME) (29, 30). Utilizing this resource, we systematically

investigated TME heterogeneity across diverse datasets and cell

types. The kmcellbank provided all of the HepG2 and Huh7 cell

lines (KCB200507YJ and KCB200970YJ).
2.2 EFRGs resource

A comprehensive collection of 111 EFRGs was obtained from

the GeneCards repository (31, 32).
2.3 Consensus clustering

For cluster analysis, we employed the “ConsensusClusterPlus”

package and applied the k-means algorithm (33). To identify genes

with significant alterations across distinct EFRGs clusters,

differential expression analysis was conducted using the “limma”

software. FDR < 0.05 and an absolute log2 fold change (|log2FC|) >

0.5 were used as criteria for determining the significance of changes.
2.4 Developing the EFRGs
prognostic model

To discern prospective prognostic genes, we employed the LASSO

regression analysis in TCGA-HCC cohort (34, 35), employing the

“glmnet” package in the R programming language (36, 37). Through
Frontiers in Immunology 03
this methodology, we successfully identified a distinct ensemble of nine

fundamental genes that constitute the foundation of a comprehensive

risk signature (38). By employing the gene expression profiles of the

aforementioned identified genes, we computed a personalized risk

score for each patient within the studied cohort. Riskscore = e^(Exp.

DYNLT1*0.176 + Exp.ADAM9*0.1235 + Exp.SCARB1*0.1192 +

Exp.PPARG*0.1114 + Exp.HAVCR1*0.099 + Exp.GAPDH*0.0793 +

Exp.LGALS3*0.0647 + Exp.SIRT6*0.0624 - Exp.IL33*0.0997).

Subsequently, utilizing the median risk score as a threshold, the

individuals diagnosed with HCC were categorized into distinct

groups characterized as high-risk and low-risk. The performance of

the model was evaluated through the utilization of a receiver operating

characteristic (ROC) curve, which was generated employing the

“timeROC” R package (39, 40). Furthermore, for model validation,

we employed the GEO and IGCG cohorts. ROC curves were also

generated using the “timeROC” R package, while the “survival”

package facilitated the plotting of Kaplan-Meier survival curves to

illustrate our findings (40).
2.5 TME estimation

To quantify the relative abundance of infiltrating immune cells,

we employed CIBERSORT and ssGSEA R scripts. Utilizing

CIBERSORT, we quantified the immune cell infiltration within

each sample and performed intergroup comparisons (41). In order

to investigate variations in the biological mechanisms linked to

EFRGs, we performed Gene Set Variation Analysis (GSVA) using

the gene set collection “c2.cp.kegg.v7.2.symbols.gmt” sourced from

the MSigDB database (42, 43). ssGSEA method was performed to

assess the level of immune cell infiltration (44). Furthermore,

survival analysis was performed utilizing the “survival” and

“survminer” packages in the R software.
2.6 Drug sensitivity prediction
and validation

To identify ideal therapeutic options for individuals with HCC,

we employed the “pRRophetic” R package to evaluate the half-

maximal inhibitory concentration (IC50) values of diverse clinical

medication (45). Subsequently, the cellular sensitivity to these drugs

in HCC cells was assessed utilizing the CCK-8 assay, thereby

evaluating their efficacy.
2.7 Tumor migration ability

HCC cells were plated in 6-well plates and cultivated until they

achieved a confluency of 95%. To create a precise scratch in each

well, a sterile 20-L plastic pipette tip was employed, followed by a

gentle washing with PBS to remove any unattached cells and debris.

The width of the scratch wounds was assessed at 0 and 36 hours by

capturing photographs and subsequently measuring them using

Image J software.
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2.8 Statistical analysis

R 4.2.3 software was utilized for data processing, statistical

analysis, and visualization purposes. The determination of the

optimal cut-off value was achieved through the utilization of the

“survminer” R package, while Kaplan-Meier analysis was carried

out using the survival program. Comparisons between the two

groups with respect to continuous variables were conducted

utilizing the Wilcoxon-rank sum test, while the Spearman

correlation analysis was employed to assess the interrelationships

among continuous variables. Statistical significance was defined as

P < 0.05 for all statistical analyses performed.
3 Results

3.1 Identification of EFRGs

EFRGs, a collection of 111 genes related to efferocytosis, were

made available on the Genecards platform. The transcriptome data of

370 HCC tumor samples were obtained from the TCGA database.

The GSE14520 cohort was accessed via the GEO website. Eighty out

of the 111 EFRGs were found to be shared between two HCC cohorts,

as depicted in a Venn diagram (Figure 1A). Subsequently, the

“limma” R program was employed to discern 58 DEGs in HCC
Frontiers in Immunology 04
tumor and normal specimens. Among these 58 DEGs, 31 exhibited

statistically significant associations with the prognosis of HCC

patients as determined by univariate Cox regression analysis.

