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The gut microbiota is not just a simple nutritional symbiosis that parasitizes the

host; it is a complex and dynamic ecosystem that coevolves actively with the host

and is involved in a variety of biological activities such as circadian rhythm

regulation, energy metabolism, and immune response. The development of the

immune system and immunological functions are significantly influenced by the

interaction between the host and the microbiota. The interactions between gut

microbiota and cancer are of a complex nature. The critical role that the gut

microbiota plays in tumor occurrence, progression, and treatment is not clear

despite the already done research. The development of precision medicine and

cancer immunotherapy further emphasizes the importance and significance of

the question of how the microbiota takes part in cancer development,

progression, and treatment. This review summarizes recent literature on the

relationship between the gut microbiome and cancer immunology. The findings

suggest the existence of a “symbiotic microecosystem” formed by gut

microbiota, metabolome, and host immunome that is fundamental for the

pathogenesis analysis and the development of therapeutic strategies for cancer.
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1 Introduction

Life, in the form of prokaryotes, first appeared on Earth

approximately 3.8 billion years ago, while the earliest eukaryotic

single-celled organisms emerged approximately 1.8 billion years

ago. Evidence suggests that eukaryotes originated from the fusion

and aggregation of prokaryotes into multicellular complexes,

initially utilizing the genetic information of prokaryotes. This

process led to the differentiation into animals and plants, with

microorganisms playing a crucial role throughout the entire

process. Hundreds of different types of microorganisms colonize

the vertebrate intestine in a rather mutually beneficial interaction

with the host (1–3). Among the gut microbiota, the members that

play a dominant role are Firmicutes (Gram-positive bacteria

without a true outer membrane) and Bacteroidetes (Gram-

negative bacteria with an outer membrane) phyla (4–7). In

healthy individuals, the gut microbiota maintains a dynamic

balance between beneficial and opportunistic pathogenic bacteria

(8). Moreover, these microorganisms actively contribute to the

production of neurotransmitters, enzymes, and vitamins. For

example, vitamins B and K produced by bacteria are involved in

immune and metabolic functions (9–11). A dynamic equilibrium of

the gut microbiota with beneficial bacteria predominating is the

optimal condition for the gut microbiota. Disruptions to the

dynamic equilibrium of the gut microbiota can lead to changes in

the composition, amount, and activity of the microbial community

(12, 13). These disruptions may occur due to factors such as age,

dietary preferences, and illness. Consequently, the mucosal barrier

may become impaired, leading to changes in cytokines and cell

signaling, suppression of commensal bacteria and probiotic

colonization, and increased proliferation of intestinal pathogens.

These alterations can compromise both local and systemic immune

responses (14). Damage to the mucosal barrier can result in the

transfer of gut microbes to mesenteric lymph nodes (MLNs) and

peripheral circulation, inducing Th17 and effector T-cell activation,

promoting neutrophil infiltration, and activating local and systemic

inflammatory responses (15).

The intestinal microbiota plays a complex and important role in

the development and progression of tumors (16). The gut

microbiota exhibits a bidirectional role in tumor development

and progression. On one hand, certain bacteria can promote

cancer by producing carcinogenic metabolites, inducing

inflammation, and impairing immune responses. On the other

hand, specific interventions such as probiotics and fecal

microbiota transplantation (FMT) have demonstrated potential

antitumor effects. Microbiota-driven carcinogenic mechanisms

exhibit significant heterogeneity across different organs. For

instance, specific bacteria have been implicated as pathogenic

factors in gastric cancer, while changes in the intestinal

microbiota and metabolites induced by dietary cholesterol drive

NAFLD-HCC (non-alcoholic fatty liver disease-liver cancer) (17).

However, the specific mechanisms involved in these processes

remain largely unclear (18) (Figure 1).
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2 The complicated bidirectional role
of gut microbiome in cancer

2.1 Certain bacteria promote
gastrointestinal cancer by inducing local
inflammation and impairing the host
immune response

If we consider the gut as the outer surface of the body (similar to

the intestinal and skin surfaces), the gut microbiota belongs to the

external symbiotic community. Clearly, it is not desirable to have

such a situation inside cells or in peripheral blood and tissues

(except in the case of individuals who develop symptoms after viral

infections). In other words, the tolerance of the host immune

system toward gut microbiota is mostly limited to the outer

surface of tissues. To combat microbes that invade the internal

tissues, the immune system needs to be activated or in a state of

readiness (such as immune cells that are exposed to a large number

of microbial antigens or immune receptor cells with diversity that

can respond to microbial and mutated cell stimuli). This

phenomenon is an important component of immune function

because microbes from the outer surface of tissues can enter

through various pathways. Without immune receptor cells in a

state of readiness, we would struggle to defend against different

types of microbial invasions. This also suggests that infants should

be exposed to as many environmental microbes as possible soon

after birth to stimulate the immune system and generate greater

diversity, thereby maintaining a state of readiness. The presence of

gut microbiota is crucial for maintaining the immune system’s

readiness, and under normal circumstances, the two exist in a

dynamic balance. However, if the quantity of a particular microbe

or several microbes suddenly increases or remains at a consistently

high level for a prolonged period, it can significantly impact the

immune system. Apart from its pathogenicity (although current gut

symbiotic microorganisms have evolved to have low virulence, a

sharp increase in pathogenicity can occur when a large amount of

the same strain becomes more virulent), it can greatly affect

immune receptor diversity and immune spatial layout and

directly contribute to the development of diseases. A classic

example of a bacterial species that causes gastric cancer is

Helicobacter pylori (19, 20). H. pylori overcomes the natural

defense of the stomach by producing urease to neutralize the

local acidic environment and using flagella, which have the ability

to penetrate the mucous layer and interact with epithelial cells.

Other characteristics contributing to the survival of H. pylori

include its ability to adhere to the epithelium, produce catalase to

neutralize hydrogen peroxide, and obtain nutrients (21).H. pylori is

a cell toxin-associated antigen A (CagA) gene-positive bacterium

that adheres to gastric epithelial cells by binding to the

carcinoembryonic antigen-related cell adhesion molecule

(CEACAM) through the outer membrane adhesin HopQ (22)

and then delivers the effector protein CagA, peptidoglycan

metabolites, and DNA directly to epithelial cells through a type
frontiersin.org
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IV secretion system (23). Translocated CagA protein is localized to

the cell membrane and then undergoes tyrosine phosphorylation at

the Epiya site, mediated by the SRC family tyrosine kinase.

Phosphorylated CagA interacts with intracellular signaling

molecules through the Src Homology 2 (SH2) domain, releases its

activity regulation, and triggers pathological effects on gastric

cancer (24–26) (Figure 2, Table 1).

The dysbiosis of the gut microbiota is also closely related to the

occurrence of colorectal cancer (CRC) (27, 65, 66). Previous research

has revealed that the prevalence of several bacterial groups, such as

Bacteroides fragilis and Fusobacterium nucleatum, in the fecal

microbiota of CRC patients was higher than that of normal

individuals (67–69). F. nucleatum has been shown to bind to host

epithelial and endothelial cells through FadA adhesin and induce a

series of inflammatory reactions mediated by Nuclear Factor-kappa B

(NF-kB) and interleukin (IL)-6 (32–34). Hong et al. (70) have found

that F. nucleatum abundance correlated with high glucose metabolism

in patients with CRC. F. nucleatum induces a dramatic decline of m6A

modifications in CRC cells and patient-derived xenograft (PDX) tissues

by downregulating an m6A methyltransferase, METTL3, contributing

to the induction of CRC aggressiveness (71). In addition, F. nucleatum

can also inhibit the cytotoxic functions of tumor-infiltrating
Frontiers in Immunology 03
lymphocytes and natural killer (NK) cells by binding to the

inhibitory immune receptor TIGIT through another adhesin, Fap2,

thereby suppressing immune surveillance (33, 72). In addition, F.

nucleatum may contribute to epithelial–mesenchymal transition

(EMT), so it is tightly associated with cancer cell invasion,

suppression of antitumor immune responses, stemness, and

treatment resistance (73).

Enterotoxigenic Bacteroides fragilis (ETBF) that produces the

metalloprotease Bacteroides fragilis toxin (BFT) promotes

inflammation and disrupts the intestinal barrier function by

targeting the tight junctions of intestinal epithelial cells (IECs),

which is associated with acute diarrhea and inflammatory bowel

disease (74), thereby inducing chronic inflammation and tissue

damage in CRC (27, 28, 75–77). In addition, ETBF has been found

to be enriched in the gut microbiota of CRC patients, and its

enrichment is associated with poor prognosis of CRC (29, 78).

ETBF, which is enriched in some human CRCs, can stimulate E-

cadherin cleavage via BFT, leading to b-catenin activation (79). Studies
have also found that ETBF plays an important role in promoting CRC

through the Toll-like receptor 4 (TLR4)-Nuclear Factor of Activated

T-cells 5 (NFAT5)-dependent upregulation of Jumonji domain-

containing protein 2B (JMJD2B) levels in stem cell regulation (80, 81).
FIGURE 1

Interactions between the tumor microenvironment, gut microbiota, immune system, and immunotherapy. The gut microbiota can affect the
occurrence and progression of tumors through a variety of mechanisms, including directly participating in the occurrence and progression of
tumors; influencing the development and recognition of immune cells in the immune system, affecting the ability of immune cells to exert antitumor
immunity; and collaborating with tumor treatment to improve treatment effectiveness. The numbers (1–6) in the figure demonstrate the dynamic
and intricate connections among the tumor microenvironment, immune system, gut microbiota, and tumor treatment, with mutual influences on
each other (1). The gut microbiota can influence tumor development through mechanisms such as modulating immune responses, affecting the
growth and apoptosis of tumor cells, and regulating the expression of tumor-related genes. Conversely, changes in the tumor microenvironment
can also impact the composition and function of the gut microbiota. The interplay between the tumor microenvironment and gut microbiota is a
complex bidirectional relationship that holds significant implications for tumor development and treatment (2). The immune system can maintain
immune balance in the gut by regulating the composition and function of the gut microbiota, and the gut microbiota can also influence the
development and function of the immune system (5). The composition of the gut microbiota is related to individual responses to chemotherapy,
radiation therapy, and immunotherapy. By modulating the composition and function of the gut microbiota, it may be possible to improve the
effectiveness of tumor treatment and enhance patient survival rates and quality of life (3, 4, 6). The tumor microenvironment is closely related to the
immune system, as cellular molecules and factors such as blood vessels within the tumor microenvironment can regulate immune system functions.
Various treatment methods can impact the tumor microenvironment and immune system in different ways. Thus, there exists a complex interaction
network among the immune system, tumor microenvironment, and tumor treatment.
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2.2 Gut microbiota also promotes
extraintestinal cancers through bacterial
translocation and production of bioactive
molecules into circulation

Organs outside of the gastrointestinal tract are also remotely

affected by the gut microbiota’s carcinogenic effects. A study found

that certain gut microbiota, such as the Bacteroides and

Ruminococcaceae, can contribute to the development of

hepatocellular carcinoma (HCC) by exacerbating hepatic

inflammation, accumulating toxic compounds, and causing liver

steatosis (64). Obese and lean people have substantially distinct gut

microbiota compositions, especially in terms of the proportion of

bacteria that produce pro-inflammatory lipopolysaccharides

(LPSs). In accordance with thorough experimental investigations,

transplanting the microbiota of healthy individuals into obese mice

can reduce steatosis while causing hepatic steatosis in mice that are

fed normally (82).

Since symbiotic microbiota are frequently stable in the

gastrointestinal system, researchers posed an essential question:

where do tumor-related bacteria in remote organs come from?

Geller et al. proposed that pancreatic ductal adenocarcinoma

(PDAC)-related bacteria can retrogradely originate from the

gastrointestinal tract (48, 83). Pushalkar et al. (49) provided

evidence of bacterial migration from the gut to the pancreas, as

well as a time-dependent association between gut dysbiosis and
Frontiers in Immunology 04
Kras activation in PDAC. Vitiello et al. (83) also found that gut

dysbiosis can directly promote oncogenic signaling in the pancreas.

Accordingly, dysbiosis and mislocalization of the gut microbiota

have been associated with the onset of pancreatic and liver cancers,

which is in line with the theory that the intestine, liver, and pancreas

maintain continuous interactions. Microbiota can also indirectly

affect tumor progression through the production and metabolism of

bioactive molecules, which may reach tumors and metastatic sites

via systemic circulation, such as bacterial LPS, which can enter the

bloodstream and affect tumor formation in tissues far from the

gastrointestinal tract (84). Deoxycholic acid (DCA) and lithocholic

acid (LCA) can cause DNA damage by increasing the production of

reactive oxygen species (ROS), leading to cell senescence, chronic

inflammation, and tumorigenesis (85–87).

2.3 Colonization of certain strains of
probiotics in gut may have an antitumor
effect through modulating the immune
system and reducing inflammation

Maintaining a healthy and balanced gut microbiota can help

suppress tumor development. The symbiotic microbiota benefits

from the nutrient-rich environment in the gut, where the microbiota

will produce hundreds of proteins and metabolites that regulate key

host functions, including nutrient processing, energy balance

maintenance, and immune system development. The gut microbiota
FIGURE 2

The carcinogenic mechanisms of Helicobacter pylori, Fusobacterium nucleatum, and Bacteroides fragilis. (A) Helicobacter pylori attaches to the gastric
epithelial cells by binding to the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) through the outer membrane adhesin HopQ (22).
Then, through the type IV secretion system of CagA, peptidoglycan metabolites, and DNA, the effector protein CagA is directly delivered into the
epithelial cells to exert carcinogenic effects. (B) Through its mechanism of action, Fusobacterium nucleatum contributes to the development and
progression of colorectal cancer. (C) Enterotoxigenic Bacteroides fragilis (ETBF) produces toxins that target the tight junctions of intestinal epithelial cells,
cleaving E-cadherin and promoting inflammation and destruction of the intestinal mucosal barrier. This induces chronic intestinal inflammation and
tissue damage in colorectal cancer. b-catenin signaling alterations are a frequent target of cancer-associated microbes. Some microbes bind E-cadherin
on colonic epithelial cells, with altered polarity or within a disrupted barrier, and trigger b-catenin activation. Other microbes inject effectors (e.g., CagA)
that activate b-catenin signaling, resulting in dysregulated cell growth, acquisition of stem cell–like qualities, and loss of cell polarity.
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has complex impacts on the growth of tumors, and probiotics that

colonize the gut can influence these processes by enhancing immune

responses to antigens and antibodies, inhibiting monocyte

proliferation, and upregulating anti-inflammatory cytokines such as

IL-10 and IL-12. The gut microbiota contributes to reducing pro-
Frontiers in Immunology 05
inflammatory cytokines such as IL-1b and IL-6, exhibiting effective

anti-inflammatory activity. Goldin et al. have found that probiotics

play an important role in preventing CRC (88, 89).

Lactic acid bacteria and Bifidobacterium are involved in

regulating pH and bile acid processes (90). Inhibiting the activity
TABLE 1 The role of commensal microbes in tumorigenesis and progression.

Cancer
type Microbiome Proposed mechanism

Gastric cancer Helicobacter pylori

H. pylori is a cell toxin-associated antigen A (CagA) gene-positive bacterium that adheres to gastric epithelial
cells by binding to the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) through outer
membrane adhesin HopQ (22) and then delivers the effector protein CagA, peptidoglycan metabolites, and DNA
directly to epithelial cells through a type IV secretion system (23).

Colorectal
cancer

Bacteroides fragilis
Enterotoxigenic Bacteroides fragilis (ETBF) that produces the metalloprotease Bacteroides fragilis toxin (BFT)
promotes inflammation and disrupts the intestinal barrier function by targeting the tight junctions of intestinal
epithelial cells, which is associated with acute diarrhea and inflammatory bowel disease (27–29).

Escherichia coli pks+ E. coli-derived colicin causes DNA damage in colonic epithelial cells (30, 31).

Fusobacterium nucleatum
F. nucleatum has been shown to bind to host epithelial and endothelial cells through FadA adhesin and induce a
series of inflammatory reactions mediated by NF-kB and IL-6 (32–34).

Breast cancer

Clostridiaceae, Faecalibacterium;
Ruminococcaceae,
Dorea Lachnospiraceae

The gut microbiota may affect breast cancer risk and may do so through estrogen-independent pathways (35–
37).

Fusobacterium nucleatum
Gal-GalNAc levels increase as human breast cancer progresses, and that occurrence of F. nucleatum gDNA in
breast cancer samples correlates with high Gal-GalNAc levels (38).

Lung cancer

Veillonella and Megasphaera (39),
Gram-negative bacilli Escherichia
coli, Haemophilus influenzae,
Staphylococcus spp., Candida
albicans (40), Streptococcus (41)

Local microbiota provoke inflammation associated with lung adenocarcinoma by activating lung-resident gd T
cells (42).

Skin cancer

S. aureus (43)
In squamous cell carcinoma (SCC), S. aureus might promote tumor cell growth via modulation of hBD-2
expression (43).

Corynebacterium (44, 45)
Corynebacterium species might affect the development of MM (malignant melanoma) through an IL-17-
dependent pathway (44, 45).

Pancreatic
cancer

Fusobacterium nucleatum (46, 47),
Granulicatella adiacens (47)

The possible association of tumor Fusobacterium species status with epigenetic alterations, such as MLH1
methylation and CpG island methylator phenotype (CIMP) in pancreatic cancer.

Proteobacteria (48, 49)
Proteobacteria lead to T-cell anergy in a Toll-like receptor-dependent manner, accelerating tumor progression
(49).

Malassezia globose (50, 51)
Contributes to tumorigenesis, tumor growth, and gemcitabine resistance via mannose-binding lectin-C3 axis (50,
52)

Cervical
cancer

Proteobacteria, Parabacteroides,
Escherichia-Shigella, Roseburia (53) The role of Prevotella in altering host immunity by modulating immunologic pathways may also be linked to

cervical cancer risk and treatment outcomes (54).Prevotella, Porphyromonas,
Dialister (54)

Esophageal
cancer

Fusobacterium nucleatum (55)
Contributes to tumor infiltration of Treg lymphocytes in a chemokine (especially CCL20)-dependent fashion,
promoting aggressive tumor behaviors (55).

Campylobacter (56)
Campylobacter in esophageal adenocarcinoma progression might mimic that of Helicobacter pylori in gastric
cancer (57, 58).

Hepatocellular
carcinoma

Clostridium (59)
Inhibition of DCA production and modulation of gut microbiota are effective in preventing tumorigenesis in
HCC; however, Clostridium metabolizes bile acid into DCA, thus increasing the serum level of DCA
(deoxycholic acid) 0p’in HCC (59, 60).

Salmonella typhi
Salmonella typhi strains that maintain chronic infections secrete AvrA, which can activate epithelial b-catenin
signaling (61–63).

Bacteroides and Ruminococcaceae
Bacteroides and Ruminococcaceae, can contribute to the development of hepatocellular carcinoma (HCC) by
exacerbating hepatic inflammation, accumulating toxic compounds, and causing liver steatosis (64).
HCC, hepatocellular carcinoma; DCA, deoxycholic acid.
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of glucoside and nitrite reductase and decreasing the synthesis of

carcinogenic chemicals are two effects that Lactobacillus acidophilus

can have on the gut’s putrefactive bacteria. Lactic acid bacteria and

Bifidobacterium can physically degrade potential carcinogens and

their metabolites, such as heterocyclic amines (91–93),

nitrosamines, and aflatoxins, thereby inhibiting the development

of various cancers such as gastric, esophageal, liver, colon, and

bladder cancers (94). In female mice receiving subcutaneous

injection of breast cancer cells (4T1), giving them plant-derived

Lactobacillus rich in selenium nanoparticles (SeNPs) was shown to

induce effective immune responses by increasing levels of pro-

inflammatory cytokines interferon gamma (IFN-g), tumor necrosis

factor alpha (TNF-a), and IL-2 and increasing NK cell activity,

significantly inhibiting tumor development and increasing survival

rates compared to mice receiving only plant-derived Lactobacillus

or control model mice (95). Interestingly, whether through

preventative use of milk fermented with the Lactobacillus CRL431

strain of probiotics or starting use of milk fermented with the

CRL431 strain of probiotics after injection of breast cancer cells

(4T1), giving probiotics delayed or prevented tumor development

compared to mice injected with tumor cells (96).

The most common treatment for non-muscle-invasive bladder

cancer is transurethral resection of bladder tumor (TURBT) (97),

followed by single-dose intravesical immunotherapy with Bacillus
Frontiers in Immunology 06
Calmette-Guérin (BCG), which is an effective method for

preventing bladder cancer recurrence and progression after

bladder surgery (98–100) (Table 2). BCG works by inducing

nonspecific immune reactions and mediating antitumor effects

through the activation of inflammatory responses. CD4+ and

CD8+ lymphocytes, NK cells, granulosa cells, giant cells, and

dendritic cells (DCs) may be involved (118–121). In a mouse

model of subcutaneously implanted CT26 colon cancer cells, it

was found that pretreatment with Lactobacillus plantarum

(KC836552.1) significantly reduced tumor growth, prolonged

survival time, activated innate immunity, and increased the

intratumor levels of CD8+ T and NK cells (122). Although the

antitumor effect of Lactobacillus rhamnosus (JF414108.1) on colon

cancer is not clear, it has been shown to be more effective than BCG

in reducing bladder cancer recurrence rates. L. rhamnosus GG

(LGG) can recruit large numbers of neutrophils and macrophages

to the tumor site, thereby promoting tumor regression (104).

In addition, certain specific types of bacteria can alter immune

responses by promoting the development of certain subtypes of

lymphocytes. For example, segmented filamentous bacteria (SFB)

can induce the production of IL-17 and IL-22, which is beneficial

for the production of Th17 cells in mice (123–125). When using a

recombinant germ-free (GF) mouse model with the gut microbiota

of gas-producing Clostridia and fragile bacteria, the fragile bacteria
TABLE 2 Microbes inhibit tumor development.