Specifically, 24 DEGs were associated with a worse prognosis, while

7 DEGs were associated with a better prognosis (Figure 1B). To

demonstrate the associations between the survival of HCC patients

and the identified 31 EFRGs, as well as the interconnections among

these EFRGs themselves, a network plot was employed (Figure 1C).

Copy number variations (CNVs), which refer to variations in the

number of DNA sequence copies in the genome that exhibit

interindividual variability, play a significant role in neoplastic

conditions and exhibit a robust correlation with tumor initiation,

progression, and prognostication. Consequently, we conducted an in-

depth investigation into the CNV alterations affecting the

aforementioned 31 EFRGs in light of these established correlations.

A prominent amplification of IL6R and CD5L is observed among the

EFRGs, whereas a distinct copy number reduction is evident in

HMGB1, PLG, DYNLT1, and IGF2R (Figure 2A). Furthermore,

Figure 2B displays the genomic loci of these genes.
3.2 EFRGs subclusters identification

We used an integrative strategy using HCC samples from both

the TCGA and GSE14520 cohorts in order to acquire thorough
A B

C

FIGURE 1

Characterization of Efferocytosis in HCC. (A) Identification of 80 genes associated with efferocytosis from hepatocellular carcinoma cohort. (B) 31
EFRGs associated with prognosis. (C) Network of 31 EFRGs.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1237350
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1237350
insights into the expression patterns of EFRGs implicated in

carcinogenesis. By categorizing the data based on the expression

patterns of 31 EFRGs, a reliable clustering technique was used to

identify various subtypes within the HCC samples. K=3 was found

to be the ideal number of clusters by analyzing the CDF

(Cumulative Distribution Function) curve (Figure 3A). The

integrated cohort was divided into three separate EFRG clusters

as a result. After doing a survival study, it was shown that cluster B

had considerably higher overall survival (OS) than cluster C

(Figure 3B). The Uniform Manifold Approximation and

Projection (UMAP) analysis revealed that the distribution of the

three EFRG clusters was considerably different (Figure 3C). For

each of the three subtypes, the expression of EFRGs was shown in a

heat map along with the matching clinicopathological

characteristics (Figure 3E). Given the stark differences between

clusters B and C (Figure 3D), we used the GSVA software to

explicitly analyze the differential enrichment of KEGG pathways.
Frontiers in Immunology 05
EFRGs are distributed differently throughout the three subtypes,

identifying 73 genes that vary significantly between these

subtypes (Figure 3F).
3.3 Immune infiltration in the
EFRGs subtypes

The distribution of the EFRGs in the three subgroups was shown

by visualizing their expression patterns. Notably, cluster A’s expression

level for EFRGs was midway between clusters B and C, echoing the

patterns of predictive survival time that had been noticed (Figure 4A).

In terms of immune cell infiltration, cluster B showed a marked

difference from the other two groups, with a much lower percentage of

activated dendritic cells, NK cells, and macrophages (Figure 4B). This

emphasizes how closely immune cells and efferocytosis are related in

the prognostic subgroups of hepatocellular cancer.
A

B

FIGURE 2

CNVs and chromosome region of EFRGs. (A) CNVs of 31 EFRGs. (B) Chromosome region of EFRGs.
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D

A B

E

F

C

FIGURE 3

Subgroups of HCC differentiated by EFRGs. (A) The consensus clustering analysis yielded a satisfactory k = 3 consensus matrix, which was deemed
acceptable. (B) Survival probabilities for three HCC subtypes were determined. (C) UMAP identified three distinct subtypes characterized by variations
in the expression levels of EFRGs. (D) KEGG pathway enrichment. (E) Characteristics of 3 subtypes of EFRGs expression about clinical and
pathological perspectives. (F) Clusters derived from differential expression of EFRGs exhibit overlapping regions as observed on Venn diagrams.
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3.4 Risk model construction and validation