Microbiome Inhibition of cancer

Cutibacterium
acnes

After intratumoral injection with C. acnes, the growth of melanoma cells was inhibited through the induction of Th1 type cytokines such as IL-12,
tumor necrosis factor alpha (TNF-a), and interferon gamma (IFN-g) (101).

Staphylococcus
epidermidis

6-N-hydroxyaminopurine (6-HAP) produced by Staphylococcus epidermidis selectively inhibits the proliferation of tumor cell lines, and intravenous
injection of 6-HAP inhibits the growth of B16F10 melanoma in mice (102).

Lactobacillus
rhamnosus GG

Oral intake of lipoteichoic acid from Lactobacillus reduces skin cancer risk (103).

L. rhamnosus GG (LGG) can recruit large numbers of neutrophils and macrophages to the tumor site, thereby promoting tumor regression (104, 105).

Lactic acid
bacteria

Regulating pH and bile acid processes (90)

Lactic acid bacteria could bind heterocyclic amines and other food-derived mutagens, reducing their activity (106).

Anticancer activity of lactic acid bacteria polysaccharides is associated with the stimulation of immune cells, primarily lymphocytes T and B,
macrophages, and NK cells, releasing interleukins (107).

Lactic acid bacteria degrade potential carcinogens and their metabolites, such as heterocyclic amines, nitrosamines, and aflatoxins, through physical
binding, thereby inhibiting the development of various cancers such as gastric cancer, esophageal cancer, liver cancer, colon cancer, and bladder cancer
(91–93, 95, 108–110).

Lactic acid bacteria can significantly reduce proangiogenic genes, including the expression of the VEGF gene, and stimulate the expression of Anti-
angiogenic genes (111).

Anticancer activity of lactic acid bacteria exopolysaccharides is associated with their antiproliferative and proapoptotic properties (112).

Bacillus
Calmette-
Guérin

Intravenous immunotherapy with Bacillus Calmette-Guérin (BCG) after TURBT for non-muscle-invasive bladder cancer can effectively prevent bladder
cancer recurrence and progression (98–100).

Bifidobacterium

Competition with putrefactive and pathogenic microbiota; improvement of the host’s immune response (113).

In the C57BL/6-B16 model, Bifidobacterium administration per se has a beneficial effect on CT26 tumor inhibition (114).

Oral administration of Bifidobacterium alone improved tumor control to the same degree as programmed cell death protein 1 ligand 1 (PD-L1)–
specific antibody therapy (checkpoint blockade), and combination treatment nearly abolished tumor outgrowth (115, 116).

Streptococcus
thermophilus

The tumor-suppressive effect of S. thermophilus is mediated at least by the secretion of b-galactosidase (117).
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promote the production of regulatory T cells (Tregs) and IL-10-

secreting T cells by binding surface polysaccharide A (PSA) to TLRs

on Treg surfaces (126, 127). Sivan et al. compared melanoma

growth in mice harboring different commensal microbiota and

observed differences in spontaneous antitumor immunity that

were abolished after mouse cohousing or FMT. The 16SrRNA

sequencing of mouse feces identified Bifidobacterium that may

cause differences in tumor growth and antitumor immunity in

mice; studies have also found that the Bifidobacterium can enhance

DC function, leading to the initiation and clustering of CD8+ T cells

in the tumor microenvironment (TME), thereby improving the

antitumor immune function (115, 128, 129).
2.4 Metabolites produced by gut
microbiota could influence the function of
the intestinal epithelial barrier as well as
the immune response

Intestinal symbiotic microbiota can also affect host immunity

through metabolites. Many metabolites produced by microbes

come from undigested or partially digested dietary fibers in the

body. The metabolites that play a major role in gut and human

health are short-chain fatty acids (SCFAs), which link host nutrition

to gut homeostasis. Through a variety of mechanisms, SCFAs

regulate IECs ’ functions, including proli ferat ion and

differentiation, and the subpopulations of intestinal endocrine

cells that affect gut motility, intestinal barrier performance, and

host metabolism. Recent studies have demonstrated improved

intestinal barrier and immunological regulatory activities of

SCFAs, particularly butyrate (130–132). Butyrate not only

promotes the production of iTregs as a Histone Deacetylase

(HDAC) inhibitor, which is crucial for intestinal balance, but also

promotes iTreg differentiation by enhancing fatty acid oxidation

(FAO) (133, 134). In CRC patients, there is a significant reduction

in butyrate-producing bacteria, and intestinal tumor cells treated

with butyrate-producing Clostridia show reduced proliferation and

increased apoptosis. Butyrate-producing bacteria can suppress the

development of intestinal tumors by regulating Wnt signaling and

gut microbiota, indicating potential therapeutic efficacy against

CRC (135, 136). In addition to SCFAs, other metabolites

produced by microbes, such as lipoteichoic acid (LTA) and

secondary bile acids, have a dual effect on tumor development,

while lysophosphatidic acid and secondary bile acids promote

tumor development (137).
3 The impact of gut microbiota on
tumor immunity

3.1 The influence of gut microbiota
on immunity

Gut microbiota plays a crucial role in the development and

maintenance of the host immune system (Figure 3) (138, 139),

and the types and distribution of gut microbiota can directly and
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indirectly affect the immune system and are closely related to the

occurrence of various diseases (140). By modifying the gut

metabolome, the variety and location of gut microbiota might

affect the repertory of gut or peripheral blood immune

cells, impairing the immune system’s ability to recognize

microorganisms or tumor cells. In the early stages of life, gut

microbiota shapes the immune system, and changes in gut

microbiota can affect the development and maturation of the

immune system later in life (22). Therefore, the diversity of the

gut microbiota is crucial for the establishment of the immune

regulatory network.

The diversity of T-cell receptors (TCRs) in an immune

repertoire with high levels of diversity is a key determinant of the

host’s ability to resist various environmental pathogens (141). TCR

diversity results from the random rearrangement of TCR gene

segments and the fusion of TCRa and TCRb chains during

thymic T-cell maturation. As a response, the immunological

repertoire can be created at different molecular levels from TCRs

(142). The microbiota of a host is a complex community of

microbial species that can form tissue-specific T-cell responses in

mucosal tissues such as the respiratory tract, gastrointestinal tract,

and urogenital tract and can induce CD4+ T cells to differentiate

into various T helper cell subtypes, such as peripheral Foxp3+ Treg

and Th17 cells in the gut (143). Early in life, the gut microbiota

controls the location of innate lymphoid cells that express the

transcription factor Promyelocytic Leukemia Zinc Finger (PLZF)

in the thymus. The symbiotic microbiota’s extracellular signals that

impact the gut immunoglobulin pool control the early B-cell lineage

in the gut mucosa (144). The diversity of gut microbiota during

early life colonization is critical for establishing an immune

regulatory network that prevents the induction of mucosal

immunoglobulin E (IgE), which is associated with allergy

susceptibility (145). Though being limited to the neonatal stage in

mice, TLR5-mediated negative selection of flagellated colonizing

bacteria is an important process that determines the composition of

the gut microbiota (146), and perturbations in this gut–thymus

communication during early life can affect adult susceptibility to

disease (136).

Microbes contribute to shaping the immune system (147), and

GF mice, which lack a gut microbiota, are thought to have severe

immune defects, including a lack of intestinal mucosal layer. Other

defects include altered secretion of IgA and decreased size and

function of Peyer’s patches and intestinal draining lymph nodes

(mLNs) (148, 149). Intraepithelial lymphocytes (IELs) of type ab
and gd in GF mice are substantially lower compared to typically

colonized animals and can be significantly increased upon

recolonization (150), and the development of thymic innate

lymphoid cells in GF mice is impaired and lacks microbial

ligands leading to defective TCR signaling (151). During

colonization with the ubiquitous gut microbe B. fragilis, a

bacterial polysaccharide (PSA) directs the cellular and physical

maturation of the developing immune system. Compared with

GF animals, PSA-mediated immune regulation during B. fragilis

colonization includes the correction of systemic T-cell defects and

Th1/Th2 imbalances and guidance of lymphoid organogenesis, and

B. fragilis PSA mutants are unable to restore these immune
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functions. PSA expressed by intestinal DCs can activate CD4+ T

cells and induce corresponding cytokine production (127). The

thymic homeostasis of developing PLZF-expressing cells is likewise

influenced by the gut microbiome. Specific developmental periods

are crucial for the effect of gut–thymus communication on the

thymus’s innate lymphoid cell development. Early-life antibiotic

treatment can cause permanent damage to PLZF+ innate lymphoid

cells in the thymus, while antibiotic treatment during adulthood

does not result in damage (152). Colonization with a human

commensal bacterium, segmented filamentous bacteria (SFB), but

lacking PSA, can restore the thymic development of PLZF+ innate

lymphoid cells in GF neonatal mice. Early in life, plasmacytoid DCs

are influenced by the microbiota and migrate from the colon to the

thymus to regulate the homeostasis of PLZF+ cells. More

importantly, disturbance of thymic PLZF+ cells due to changes in

the gut microbiota during early life affects susceptibility to diseases

during adulthood, and this study identified a communication

pathway between gut microbiota and thymic lymphoid cells

during the neonatal period that regulates the host’s susceptibility

to immunological diseases in later life (152). SFB is one of the few

identified microbiota-specific TCRs (123). It induces polarization of

Th17 cells, and these Th17 cells have a specific TCR for the SFB

antigen (153, 154). Zegarra et al. found that early-life colonization

of the gut commensal microbiota causes DCs in the intestine to

transport microbial antigens to the thymus, followed by the

induction of the expansion of microbiota-specific T cells. Once
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they enter the periphery, microbiota-specific T cells have the

potential to become pathogenic or resist relevant pathogens. In

this way, developing microbiota shapes and expands the thymic and

peripheral T-cell repertoire, enhancing recognition of gut

microbiota and pathogens (155). Stappenbeck et al. (156)

examine the interactions between the gut microbiota, the small

intestinal epithelium, and the villus’s mesenchymal microvascular

network, and they show that the microbiota plays a key role in

constructing this microvascular network, and that this regulation

depends on a central component of the gut’s innate immune system:

the Paneth cell. A conserved bacterial ligand produced by vitamin B

synthesis activates the distinct innate T cells known as mucosal-

associated invariant T (MAIT) cells, which link innate and adaptive

immunity and are crucial in the body’s response to bacterial and

viral infections. The development of thymic MAIT17 cells depends

on 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU)

produced by commensal bacteria on the mucosal surface (157, 158).

The gut mucosa consists of IECs and IELs, including Paneth

cells that secrete antimicrobial peptides and goblet cells that

produce mucus. The gut-associated lymphoid tissue (GALT) is

the most significant component of the human immune system

(159). The submucosa of the mucosa contains Peyer’s patches and

various immune cells, such as antigen-presenting cells, innate

lymphoid cells, CD4+ T cells, CD8+ T cells, and B cells (160).