To construct a rigorous HCC risk model, we conducted an

analysis on 31 EFRGs using LASSO and multivariable Cox

regression (Figure 5A). In the end, a total of 9 genes were used to

calculate the HCC patients’ survival risk score (Figure 5B;

Supplementary Table S1). All HCC patients had their risk scores

calculated, and then they were split into high-risk and low-risk

groups. The ROC curve illustrated the model’s ability to predict

outcomes while the KM-plot was used to highlight the prognostic

variations between two HCC subgroups with different risk

(Figures 5C, D). Additionally, according to the decision curve, the

EFRGs model may help HCC patients in the clinical setting as an

auxiliary tool (Figure 5E). Cluster C of the EFRG subgroups was

shown to have the worst prognosis by the Alluvial plot (Figure 5F).

The good prognostic prediction power of the EFRGs model was

further demonstrated by using the GEO and ICGC HCC cohorts as

the testing and validation sets, respectively. The high-risk group had
Frontiers in Immunology 07
a shorter survival time (Figures 6A, B), and there were significant

differences between them and the low-risk group (Figures 6C, D).
3.5 Immune infiltration landscape

The relationship between the tumor immunological

microenvironment (TIM) and tumor development is well-

established, with efferocytosis serving as a vital function for

certain immune cells. To investigate potential variations in the

immunological milieu among distinct subgroups of HCC classified

based on efferocytosis, our study was designed. Employing the

CIBERSORT R script, we assessed the relative proportions of

diverse immune cell populations within each HCC sample

(Figure 7A). Upon analyzing the intercellular associations of

immune cells, a robust correlation was observed between active

mast cells and eosinophils, followed by monocytes and neutrophils,

activated CD4 memory T cells, and quiescent NK cells (Figure 7B).
A

B

FIGURE 4

Immunity and gene expression patterns of EFRG subgroups. (A) 31 EFRGs expression profiles. (B) Patterns of immune infiltration across three HCC subtypes.
*p < 0.05; **p < 0.01; ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1237350
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1237350
Notably, a pronounced disparity between the high-risk and low-risk

groups in the infiltration of Macrophages M0 cells was identified

(Figures 7C, E). The connections between nine EFRGs and several

immune cells are illustrated (Figure 7D).
3.6 Immunotherapy response

Based on the findings from prior research, notable distinctions

exist in the immunological microenvironments of high-risk and

low-risk cohorts, characterized by variations in the infiltration levels

of Macrophage M0, Tregs, and CD4 T cells. These modifications

help to create an immunosuppressive milieu, which affects how

differently the two groups respond to immunotherapy. Across three

immune treatment cohorts, gratifyingly substantial variations in 9-
Frontiers in Immunology 08
EFRG expression levels between the responsive and non-responsive

groups were observed (Figures 8A, C, E). Moreover, our EFRGs

model exhibited remarkable precision in prognosticating the

response to immune therapies targeting PD-1, PD-L1, and CTLA-

4, showcasing exceptional predictive efficacy specifically for PD-1

response, as indicated by an area under the curve (AUC) surpassing

0.9 (Figures 8B, D, F).
3.7 Chemotherapy sensitivity prediction
and validation

Utilizing the “pRRophetic” R package, we conducted an

evaluation to gauge the efficacy of chemotherapeutic agents in the

treatment of HCC across various risk groups. Specifically, we
D

A B

C

FE

FIGURE 5

Identify the core EFRGs to build a prognostic model. (A, B) A total of 9 prognostic EFRGs were identified. (C, D) The TCGA cohort was employed to
establish the training dataset for the prognostic model. (E) Decision curve analysis. (F) Diagram illustrating the clustering of EFRGs and their
corresponding survival status through an alluvial representation.
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employed this computational tool to compute the IC50 values for

clinically utilized chemotherapeutic drugs in HCC treatment

(Figure 9; Supplementary Table S2). In order to validate our

findings, we conducted an assessment of risk scores among a

diverse range of HCC cell lines. Subsequently, we selected the

Huh7 and HepG2 cell lines to delineate distinct subgroups of

HCC patients, representing those with high-risk and low-risk

scores, respectively (Figure 10). Employing the CCK-8 assay, we

observed disparate sensitivities of Huh7 and HepG2 cells towards

etoposide, with the Huh7 cells, characterized by high-risk scores,

demonstrating a greater degree of responsiveness compared to the

HepG2 cells (Figures 10B, D). These observations are in accordance

with the expected responses to drug sensitivity and offer additional

validation for the prospective applicability of this chemotherapeutic

agent as a precision therapeutic alternative for individuals with a

heightened susceptibility to hepatocellular carcinoma.
3.8 Transwell and wound-healing assay

Previous analysis indicates that there are significant differences

in the prognosis of HCC patients with different risks, which is
Frontiers in Immunology 09
closely related to tumor metastasis. Therefore, we aimed to assess

the migration and invasion abilities between HCC cell lines of

different risks. Huh7 and HepG2 cells were seeded in Transwell

chambers, and the number of cells that crossed the chambers was

observed at 24 hours and 48 hours, respectively (Figures 10A, C).

Additionally, a wound-healing assay was performed to provide a

more intuitive reflection of the differences in migration abilities

between Huh7 and HepG2 cells, which represent different risk levels

(Figures 10E, F). This explains why our model can accurately reflect

the differences in prognosis among HCC patients with

different risks.
3.9 Single-cell transcriptome analysis

The emergence of single-cell technology has greatly enhanced

our comprehensive understanding of cellular populations as a

whole. In the following investigation, we explore the expression

levels of EFRGs in diverse cell types and their intercellular

communication. To gain deeper insights into the changes in

EFRG expression levels across distinct cell populations within

HCC patients after PD-L1 and CTLA-4 immunotherapy, we
D

A B

C

FIGURE 6

Testing and validation of prognostic EFRGs models. (A, B) Testing of EFRGs model. (C, D) Validation of EFRGs model.
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selected the LIHC_GSE125449 aPDLaCTLA4 cohort for single-cell

analysis (Figure 11A). Given the variation in the sensitivity of tumor

patients to immunotherapy, we compared the expression levels of

EFRGs between HCC patients who received PD-L1/CTLA-4

treatment and those who did not (Figure 11C). Furthermore, the

connections between tumor cells, hepatic progenitors, and various

immune cells were elucidated. Significant associations were

observed among HCC cells, hepatic progenitors, and CD8 T cells

(Figures 11B, C). The identification of transcriptional regulators

(TFs) that govern differential expression is crucial for

understanding the underlying gene regulatory networks.

Therefore, we predicted the TFs that shape the expression

patterns in different scRNA-seq clusters. SIN3A and YY1 were

identified as key regulators in hepatic progenitors and HCC cells

(Figures 11E, F).
Frontiers in Immunology 10
4 Discussion

The management of HCC, an exceedingly aggressive and

metastatic cancer characterized by a high rate of recurrence, poses

substantial challenges in clinical care. HCC has an astonishingly

poor 5-year survival rate, underscoring the urgent need for better

treatment strategies (1, 46). Despite the progress made in diverse

therapeutic approaches , including chemotherapy and

immunotherapy, the intrinsic heterogeneity of HCC tumors and

their associated adverse prognostic outcomes continue to pose

significant challenges (47, 48). Consequently, the identification of

prognostic markers and biomarkers holds paramount importance

in accurately evaluating treatment response (49–52), thereby

facilitating enhanced clinical decision-making for individuals

suffering from HCC.
D

A B

E

C

FIGURE 7

Relationship between immune infiltration and risk scores for HCC. (A) The proportion of immune cells responding in HCC patients with different risk
scores. (B) The interrelationship between immune cells. (C) Differences in immune cell levels between different risk subgroups. (D) Correlation
between immune cell populations and nine EFRGs. (E) Enrichment of immune cells in HCC patients with different risk scores.
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Efferocytosis, a pivotal immune system mechanism involved in

the clearance of apoptotic cells to preserve tissue homeostasis, exerts

a substantial impact on a wide range of physiological and

pathological processes. This includes its influence on tumor

development and progression (7–9). Neoplastic cells in the tumor

microenvironment of HCC go through repeated cycles of

proliferation and death, releasing a variety of inflammatory
Frontiers in Immunology 11
mediators and triggering subsequent inflammatory responses.

These inflammatory reactions encourage the attraction and

stimulation of immune cells with efferocytic properties (12–14).