Plasma cells in the lamina propria secrete IgA into the intestinal

lumen, which binds to various components of microorganisms,
FIGURE 3

The influence of gut microbiota on the biological function of immune cells. Pathogen-Associated Molecular Pattern (PAMPs) from the gut induce
the activation and maturation of antigen-presenting cells (APCs) including DCs. These APCs may then traffic to mesenteric lymph nodes to mediate
the maturation of lymphocytes, and local DCs may be activated by bacterial metabolites (such as Short-chain fatty acids (SCFAs)) or bacteria
themselves to migrate to mesenteric lymph nodes. Matured DCs further activate naive T cells to differentiate into effector T cells, Tregs, or Th17
cells, which can migrate back to the gut mucosa or systemic circulation. For local immune responses, Tregs secrete IL-10 and act on producing a
local anti-inflammatory cytokine environment. Th17 cells secrete cytokines including IL-17 that induce IECs to form tight junctions and secrete
antimicrobial proteins, and IL-17 can further lead to the release of other pro-inflammatory cytokines. PAMP, pathogen-associated molecular pattern;
M cell, Microfold cell; SCFA, Short-chain fatty acids; DC, Dendritic cells.
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dietary and luminal antigens, preventing harmful antigens from

directly interacting with the host immune system (161).

Fermentation products of commensal microbiota such as butyrate

can induce differentiation of colonic Tregs in mice (134). Bacterial

metabolites or the bacteria themselves can activate local DCs (162),

which migrate to draining lymph nodes and activate naive T cells to

become effector T cells. These T cells can subsequently return to the

intestinal mucosa or enter the systemic circulation as Treg or Th17

cells (163). Specific metabolites or bacterial by-products can shape

DCs to favor a Treg or Th17 phenotype. Some bacterial metabolites

can directly enter the bloodstream and further modulate the

systemic immune system (164). To prevent infections and

preserve immunological homeostasis, the gut microbiota and the

host immune system continually interact and impact each other.

Commensal bacteria can signal to immune cells in GALTs and

MLNs via pattern recognition receptors (PRRs), such as TLRs that

recognize pathogen-associated molecular patterns (PAMPs), such

as bacterial LPS and flagellin, to stimulate downstream immune

responses (164–167). Sensing the commensal microbiota through

the TLR-MyD88 signaling pathway triggers several responses that

are critical for maintaining host microbial homeostasis. MyD88-

dependent bacterial signaling is required for the induction of

epithelial antimicrobial proteins such as RegIIIg (168, 169).

Subsequently, the microbiota induces the repair of damaged IECs

through a MyD88-dependent process (170).

Allied with the microbiota, the gut microbiome can affect the

immune system by releasing different metabolites into the

bloodstream, including SCFAs (171). SCFAs are ligands for

HDAC inhibitors and G protein-coupled receptors (GPCRs);

SCFA-driven HDAC inhibition tends to express tolerant and

anti-inflammatory cell phenotypes, playing an important role in

maintaining immune balance (172). SCFAs have been shown to

enhance epithelial barrier function and immunological tolerance, as

well as promote gut homeostasis through particular mechanisms

such as increased mucin secretion in intestinal villi, inhibiting NF-

kB, activating inflammatory vesicles and producing IL-18, and

increasing the secretion of IgA from B cells. SCFAs can also

reduce antigen-presenting cells and directly or indirectly act on

local or resident antigen-presenting cells in other organs, such as in

the brain and lungs, thereby reducing neuroinflammation and

inflammation associated with allergic airway diseases (173, 174).

SCFAs also play an important role in the functional development of

microglia; microglial dysfunction in GF mice can be rescued by

SCFA treatment (175). GPR109A (encoded by Niacr1) is a butyrate

receptor in the colon and a receptor for niacin, which is produced

by the gut microbiota and inhibits gut inflammation. Studies have

found that GPR109A signaling promotes the anti-inflammatory

properties of colonic macrophages and DCs, enabling them to

induce the differentiation of Tregs and IL-10-producing T cells

(176). The most effective anti-inflammatory property of SCFAs is

probably their ability to promote the activity of Tregs, which

suppress the activity of effector T cells. Acetate and propionate

can stimulate the expansion of colonic Tregs (cTregs) that already

exist, while butyrate and propionate can promote the de novo

differentiation of naive T cells into Tregs (82, 177). Numerous

additional metabolites created by the gut microbiota from dietary
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components also play a significant role in immunity. For instance,

the gut microbiota can use arginine, another amino acid, to generate

metabolites that regulate the immune system. Polyamines, such as

putrescine (a diamine, N2), spermidine (N3), and spermine (N4),

which are derived from arginine and produced and secreted by gut

bacteria, are present in every living cell and play important roles in

gene expression and proliferation. Oral polyamine intake can

enhance the development and maintenance of intestinal mucosa

and resident immune cells (178, 179).
3.2 The impact of gut microbiota on the
tumor microenvironment

The TME is the environment in which tumors grow, and it

consists of blood vessels surrounding tumor cells, immune cells,

fibroblasts, bone marrow-derived inflammatory cells, different

signaling chemicals, and extracellular matrix. The TME can

regulate tumor growth, promote tumor invasion and metastasis,

mediate tumor immune escape, and promote or weaken the

carcinogenic process (180–183). The TME is a complex system

that includes many different types of cells, abnormal blood vessels,

and immune-suppressive cytokines and is one of the important

reasons for tumor evasion of immune surveillance (184) (Figure 4).

Mononuclear phagocytes (MPs), including monocytes (Mo),

macrophages (Mac), and DCs, are the main innate immune cells

and an important component of the TME. A recent study revealed

the influence of the microbiota on MPs in the TME and

innovatively proposed that MPs in the TME can be reshaped by

microbiota to enhance the efficacy of immune checkpoint inhibitors

(ICIs) (185). As sequencing technology advances, it is now known

that various bacteria colonize human tumors, proliferate, and

regulate immune function within tumors. The possible

mechanism is that these bacteria can selectively settle in tumors

that have a rich blood supply and relatively leaky vascular systems

through the potential chemotactic gradient of necrotic cell debris.

Once settled, they can selectively thrive in the relatively hypoxic

TME (especially anaerobic or facultative anaerobic bacteria) (186).

Studies have shown that each cancer subtype has a unique

microbiome with specific metabolic functions, and bacteria within

tumors mainly exist in cancer cells and immune cells (187, 188).

Therefore, the microbiome within tumors plays a crucial role in the

development and treatment of tumors (69, 189–191).

The pancreas was once thought to be sterile, but new evidence

shows that the microbiota within tumors can affect the progression

and treatment of pancreatic cancer (48, 192). Researchers found

that in 86 out of 113 tested human PDACs, representing

76% of the tumor tissues, there were bacteria present,

mainly Gammaproteobacteria, which can metabolize the

chemotherapeutic drug gemcitabine (2’, 2’-difluorodeoxycytidine)

into its inactive form, 2’, 2’-difluorodeoxyuridine.

Resistance to gemcitabine is produced within tumors by

Gammaproteobacteria, is dependent on bacterial cytidine

deaminase (CDDL) expression, and can be removed by

cotreatment with the antibiotic ciprofloxacin in a mouse model of

CRC (48). Aykut et al. (50) found that Malassezia spp. were
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abundant in both genetically engineered mouse models and human

pancreatic tumors, and that fungal or fecal bacterial transplantation

selected from mice carrying PDAC accelerated tumor progression.

In addition, Riquelme et al. (193) found that the abundance of

Pseudoxanthomonas, Saccharopolyspora, and Streptomyces spp. in

tumors was highly predictive of long-term survival in pancreatic

cancer patients, and a more diverse tumor microbiome composition

was observed in long-term survivors, which may be attributed to the

diverse microbiome promoting recruitment and activation of CD8+

T cells for an antitumor immune response.

According to research, the microbiota alters the immunological

microenvironment of the lungs, promoting tumor formation. The

resident immune cell network of the lung maintains lung tissue

homeostasis while also providing immunological defense against

invading infections (194). The development of lung cancer is closely

associated with chronic inflammation, characterized by the

infiltration of inflammatory cells and the accumulation of pro-

inflammatory cytokines (such as cytokines, prostaglandins, and

chemokines), which can stimulate various processes, including

cell proliferation, angiogenesis, and metastasis (195, 196).

Previous studies have shown that the local microbiome can

activate lung-resident gd T cells to cause lung adenocarcinoma-

related inflammation. GF or antibiotic-treated mice have significant

protective effects against KRAS mutation and p53 loss-induced lung
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cancer development. Mechanistically, commensal bacteria stimulate

bone marrow cells to produce Myd88-dependent IL-1b and IL-23,

inducing the proliferation and activation of Vg6+Vd1+gd T cells that

produce IL-17 and other effector molecules to promote

inflammation and tumor cell proliferation (42).

Th2 cells and innate lymphoid cells 2 (ILC2) can stimulate

tumor growth by secreting cytokines such as IL-4, IL-5, and IL-13.

The oncogene Kras-G12D increases the expression of IL-33 in

PDAC cells, and fungi in PDAC tissue can drive IL-33 secretion,

further recruiting and activating Th2 cells and ILC2 in the tumor,

ultimately inhibiting the antitumor immune response and

promoting tumor progression (52).

In immune cells, neutrophils and Tregs are key cells for cancer

growth and development (197–201). Neutrophils can activate the

interaction between cancer cells and endothelial cells in the primary

TME, thereby promoting tumor metastasis (202). Neutrophil

cytokines, chemokines, growth factors, and serine proteases create

a milieu that promotes tumor growth. Tumors control neutrophil

differentiation in the early stages to produce multiple phenotypic

and functionally polarized states that can affect tumor behavior

(203). In melanoma, neutrophils recruited by TLR4 signaling can

induce cancer cells to migrate to endothelial cells, promoting cancer

metastasis (204). The number of neutrophils in peripheral blood

and tumor tissue of individuals with various forms of cancer has
FIGURE 4

The antitumor immunity and immunotherapy effects of the gut microbiome. 1) Bacterial metabolites that enter the circulation can regulate gene
expression in various cells. 2) Cytokines can be released in response to microbial stimulation in the GALT and may enter the circulation to regulate
the immune function of downstream systems and stimulate the migration of immune cells. 3) The gut microbiota may translocate to distant tumor
sites and alter their immune response or therapeutic efficacy. Immune cells in the gut-associated lymphoid tissue (GALT) can migrate to distant
tumors under conditions of sensitive microbial signaling and perform immune-stimulating or inhibitory functions. 4) Bacterial metabolites,
antimicrobial peptides, and bacteria can induce dendritic cells (DC) to migrate to lymph nodes to stimulate T cells and B cells. Microbe-associated
molecular patterns (MAMPs) can regulate innate immunity by signaling through pattern recognition receptors such as TLRs.
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increased. Importantly, these findings link neutrophils to worse

clinical outcomes in cancer patients, implying that these cells may

play a role in tumor promotion. In fact, many in vitro and in vivo

functional studies have shown that tumor-stimulated neutrophils

promote angiogenesis and immune suppression, as well as the

migration, invasion, and metastasis of tumor cells (203, 205).

However, the enrichment of gut microbiota reduces the number

of neutrophils in circulation. One study reported that muscle

atrophy in mice fed with Lactobacillus reuteri resulted in reduced

systemic inflammation, better tumor suppression compared to the

control group, and reduced numbers of neutrophils in the

blood (206).

Tregs are essential for maintaining the balance of the immune

system and balancing beneficial inflammatory responses during

infection (207, 208). Tregs regulate host immune responses

aggregated near the TME, inhibit antitumor inflammatory

responses, and counteract antigen-specific effector T-cell responses

(209). The TME promotes the differentiation and proliferation of

Tregs and the secretion of immune-suppressive factors, thereby

promoting immune suppression in tumor tissue (210). According

to research by Arpaia et al., thymic-independent Treg production is

stimulated by SCFAs called butyrate produced by symbiotic microbes

during starch fermentation. Increased extrathymic differentiation of

Tregs is the cause of the rise in Treg number following butyrate

administration (82). In addition, based on animal model data, the

Chinese herbal formula YYFZBJS decoction can regulate the natural

gut flora, including B. fragilis and Lachnospiraceae, and prevent and

inhibit the development of intestinal tumors by reducing the

accumulation of CD4+ CD25+ Foxp3+ Tregs in the lymph nodes

and MLNs of Apc Min/+ mice (211).

Based on the close interaction between the host microbiome

and immune response in the TME, some scholars believe that

regulating the gut microbiome to treat tumors is a feasible

anticancer treatment strategy (164). The TME is impacted by the

ongoing and positive interaction between the gut microbiome and

microbial metabolites in the TME. This interaction affects IECs and

host immunology, promoting or preventing the development of

tumors (212). Ma et al. (213) analyzed the microbial composition of

bacteria within prostate cancer tumors to determine the impact of

the microbiome on prostate cancer metastatic growth. They

identified microbial communities such as Listeria monocytogenes,

Methylobacterium radiotolerans JCM 2831, Xanthomonas

albilineans GPE PC73, and Bradyrhizobium japonicum that could

effectively prevent prostate cancer growth (213).

In conclusion, the gut microbiome and tumor immunity are

inextricably interconnected. The gut microbiome’s antitumor

immune action requires additional investigation, even though the

precise mechanism is still unclear in the modern era of

tumor immunotherapy.
3.3 The impact of gut microbiota on
tumor immunotherapy

Numerous studies have shown that antitumor therapies such as

chemotherapy, radiation therapy, and immunotherapy can alter the
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gut microbiome of patients (214). Using the immune system for

defense against cancer is a technique known as cancer

immunotherapy. ICIs, oncolytic virus therapy, cancer vaccines,

cytokine therapy, and adoptive cell transfer (ACT) are the main

categories of current immunotherapies (215–223). Their common

feature is to enhance the immune response, including innate

immunity and/or adaptive immunity to clear cancer cells.

Compared with other antitumor therapies, immunotherapy can

significantly improve the survival rate of cancer patients.

Nonetheless, there are still many patients who cannot benefit

from immunotherapy because many factors, such as programmed

cell death protein 1 ligand 1 (PD-L1) expression and tumor

mutation burden, limit the response of many patients to

immunotherapy (224).

Various gut microbiomes also play a regulatory role in cancer

treatment. Microbial communities and their metabolites provide

key signals for the development and function of the host immune

system (174, 225–230). Using synthetic biology techniques, Canale

et al. (231) created an engineered probiotic strain of Escherichia coli

Nissle 1917. Its colonization in tumors raised the amount of L-

arginine there, increased the number of tumor-infiltrating T cells,

and significantly boosted tumor clearance when combined with PD-

L1-blocking antibodies. The research discovered that these

bacteria’s antitumor effects were mediated by L-arginine and were

reliant on T cells (231).

The regulation of the gut microbiome on immune therapy

response provides a new possibility for cancer treatment

(Figure 3). Previous studies have shown that the gut microbiome

may be a predictive biomarker of immunotherapy efficacy. The

higher the diversity of the gut microbiome, the longer the objective

response rate and survival rate of immunotherapy (232).

As early as 1813, it was reported that natural bacterial infections

could be used as drugs against malignant tumors. Vautier reported

that the tumor of a cancer patient with gas gangrene disappeared

(224, 233). Fehleisen (1883) and later William B. Coley tested the

live infection factor of dengue fever (later known as group A

Streptococcus or pyogenic streptococcus) as a means of treating

cancer (234–236).

Emerging evidence suggests that the gut microbiome can

regulate antitumor immunity through various mechanisms (237).

For example, certain antitumor microorganisms such as Bacteroides

thetaiotaomicron and B. fragilis can activate DCs through TLR-4

signaling, promote Th1 and cytotoxic CD8+ T-cell responses, and

help tumor immune surveillance and eradication (238).

Bifidobacteria produce inosine, which enhances the cytotoxic

activity of CD8+ T cells by agonizing adenosine 2A receptor

signaling in T cells (239).

Although resident bacterial communities exist in the

extraintestinal organs of healthy individuals, in cases of

inflammation, the intestinal barrier permeability is further

increased, enhancing the translocation of bacteria and bacterial

components from the intestine to distant sites (240, 241). Bacterial

translocation is not always associated with protumor inflammation

but may also be associated with enhanced antitumor immunity.

Cyclophosphamide induces immunogenic cell death in cancer cells

and promotes the differentiation of Th17 and Th1 cells, thereby
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enhancing treatment efficacy (242, 243). Cyclophosphamide also

causes increased intestinal permeability and bacterial translocation

from the intestine to lymphoid organs. Surprisingly, bacterial

translocation of Gram-positive bacterial species induced by

cyclophosphamide results in the production of Th1 memory T

cells and the differentiation of Th17 cells producing IFN-g, which is

crucial for antitumor immune responses during treatment

(122, 244).

Radiation therapy can treat most tumors whether used alone or

in combination. Increasing evidence shows an interaction between

radiation exposure and the human intestinal microbiota.

After radiation therapy, the structure and composition of the

microbiota are directly altered, such as by the decrease in the

re la t ive abundance of benefic ia l microbiota such as

Bifidobacterium and Faecalibacterium (245–247). When radiation

therapy is used to treat tumors in the abdomen and pelvis, radiation

may damage intestinal mucosal barrier function, affecting food

absorption, and even causing immune changes (248–251).

However, there is an interaction between radiation therapy and

microbiota. Although Radiation therapy (RT) treatment leads to an

imbalance in the intestinal microbiota, these changes in the

microbiota may be an important determining factor for the

effectiveness of radiation therapy against tumors (252).

Microbes have the potential to serve as biomarkers of response

to ICIs (253). In melanoma, non-small cell lung cancer, urothelial

carcinoma, and renal cell carcinoma, the impact of the gut

microbiota on the efficacy and interactions of ICIs has been

documented. By examining the oral and gut microbiome of 112

melanoma patients undergoing anti-Programmed Cell Death

Protein 1 (PD-1) immunotherapy, significant differences in the

diversity and composition of gut microbiomes were observed

between responders and nonresponders, and when analyzing the

patients’ fecal microbiomes, microbial a-diversity (P < 0.01) and

the relative abundance of tumor Clostridiales (P < 0.01) were

significantly higher. Transplanting fecal microbiota from patients

with a favorable response to ICIs into GF mice enhanced their

antitumor immunity (164). Mager et al. (239) found that

Bifidobacterium pseudolongum, Lactobacillus johnsonii, and

Olsenella can increase the efficacy of ICIs 4-fold in four cancer

mouse models.

Resistance to ICIs targeting the PD-1/PD-L1 axis induces

sustained clinical responses in a considerable proportion of

cancer patients (254). We found that the main resistance to ICIs

could be attributed to abnormal gut microbiota composition.

Antibiotics inhibit the clinical benefits of ICIs in advanced cancer

patients, and transplantation of fecal microbiota (FMT) from cancer

patients who respond to ICIs into GF or antibiotic-treated mice can

improve the antitumor effect of PD-1 blockade, whereas FMT from

nonresponders cannot improve the efficacy of PD-1 (255).

Akkermansia muciniphila is a gut bacterium that has been

shown to be associated with systemic effects on host metabolism

and PD-1 checkpoint immune therapy and induces

immunoglobulin G1 (IgG1) antibodies and antigen-specific T-cell

responses in mice (256). The relative abundance of A. muciniphila

was found to be correlated with the clinical response to ICIs in

patients’ fecal samples as revealed by metagenomics at diagnosis.
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Oral supplementation of A. muciniphila restored the efficacy of PD-

1 blockade in mice in a white blood cell-dependent manner by

increasing the recruitment of CCR9+ CXCR3+ CD4+ T lymphocytes

to the mouse tumor bed after FMT using nonresponder feces (229).

Preliminary studies in mouse models have identified the role of the

gut microbiota in supporting the efficacy of CpG oligonucleotide

immunotherapy and immunostimulatory cyclophosphamide

chemotherapy, and further research has demonstrated the

immunostimulatory effects of specific bacteria such as

Bifidobacterium and fragile Bifidobacteria that enhance the

efficacy of ICIs in mouse models (115, 257). An experiment

conducted at the University of Pittsburgh evaluated early data on

the use of FMT combined with pembrolizumab to treat melanoma

patients who had failed anti-PD-1 therapy. The report indicated

that two out of three patients experienced stable disease or tumor

regression (258). Another study evaluated FMT in patients with

melanoma who had become resistant to PD-1 inhibitor therapy.

One patient experienced illness regression after the initial scan,

while another had a considerable reduction in disease load and lived

for an additional 8 months. These patients’ tumor histology

revealed increased immune cell infiltration, and sequencing of

their gut microbiome revealed alterations in the bacterial

population (259).

Peng et al. performed 16SrRNA testing on fecal samples from

74 patients with advanced gastrointestinal tumors who received

anti-PD-1/PD-L1 therapy. Before and during treatment, the

patients who had higher proportions of Prevotella fungi bacteria

in their fecal microbiota showed better PD-1/PD-L1 treatment

responses and longer progression-free survival. Patients with

higher relative abundances of Prevotella, Rumatococcaceae, and

Trichophyton spp. had better treatment responses, and gut

bacteria that produce SCFAs, including lactobacilli and

streptococci, were positively correlated with the response to anti-

PD-1/PD-L1 therapy in different types of gastrointestinal tumors.

Microorganisms are potential response markers for ICIs (253).