Surprisingly, new research has shown that cancerous cells can use

the efferocytosis mechanism to circumvent immune identification

and immune monitorin (53). Tumor cells are able to display

molecular signals associated with efferocytosis on their cellular
D
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FIGURE 8

Immunotherapy response prediction. (A, C, E) Expression levels of EFRGs between different immune response groups. (B, D, F) Predictive efficacy of
EFRGs on immunotherapy response.
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membrane and evade the immune system by modifying the

polarization and number of macrophages (54–56). There is

currently a dearth of study on efferocytosis, particularly in

relation to the choice of immune treatment and malignant

prognosis. With the use of multi-omics research, our work

intends to clarify the role of efferocytosis in the development and

therapy of HCC.

Using a clinical approach, we first screened a cohort of HCC

patients to find 80 common EFRGs (Figure 1A). Univariate

regression analysis was then performed to find 31 EFRGs that

were substantially linked with the prognosis of HCC (Figure 1B).

We divided HCC patients into three categories based on the levels

of EFRG expression because we believed that efferocytosis played a

crucial role in tumor development (Figure 3B). These subgroups

showed substantial variations in overall survival. This shows that

efferocytosis-related gene expression levels have a considerable

impact on the prognosis of HCC patients, potentially acting as

prognostic biomarkers. We further clarified the relationships

between these EFRGs and clinical characteristics (Figure 3E).
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Lasso analysis was used to analyze the connection between the

expression patterns of 31 EFRGs and survival in order to learn more

about the function of EFRGs in hepatocellular carcinoma prognosis.

As a result, we created a nine-EFRG prognostic prediction model

(Figures 5A, B). The model’s training data came from the TCGA

cohort, while its testing and validation data came from the

GSE14520 and ICGC cohorts, respectively. The prognostic

prediction capacity of our EFRGs model was excellent overall

(Figures 6B, D). In the course of a survival study, it was shown

that patients with high-risk and low-risk HCC had significantly

different survival rates (P < 0.001) (Figures 6A, B). The model could

improve clinical patients’ chances of survival, according to

DCA (Figure 5E).

Immune cells play critical roles in the development of diseases

(57–59). By engulfing apoptotic cells during the process of

efferocytosis, immune cells serve a critical role in controlling the

growth of tumors (7–9). Effective efferocytosis makes it easier to

remove apoptotic cells, which prevents inflammatory responses and

slows the growth of tumors (22). However, immune cells with
FIGURE 9

Drug prediction based on the expression pattern of EFRGs subgroups.
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abnormal functions may have impaired efferocytosis, which would

therefore encourage the formation of tumors and immune evasion.

Because there were substantial variations in immune cell infiltration

across the three subgroups of HCC, we further evaluated the levels

of immune cell infiltration, including dendritic cells, CD4 T cells,

and macrophages (Figure 4B). We further examined the immune

landscape infiltration in high-risk and low-risk HCC patients using

the EFRGs predictive model (Figure 7). Patients with high-risk

HCC showed concentration of Macrophages M0, regulatory T cells

(Tregs), follicular helper T cells, and activated CD4 memory T cells.

Meanwhile, naïve B cells and resting Mast cells were enriched in

low-risk HCC patients (Figure 7E). Interestingly, activated Mast

cells and memory B cells showed a significant connection with

macrophages M0 (Figure 7B). In patients with high-risk HCC, we

found that the amount of Macrophages M0 infiltration was

considerably greater (Figure 7C). So we examined the relationship

between nine EFRGs and immune cell infiltration (Figure 7D). The

findings showed that LGALS3 had the strongest connection with

Macrophages M0, indicating that LGALS3 could be an important

EFRG that affects how well macrophages perform efferocytosis.

In-depth research has been done on immunotherapy, which has

emerged as a crucial therapeutic approach in the management of

cancer (60–62). This treatment strategy makes use of the immune

system’s innate capacity to identify and get rid of cancerous cells

(63–65). Macrophages and the crucial molecules CTLA-4, PD-1,
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and PD-L1 have a complex relationship (66–69). In order to assess