Bullman et al. found that human primary colon adenocarcinoma

xenografts in mice retained living clostridial bacteria and their

associated microbiota through consecutive passages. Treatment of

mice carrying colon cancer xenografts with the antibiotic

metronidazole reduced the clostridial load, cancer cell

proliferation, and overall tumor growth. These findings support

further investigation into antibacterial interventions as potential

treatment methods for clostridial-related colon cancer patients

(260). Tumor response rates and survival rates of Immune

Checkpoint Blockade (ICB) cancer patients decreased when they

received antibiotics during treatment (261). Routy et al. (229) found

that if patients received antibiotics early, either before or after ICB

treatment, their survival rates were significantly reduced. In a

mouse model of melanoma, it was found that oral administration

of Bifidobacteria alone can improve tumor control to the same

extent as treatment with PD-L1-specific antibodies, and combined

therapy almost eliminates tumor growth (230). The activation of

antigen-presenting cells and increased cytotoxic T lymphocyte

infiltration into the tumor may be the mechanisms underlying the

improved antitumor response, although it is still unknown if

microbiota-regulated CD4+ T cells may also stop tumor
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progression. According to studies, distinct species of B.

thetaiotaomicron are required for Cytotoxic T-Lymphocyte-

Associated Protein 4 (CTLA-4) inhibitors to exert antitumor

effects. In mice and patients, specific T-cell responses to B.

thetaiotaomicron or B. fragilis are correlated with the efficacy of

CTLA-4 inhibitors, and antibiotic-treated or GF mice do not

respond to CTLA inhibitors, which can be overcome by

admin i s t e r ing B. f rag i l i s , immuniz ing wi th f rag i l i s

polysaccharides, or transferring fragilis-specific T cells (238).

Recent studies have shown that the use of vancomycin can

enhance the efficacy of Chimeric Antigen Receptor T-cell therapy

(CAR-T) therapy in mouse models of cervical cancer.

Mechanistically, vancomycin treatment induces an increase in

systemic CD8a+ DCs, elevating IL-12 levels and maintaining the

efficacy of systemically transferred antitumor T cells (262). The gut

microbiota’s metabolites, like SCFAs, may also influence tumor

immunotherapy, according to mounting data. One study showed

that butyrate and propionate enhance the antitumor activity of

Cytotoxic T Lymphocyte (CTL) and CAR-T cells through metabolic

and epigenetic reprogramming, increasing the production of

effector molecules such as CD25, IFN-g, and TNF-a (263).

Researchers revealed that they could dramatically improve the

therapeutic impact of PD-1 mAb through providing mice oral

doses of pectin, inulin, and other polysaccharide dietary fibers.

Adding these prebiotics can increase the relative abundance of key

symbiotic microbes, such as Akkermansia and Lactobacillus, and

SCFAs, further promoting CD8+ T-cell infiltration into the tumor

(264). In addition, SCFAs have been found to enhance the memory

potential of antigen-induced CD8+ T cells and trigger their

differentiation into stem-like Tcf1+PD-1+CD8+ T cells, which

produce effective and long-lasting antitumor effects (265).

The exploration of how gut microbiota regulates the efficacy of

immune therapy is proposed by Mager et al. (239) Gut microbiota

may regulate the outcome of immune therapy by stimulating or

inhibiting possible mechanisms of tumor immunity, such as

bacterial metabolites entering the bloodstream and regulating the

gene expression of various cells; regulation of innate immunity by

pattern recognition receptors; complete live bacteria possibly

transferring to distant tumors and affecting the immune

response or drug activity; immune cells regulated by microbial

signals in GALT can migrate and play immunostimulatory or

immunosuppressive functions in distant tumors; and cytokines

may be released through corresponding microbial stimulation in

GALT, which could possibly enter the circulatory system and

regulate the downstream immune function (173).

The effectiveness of immune therapy is significantly impacted

by immunological resistance, and immune therapy susceptibility is

correlated with gut microbiota. In addition to contributing to

immune therapy for tumors, the gut microbiota may also affect

immune resistance. Clostridiummay play a role in patient resistance

to chemotherapy, and a large-scale study showed that the

abundance of Clostridium is associated with a decrease in overall

survival (OS) (266). TLR4, which is expressed on CRC cells, is

activated by Clostridia, making these tumor cells more resistant to

oxaliplatin-induced cell death. This results in treatment failure and

encourages chemotherapy resistance in CRC patients (72). Some
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strains of lactic acid bacteria, such as Lactobacillus fermentum, are

also believed to weaken the response to immunotherapy (257). In

addition to mediating therapeutic effects, the gut microbiota can

also regulate the toxic effects of tumor treatment. The differences in

gut microbiota composition are associated with graft-versus-host

disease (GVHD) in different hematologic malignancies undergoing

allogeneic stem cell transplantation (267–269).

Radiation therapy is an effective method for treating tumors.

The interaction between gut microbiota and radiation therapy is

bidirectional (246). Radiation therapy can disrupt the composition

of the gut microbiota, which can have positive or negative effects on

the efficacy of tumor treatment. Typically, this disruption manifests

as a decrease in the abundance and diversity of the gut microbiota,

an increase in harmful microbial populations (such as

Proteobacteria and Clostridia), and a decrease in beneficial

microbial populations (such as Firmicutes and Bacteroidetes)

(245, 270).

Preclinical evidence suggests that patients exposed to broad-

spectrum antibiotics may experience a reduction in the effectiveness

of cancer radiotherapy. Changes in the gut microbiota caused by

antibiotics may be a key factor contributing to this phenomenon

(271). Another study found that whole-body irradiation enhanced

the translocation of gut bacteria to the MLNs in a melanoma mouse

model, resulting in a stronger anticancer response (272). Although

increasing evidence suggests that the human gut microbiota has

radioprotective effects, further research and exploration are needed

to understand how the gut microbiota influences the response to

radiation therapy.
4 Summary and outlook

The broad concept of microbiota extends beyond the gut

microbiota and encompasses the microecology of various tissues

within the body and even external ecological environments, forming

a three-dimensional spatial microbiota system that profoundly

influences the occurrence of diseases and the body’s resistance.

There is an inseparable relationship between gut microbiota and

tumors and tumor immunity. Imbalanced microbial ecology can

induce tumor formation, and tumor formation can also cause

microbial ecology disorders. The gut microbiota has undergone

distinct modifications in various tumors, and these changes can be

used as biomarkers for supplementary tumor diagnosis. The benefits

brought about by utilizing probiotics in tumor immunotherapy are

questionable, since the process by which microbial communities in

the TME affect tumor progression is complex and mysterious. Some

probiotics may hinder the effect of immunotherapy and even

promote cancer progression. Although the specific mechanism is

yet to be elucidated, the antitumor immune function of gut

microbiota is worth further exploration in the current era of tumor

immunotherapy. FMT has shown potential in tumor

immunotherapy because of its effect on the microbiome (135, 273–

276). Currently, FMT is being utilized more frequently beyond the

treatment of metabolic syndrome, diabetes, Crohn’s disease,

Parkinson’s disease, multiple sclerosis, psoriasis, anorexia nervosa,

or Alzheimer’s disease (277–280). However, FMT still has many side
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effects, such as abdominal discomfort, cramps, bloating, diarrhea, or

constipation, and its effect varies among individuals due to different

microbial community compositions, as well as various factors such as

age, diet, and medication (281). In addition, bacteriophages’ specific

killing of gut microbiota provides direction for the specific

elimination of microorganisms that promote tumor development

and hinder microbial translocation for various reasons, as well as

improving the efficacy of tumor treatment (282). Of course, the

uncertainty introduced by these methods raises concerns about the

role of the microbiota in tumor immunotherapy.

The interaction between microbial species, number, metabolites,

and immune cells is one area that will require further investigation in

order to fully understand the relationship between gut microbiota and

immunotherapy. To create more individualized treatment plans, it is

also essential to look into how different types of tumors are impacted by

gut bacteria. In future studies, it is also important to consider the

influence of an individual’s genetic background and lifestyle on gut

microbiota to better understand the interaction between microbiota

and tumor therapy. The findings in this paper will contribute to the

development of novel tumor treatment plans, increased

immunotherapy effectiveness, and decreased side effects.

In the future, the diagnosis and treatment of diseases will

gradually transition from anti-disease, antibacterial, and

antitumor drugs to comprehensive monitoring of the immune

function. The evaluation of the comprehensive immune function

is based on the balance of the overall and local dynamic microbiota,

and the gut and skin are all components of the microbiota and

places for maintaining normal immune function. Therefore, from

the perspective of maintaining a normal comprehensive immune

function, maintaining the balance of local microbiota is a

prerequisite for maintaining overall balance, and the cross-dialog

of different local microbiota forms a good symbiotic system. This

kind of symbiosis is the core area for exploring the nature of health

and the origin of diseases. Immunology’s advancements have

embraced traditional Chinese and Western medicine in separate

directions but ultimately to the same cause, creating a brand-new

area of medicine. The evaluation of the comprehensive immune

function must be carried out from the most fundamental

perspective and presented in a digital immune force method,

from mild regulation to dynamic detection of immunological

normalization. This is also a trend in the evaluation of diagnosis

and treatment and drug development and is one of the important

trends in the development of precision immunology. It is also an

important trend in the development of aging biology.
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179. Pérez-Cano FJ, González-Castro A, Castellote C, Franch A, Castell M.
Influence of breast milk polyamines on suckling rat immune system maturation. Dev
Comp Immunol (2010) 34(2):210–8. doi: 10.1016/j.dci.2009.10.001

180. Zeng MY, Cisalpino D, Varadarajan S, Hellman J, Warren HS, Cascalho M,
et al. Gut microbiota-induced immunoglobulin G controls systemic infection by
symbiotic bacteria and pathogens. Immunity (2016) 44(3):647–58. doi: 10.1016/
j.immuni.2016.02.006

181. Qiu Q, Lin Y, Ma Y, Li X, Liang J, Chen Z, et al. Exploring the emerging role of
the gut microbiota and tumor microenvironment in cancer immunotherapy. Front
Immunol (2020) 11:612202. doi: 10.3389/fimmu.2020.612202

182. Bissell MJ, Hines WC. Why don't we get more cancer? A proposed role of the
microenvironment in restraining cancer progression. Nat Med (2011) 17(3):320–9.
doi: 10.1038/nm.2328

183. Barry KC, Hsu J, Broz ML, Cueto FJ, Binnewies M, Combes AJ, et al. A natural
killer-dendritic cell axis defines checkpoint therapy-responsive tumor
microenvironments. Nat Med (2018) 24(8):1178–91. doi: 10.1038/s41591-018-0085-8

184. Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates
cancer progression. Cancer Res (2019) 79(18):4557–66. doi: 10.1158/0008-5472.CAN-
18-3962

185. Lam KC, Araya RE, Huang A, Chen Q, Di Modica M, Rodrigues RR, et al.
Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the
tumor microenvironment. Cell (2021) 184(21):5338–56.e21. doi: 10.1016/
j.cell.2021.09.019

186. Helmink BA, Khan MAW, Hermann A, Gopalakrishnan V, Wargo JA. The
microbiome, cancer, and cancer therapy. Nat Med (2019) 25(3):377–88. doi: 10.1038/
s41591-019-0377-7

187. Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT, et al. The human
tumor microbiome is composed of tumor type-specific intracellular bacteria. Science
(2020) 368(6494):973–80. doi: 10.1126/science.aay9189