the potential impact of disparate levels of macrophage infiltration

on the response to immune therapy, we investigated whether such

variation could influence the therapeutic efficacy (70). Our findings

revealed significant differences in the expression of nine EFRGs

between the groups responsive and non-responsive to immune

therapy (Figures 8A, C, E). Consequently, our prognostic model

exhibits the ability to predict the response of HCC to PD-1, PD-L1,

and CTLA-4 antibodies (Figures 8B, D, F). Single-cell analysis

provides a profound understanding of the expression levels of

genes among different cells within the same sample, offering

guidance in the identification of critical cellular subtypes that

exert fundamental functions. We were intrigued by the impact of

the immune checkpoint inhibitors PDL1/CTLA-4 on the tumor

microenvironment of HCC. Therefore, employing single-cell

analysis, we compared the expression level variations of EFRGs

among various cellular components within the immune

microenvironment between samples treated with anti-PDL1/

CTLA-4 and control HCC samples (Figure 11A). Hepatic

progenitor cells and HCC cells were identified as the cell

populations exhibiting the most significant changes in EFRG

expression levels (Figure 11D). Given that high EFRG expression

is indicative of improved response to immune therapy (Figure 8),

these two cell types may serve as crucial target cells mediating the

anti-tumor effects of anti-PDL1/CTLA-4.
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FIGURE 10

Drug sensitivity of HCC cell lines with different risk scores. (A–D) Drug sensitivity of Huh7 and HepG2 to different concentrations of Imatinib and
Tipifarnib. (E, F) Migration ability between Huh7 and HepG2. *p < 0.05; **p < 0.01; ***p < 0.001.
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Presently, the investigation into the contribution of efferocytosis

to tumor drug resistance remains limited. Conversely, considerable

research has been dedicated to studying the involvement of immune

cells in tumor drug resistance. Considering the intimate

relationship between efferocytosis and immune cells, we aimed to

explore whether efferocytosis could serve as a predictive factor for

the sensitivity of HCC to chemotherapy agents. To this end, we

leveraged the “pRRophetic” R package to analyze and compare the

IC50 values of distinct drugs between high-risk and low-risk

cohorts, with the intention of identifying significant difference.

Significant disparities in drug sensitivity were observed among

high-risk and low-risk HCC patients when assessing the response

to 25 chemotherapy drugs (Figure 9). Notably, high-risk HCC

patients exhibited heightened sensitivity to Imatinib in

comparison to their low-risk counterparts. Furthermore, CCK-8

assays substantiated that, under equimolar drug concentrations,

high-risk Huh7 cells displayed greater susceptibility to Imatinib
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than HepG2 cells (P < 0.05) (Figures 10B, D). The obtained results

suggest that our prognostic model based on EFRGs can potentially

offer insights into the responsiveness of HCC to chemotherapy

agents, thereby offering valuable guidance for clinical drug selection

in patient management.

Despite providing numerous valuable findings, our study has

certain limitations that need to be acknowledged. Firstly, this

research heavily relies on publicly available datasets and is solely

based on three HCC datasets, which may introduce selection bias.

Therefore, further validation of the EFRGs prognostic model in

HCC patients is warranted using larger clinical cohorts to enhance

the credibility of the results. Additionally, the elucidation of the

immune landscape requires validation through in vivo and in vitro

experiments. Further investigations into the mechanisms

underlying the impact of efferocytosis on HCC progression need

to be elucidated through a series of cellular experiments.

Nevertheless, it is worth emphasizing that our findings regarding
D
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FIGURE 11

Single-cell sequencing analysis of immunotherapy in HCC patients. (A) Cells are divided into 8 clusters. (B, C) Cellular Communication.
(D) Expression Changes of EFRGs in 8 cells clusters. (E, F) Identification of key transcriptional regulators.
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efferocytosis highlight the significant value of EFRGs, establishing a

connection between efferocytosis, the immune microenvironment,

and the prognosis of HCC patients. Furthermore, the predictive

value of our EFRGs model in prognosis, immune therapy, and

chemotherapy has been confirmed. These findings hold promising

potential for offering new directions in the clinical treatment

of HCC.
5 Conclusion

Tumor growth is significantly influenced by efferocytosis, which

plays a crucial role in physiological balance and disease

pathogenesis. In this work, we developed a prognostic prediction

model specifically for HCC and created a unique gene signature

made up of 9 efferocytosis-related genes. The use of this approach

shows potential for aiding in the development of tailored treatment

plans for those with HCC. Additionally, the discovery of a link

between immune microenvironment genes and the process of

efferocytosis has opened up a brand-new field for the

development of immunotherapeutic approaches. The effectiveness

of anticancer therapy in HCC can be increased, increasing the

susceptibility of HCC to treatment, by focusing on crucial

efferocytosis-related genes.
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