188. Heymann CJF, Bard JM, Heymann MF, Heymann D, Bobin-Dubigeon C. The
intratumoral microbiome: Characterization methods and functional impact. Cancer
Lett (2021) 522:63–79. doi: 10.1016/j.canlet.2021.09.009

189. Meng S, Chen B, Yang J, Wang J, Zhu D, Meng Q, et al. Study of microbiomes
in aseptically collected samples of human breast tissue using needle biopsy and the
potential role of in situ tissue microbiomes for promoting malignancy. Front Oncol
(2018) 8:318. doi: 10.3389/fonc.2018.00318

190. Boesch M, Horvath L, Baty F, Pircher A, Wolf D, Spahn S, et al.
Compartmentalization of the host microbiome: how tumor microbiota shapes
checkpoint immunotherapy outcome and offers therapeutic prospects. J Immunother
Cancer (2022) 10(11):e005401. doi: 10.1136/jitc-2022-005401

191. Cogdill AP, Gaudreau PO, Arora R, Gopalakrishnan V, Wargo JA. The impact
of intratumoral and gastrointestinal microbiota on systemic cancer therapy. Trends
Immunol (2018) 39(11):900–20. doi: 10.1016/j.it.2018.09.007

192. Balachandran VP, Łuksza M, Zhao JN, Makarov V, Moral JA, Remark R, et al.
Identification of unique neoantigen qualities in long-term survivors of pancreatic
cancer. Nature (2017) 551(7681):512–6. doi: 10.1038/nature24462

193. Riquelme E, Zhang Y, Zhang L, Montiel M, Zoltan M, Dong W, et al. Tumor
microbiome diversity and composition influence pancreatic cancer outcomes. Cell
(2019) 178(4):795–806.e12. doi: 10.1016/j.cell.2019.07.008

194. Lloyd CM, Marsland BJ. Lung homeostasis: influence of age, microbes, and the
immune system. Immunity (2017) 46(4):549–61. doi: 10.1016/j.immuni.2017.04.005

195. Budisan L, Zanoaga O, Braicu C, Pirlog R, Covaliu B, Esanu V, et al. Links
between infections, lung cancer, and the immune system. Int J Mol Sci (2021) 22
(17):9394. doi: 10.3390/ijms22179394

196. Palucka AK, Coussens LM. The basis of oncoimmunology. Cell (2016) 164
(6):1233–47. doi: 10.1016/j.cell.2016.01.049

197. Erdman SE, Rao VP, Olipitz W, Taylor CL, Jackson EA, Levkovich T, et al.
Unifying roles for regulatory T cells and inflammation in cancer. Int J Cancer (2010)
126(7):1651–65. doi: 10.1002/ijc.24923
frontiersin.org

https://doi.org/10.1016/j.chom.2015.10.007
https://doi.org/10.1016/j.chom.2015.10.007
https://doi.org/10.1038/nature01433
https://doi.org/10.1073/pnas.1915047117
https://doi.org/10.1038/nature13279
https://doi.org/10.1016/j.immuni.2009.08.020
https://doi.org/10.1016/j.immuni.2009.08.020
https://doi.org/10.1038/s41586-021-03531-1
https://doi.org/10.1073/pnas.202604299
https://doi.org/10.1126/science.aaw2719
https://doi.org/10.1038/s41577-019-0191-y
https://doi.org/10.1111/imr.12182
https://doi.org/10.1038/nri3738
https://doi.org/10.1038/mi.2014.55
https://doi.org/10.1038/nature10863
https://doi.org/10.1073/pnas.1405634111
https://doi.org/10.1073/pnas.1405634111
https://doi.org/10.1016/j.ccell.2018.03.015
https://doi.org/10.3389/fimmu.2014.00461
https://doi.org/10.1038/nature10434
https://doi.org/10.1038/86373
https://doi.org/10.1084/jem.20070563
https://doi.org/10.1084/jem.20070563
https://doi.org/10.1126/science.1209791
https://doi.org/10.1126/science.1140488
https://doi.org/10.1016/j.cell.2021.06.019
https://doi.org/10.1038/s41392-019-0074-5
https://doi.org/10.1053/j.gastro.2020.11.041
https://doi.org/10.1038/nri.2016.42
https://doi.org/10.1038/nn.4030
https://doi.org/10.1016/j.immuni.2013.12.007
https://doi.org/10.1126/science.1241165
https://doi.org/10.1042/BCJ20160185
https://doi.org/10.1016/j.dci.2009.10.001
https://doi.org/10.1016/j.immuni.2016.02.006
https://doi.org/10.1016/j.immuni.2016.02.006
https://doi.org/10.3389/fimmu.2020.612202
https://doi.org/10.1038/nm.2328
https://doi.org/10.1038/s41591-018-0085-8
https://doi.org/10.1158/0008-5472.CAN-18-3962
https://doi.org/10.1158/0008-5472.CAN-18-3962
https://doi.org/10.1016/j.cell.2021.09.019
https://doi.org/10.1016/j.cell.2021.09.019
https://doi.org/10.1038/s41591-019-0377-7
https://doi.org/10.1038/s41591-019-0377-7
https://doi.org/10.1126/science.aay9189
https://doi.org/10.1016/j.canlet.2021.09.009
https://doi.org/10.3389/fonc.2018.00318
https://doi.org/10.1136/jitc-2022-005401
https://doi.org/10.1016/j.it.2018.09.007
https://doi.org/10.1038/nature24462
https://doi.org/10.1016/j.cell.2019.07.008
https://doi.org/10.1016/j.immuni.2017.04.005
https://doi.org/10.3390/ijms22179394
https://doi.org/10.1016/j.cell.2016.01.049
https://doi.org/10.1002/ijc.24923
https://doi.org/10.3389/fimmu.2023.1235827
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xue et al. 10.3389/fimmu.2023.1235827
198. Poutahidis T, Haigis KM, Rao VP, Nambiar PR, Taylor CL, Ge Z, et al. Rapid
reversal of interleukin-6-dependent epithelial invasion in a mouse model of microbially
induced colon carcinoma. Carcinogenesis (2007) 28(12):2614–23. doi: 10.1093/carcin/
bgm180

199. Coffelt SB, Wellenstein MD, de Visser KE. Neutrophils in cancer: neutral no
more. Nat Rev Cancer (2016) 16(7):431–46. doi: 10.1038/nrc.2016.52

200. Erdman SE, Rao VP, Poutahidis T, Rogers AB, Taylor CL, Jackson EA, et al.
Nitric oxide and TNF-alpha trigger colonic inflammation and carcinogenesis in
Helicobacter hepaticus-infected, Rag2-deficient mice. Proc Natl Acad Sci U S A
(2009) 106(4):1027–32. doi: 10.1073/pnas.0812347106

201. Shaul ME, Fridlender ZG. Tumour-associated neutrophils in patients with
cancer. Nat Rev Clin Oncol (2019) 16(10):601–20. doi: 10.1038/s41571-019-0222-4

202. Hedrick CC, Malanchi I. Neutrophils in cancer: heterogeneous and
multifaceted. Nat Rev Immunol (2022) 22(3):173–87. doi: 10.1038/s41577-021-
00571-6

203. Dumitru CA, Lang S, Brandau S. Modulation of neutrophil granulocytes in the
tumor microenvironment: mechanisms and consequences for tumor progression.
Semin Cancer Biol (2013) 23(3):141–8. doi: 10.1016/j.semcancer.2013.02.005

204. Bald T, Quast T, Landsberg J, Rogava M, Glodde N, Lopez-Ramos D, et al.
Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in
melanoma. Nature (2014) 507(7490):109–13. doi: 10.1038/nature13111

205. Jaillon S, Ponzetta A, Di Mitri D, Santoni A, Bonecchi R, Mantovani A.
Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer
(2020) 20(9):485–503. doi: 10.1038/s41568-020-0281-y

206. Varian BJ, Gourishetti S, Poutahidis T, Lakritz JR, Levkovich T, Kwok C, et al.
Beneficial bacteria inhibit cachexia. Oncotarget (2016) 7(11):11803–16. doi: 10.18632/
oncotarget.7730

207. Wing JB, Tanaka A, Sakaguchi S. Human FOXP3(+) regulatory T cell
heterogeneity and function in autoimmunity and cancer. Immunity (2019) 50
(2):302–16. doi: 10.1016/j.immuni.2019.01.020

208. Erdman SE, Poutahidis T. Cancer inflammation and regulatory T cells. Int J
Cancer (2010) 127(4):768–79. doi: 10.1002/ijc.25430

209. Nishikawa H, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Curr
Opin Immunol (2014) 27:1–7. doi: 10.1016/j.coi.2013.12.005

210. Wang YA, Li XL, Mo YZ, Fan CM, Tang L, Xiong F, et al. Effects of tumor
metabolic microenvironment on regulatory T cells. Mol Cancer (2018) 17(1):168.
doi: 10.1186/s12943-018-0913-y

211. Sui H, Zhang L, Gu K, Chai N, Ji Q, Zhou L, et al. YYFZBJS ameliorates
colorectal cancer progression in Apc(Min/+) mice by remodeling gut microbiota and
inhibiting regulatory T-cell generation. Cell Commun Signal (2020) 18(1):113.
doi: 10.1186/s12964-020-00596-9

212. Sethi V, Kurtom S, Tarique M, Lavania S, Malchiodi Z, Hellmund L, et al. Gut
microbiota promotes tumor growth in mice by modulating immune response.
Gastroenterology (2018) 155(1):33–7.e6. doi: 10.1053/j.gastro.2018.04.001

213. Ma J, Gnanasekar A, Lee A, Li WT, Haas M, Wang-Rodriguez J, et al. Influence
of intratumor microbiome on clinical outcome and immune processes in prostate
cancer. Cancers (Basel) (2020) 12(9):2524. doi: 10.3390/cancers12092524

214. Tan S, Li D, Zhu X. Cancer immunotherapy: Pros, cons and beyond. BioMed
Pharmacother (2020) 124:109821. doi: 10.1016/j.biopha.2020.109821

215. Zhang Y, Zhang Z. The history and advances in cancer immunotherapy:
understanding the characteristics of tumor-infiltrating immune cells and their
therapeutic implications. Cell Mol Immunol (2020) 17(8):807–21. doi: 10.1038/
s41423-020-0488-6

216. Kaeuferle T, Krauss R, Blaeschke F, Willier S, Feuchtinger T. Strategies of
adoptive T -cell transfer to treat refractory viral infections post allogeneic stem cell
transplantation. J Hematol Oncol (2019) 12(1):13. doi: 10.1186/s13045-019-0701-1

217. Fan J, Shang D, Han B, Song J, Chen H, Yang JM. Adoptive cell transfer: is it a
promising immunotherapy for colorectal cancer? Theranostics (2018) 8(20):5784–800.
doi: 10.7150/thno.29035

218. Sahin U, Türeci Ö. Personalized vaccines for cancer immunotherapy. Science
(2018) 359(6382):1355–60. doi: 10.1126/science.aar7112

219. Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Mol
Cancer (2021) 20(1):41. doi: 10.1186/s12943-021-01335-5

220. Harrington K, Freeman DJ, Kelly B, Harper J, Soria JC. Optimizing oncolytic
virotherapy in cancer treatment. Nat Rev Drug Discovery (2019) 18(9):689–706.
doi: 10.1038/s41573-019-0029-0

221. Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin
O, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves
anti-PD-1 immunotherapy. Cell (2017) 170(6):1109–19.e10. doi: 10.1016/
j.cell.2017.08.027

222. Briukhovetska D, Dörr J, Endres S, Libby P, Dinarello CA, Kobold S.
Interleukins in cancer: from biology to therapy. Nat Rev Cancer (2021) 21(8):481–99.
doi: 10.1038/s41568-021-00363-z

223. Propper DJ, Balkwill FR. Harnessing cytokines and chemokines for cancer
therapy. Nat Rev Clin Oncol (2022) 19(4):237–53. doi: 10.1038/s41571-021-00588-9

224. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age.
Nature (2011) 480(7378):480–9. doi: 10.1038/nature10673
Frontiers in Immunology 19
225. Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota. Immunity
(2017) 46(4):562–76. doi: 10.1016/j.immuni.2017.04.008

226. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets
TV, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in
melanoma patients. Science (2018) 359(6371):97–103. doi: 10.1126/science.aan4236

227. Badgeley A, Anwar H, Modi K, Murphy P, Lakshmikuttyamma A. Effect of
probiotics and gut microbiota on anti-cancer drugs: Mechanistic perspectives. Biochim
Biophys Acta Rev Cancer (2021) 1875(1):188494. doi: 10.1016/j.bbcan.2020.188494

228. Frankel AE, Coughlin LA, Kim J, Froehlich TW, Xie Y, Frenkel EP, et al.
Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific
human gut microbiota and metabolites associated with immune checkpoint therapy
efficacy in melanoma patients. Neoplasia (2017) 19(10):848–55. doi: 10.1016/
j.neo.2017.08.004

229. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, et al. Gut
microbiome influences efficacy of PD-1-based immunotherapy against epithelial
tumors. Science (2018) 359(6371):91–7. doi: 10.1126/science.aan3706

230. Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, et al. The
commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma
patients. Science (2018) 359(6371):104–8. doi: 10.1126/science.aao3290

231. Canale FP, Basso C, Antonini G, Perotti M, Li N, Sokolovska A, et al. Metabolic
modulation of tumours with engineered bacteria for immunotherapy. Nature (2021)
598(7882):662–6. doi: 10.1038/s41586-021-04003-2

232. Yachida S, Mizutani S, Shiroma H, Shiba S, Nakajima T, Sakamoto T, et al.
Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the
gut microbiota in colorectal cancer. Nat Med (2019) 25(6):968–76. doi: 10.1038/
s41591-019-0458-7

233. Mowday AM, Guise CP, Ackerley DF, Minton NP, Lambin P, Dubois LJ, et al.
Advancing clostridia to clinical trial: past lessons and recent progress. Cancers (Basel)
(2016) 8(7):63. doi: 10.3390/cancers8070063

234. Nauts HC, Swift WE, Coley BL. The treatment of malignant tumors by
bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the
light of modern research. Cancer Res (1946) 6:205–16.

235. Coley WB. The treatment of malignant tumors by repeated inoculations of
erysipelas. With a report of ten original cases. 1893. Clin Orthop Relat Res (1991)
262):3–11.

236. Coley WB. II. Contribution to the knowledge of sarcoma. Ann Surg (1891) 14
(3):199–220. doi: 10.1097/00000658-189112000-00015

237. Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA, Knight R. The
microbiome and human cancer. Science (2021) 371(6536):eabc4552. doi: 10.1126/
science.abc4552

238. Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, et al.
Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science
(2015) 350(6264):1079–84. doi: 10.1126/science.aad1329

239. Mager LF, Burkhard R, Pett N, Cooke NCA, Brown K, Ramay H, et al.
Microbiome-derived inosine modulates response to checkpoint inhibitor
immunotherapy. Science (2020) 369(6510):1481–9. doi: 10.1126/science.abc3421

240. Hietbrink F, Besselink MG, Renooij W, de Smet MB, Draisma A, van der
Hoeven H, et al. Systemic inflammation increases intestinal permeability during
experimental human endotoxemia. Shock (2009) 32(4):374–8. doi: 10.1097/
SHK.0b013e3181a2bcd6

241. Ha CWY, Martin A, Sepich-Poore GD, Shi B, Wang Y, Gouin K, et al.
Translocation of viable gut microbiota to mesenteric adipose drives formation of
creeping fat in humans. Cell (2020) 183(3):666–83.e17. doi: 10.1016/j.cell.2020.09.009

242. Sistigu A, Viaud S, Chaput N, Bracci L, Proietti E, Zitvogel L.
Immunomodulatory effects of cyclophosphamide and implementations for vaccine
design. Semin Immunopathol (2011) 33(4):369–83. doi: 10.1007/s00281-011-0245-0

243. Viaud S, Flament C, Zoubir M, Pautier P, LeCesne A, Ribrag V, et al.
Cyclophosphamide induces differentiation of Th17 cells in cancer patients. Cancer
Res (2011) 71(3):661–5. doi: 10.1158/0008-5472.CAN-10-1259

244. Buchta Rosean CM, Rutkowski MR. The influence of the commensal
microbiota on distal tumor-promoting inflammation. Semin Immunol (2017) 32:62–
73. doi: 10.1016/j.smim.2017.06.002

245. Fernandes A, Oliveira A, Soares R, Barata P. The effects of ionizing radiation on
gut microbiota, a systematic review. Nutrients (2021) 13(9):3025. doi: 10.3390/
nu13093025

246. Liu J, Liu C, Yue J. Radiotherapy and the gut microbiome: facts and fiction.
Radiat Oncol (2021) 16(1):9. doi: 10.1186/s13014-020-01735-9

247. Deleu S, Machiels K, Raes J, Verbeke K, Vermeire S. Short chain fatty acids and
its producing organisms: An overlooked therapy for IBD? EBioMedicine (2021)
66:103293. doi: 10.1016/j.ebiom.2021.103293

248. Reis Ferreira M, Andreyev HJN, Mohammed K, Truelove L, Gowan SM, Li J,
et al. Microbiota- and radiotherapy-induced gastrointestinal side-effects (MARS) study:
A large pilot study of the microbiome in acute and late-radiation enteropathy. Clin
Cancer Res (2019) 25(21):6487–500. doi: 10.1158/1078-0432.CCR-19-0960

249. Xavier JB, Young VB, Skufca J, Ginty F, Testerman T, Pearson AT, et al. The
cancer microbiome: distinguishing direct and indirect effects requires a systemic view.
Trends Cancer (2020) 6(3):192–204. doi: 10.1016/j.trecan.2020.01.004
frontiersin.org

https://doi.org/10.1093/carcin/bgm180
https://doi.org/10.1093/carcin/bgm180
https://doi.org/10.1038/nrc.2016.52
https://doi.org/10.1073/pnas.0812347106
https://doi.org/10.1038/s41571-019-0222-4
https://doi.org/10.1038/s41577-021-00571-6
https://doi.org/10.1038/s41577-021-00571-6
https://doi.org/10.1016/j.semcancer.2013.02.005
https://doi.org/10.1038/nature13111
https://doi.org/10.1038/s41568-020-0281-y
https://doi.org/10.18632/oncotarget.7730
https://doi.org/10.18632/oncotarget.7730
https://doi.org/10.1016/j.immuni.2019.01.020
https://doi.org/10.1002/ijc.25430
https://doi.org/10.1016/j.coi.2013.12.005
https://doi.org/10.1186/s12943-018-0913-y
https://doi.org/10.1186/s12964-020-00596-9
https://doi.org/10.1053/j.gastro.2018.04.001
https://doi.org/10.3390/cancers12092524
https://doi.org/10.1016/j.biopha.2020.109821
https://doi.org/10.1038/s41423-020-0488-6
https://doi.org/10.1038/s41423-020-0488-6
https://doi.org/10.1186/s13045-019-0701-1
https://doi.org/10.7150/thno.29035
https://doi.org/10.1126/science.aar7112
https://doi.org/10.1186/s12943-021-01335-5
https://doi.org/10.1038/s41573-019-0029-0
https://doi.org/10.1016/j.cell.2017.08.027
https://doi.org/10.1016/j.cell.2017.08.027
https://doi.org/10.1038/s41568-021-00363-z
https://doi.org/10.1038/s41571-021-00588-9
https://doi.org/10.1038/nature10673
https://doi.org/10.1016/j.immuni.2017.04.008
https://doi.org/10.1126/science.aan4236
https://doi.org/10.1016/j.bbcan.2020.188494
https://doi.org/10.1016/j.neo.2017.08.004
https://doi.org/10.1016/j.neo.2017.08.004
https://doi.org/10.1126/science.aan3706
https://doi.org/10.1126/science.aao3290
https://doi.org/10.1038/s41586-021-04003-2
https://doi.org/10.1038/s41591-019-0458-7
https://doi.org/10.1038/s41591-019-0458-7
https://doi.org/10.3390/cancers8070063
https://doi.org/10.1097/00000658-189112000-00015
https://doi.org/10.1126/science.abc4552
https://doi.org/10.1126/science.abc4552
https://doi.org/10.1126/science.aad1329
https://doi.org/10.1126/science.abc3421
https://doi.org/10.1097/SHK.0b013e3181a2bcd6
https://doi.org/10.1097/SHK.0b013e3181a2bcd6
https://doi.org/10.1016/j.cell.2020.09.009
https://doi.org/10.1007/s00281-011-0245-0
https://doi.org/10.1158/0008-5472.CAN-10-1259
https://doi.org/10.1016/j.smim.2017.06.002
https://doi.org/10.3390/nu13093025
https://doi.org/10.3390/nu13093025
https://doi.org/10.1186/s13014-020-01735-9
https://doi.org/10.1016/j.ebiom.2021.103293
https://doi.org/10.1158/1078-0432.CCR-19-0960
https://doi.org/10.1016/j.trecan.2020.01.004
https://doi.org/10.3389/fimmu.2023.1235827
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xue et al. 10.3389/fimmu.2023.1235827
250. Hollingsworth BA, Cassatt DR, DiCarlo AL, Rios CI, Satyamitra MM, Winters
TA, et al. Acute radiation syndrome and the microbiome: impact and review. Front
Pharmacol (2021) 12:643283. doi: 10.3389/fphar.2021.643283

251. Gerassy-Vainberg S, Blatt A, Danin-Poleg Y, Gershovich K, Sabo E, Nevelsky
A, et al. Radiation induces proinflammatory dysbiosis: transmission of inflammatory
susceptibility by host cytokine induction. Gut (2018) 67(1):97–107. doi: 10.1136/gutjnl-
2017-313789

252. Uribe-Herranz M, Rafail S, Beghi S, Gil-de-Gómez L, Verginadis I, Bittinger K,
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