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Immune evasion is essential for carcinogenesis and cancer progression.

Programmed death-ligand 1 (PD-L1), a critical immune checkpoint molecule,

interacts with programmed death receptor-1 (PD-1) on immune cells to suppress

anti-tumor immune responses. In the past decade, antibodies targeting PD-1/

PD-L1 have tremendously altered cancer treatment paradigms. Post-

translational modifications have been reported as key regulators of PD-L1

expression. Among these modifications, ubiquitination and deubiquitination are

reversible processes that dynamically control protein degradation and

stabilization. Deubiquitinating enzymes (DUBs) are responsible for

deubiquitination and have emerged as crucial players in tumor growth,

progression, and immune evasion. Recently, studies have highlighted the

participation of DUBs in deubiquitinating PD-L1 and modulating its expression.

Here, we review the recent developments in deubiquitination modifications of

PD-L1 and focus on the underlying mechanisms and effects on anti-

tumor immunity.

KEYWORDS

deubiquitinating enzymes, deubiquitination, cancer immunotherapy, post-translational
modification, programmed death-ligand-1 (PD-L1)
1 Introduction

Immune evasion is essential for carcinogenesis and cancer progression. Cancer cells have

developed multiple mechanisms to evade immune surveillance, including reducing

immunogenicity, limiting antigen recognition, inducing T cell exhaustion, and expressing

inhibitory immune checkpoint proteins (1). Among these checkpoint molecules, programmed

death-ligand 1 (PD-L1) is one of the most critical players. PD-L1 interacts with programmed
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death receptor-1 (PD-1) on immune cells, including T cells, dendritic

cells, macrophages, and natural killer (NK) cells to restrain anti-tumor

immunity (2). Elevated PD-L1 expression has been observed in

multiple cancers including cervical cancer, non-small cell lung cancer

(NSCLC), and hepatocellular cancer (3). Currently, PD-1/PD-L1-

targeting treatments have significantly affected cancer treatment

approaches, and PD-L1 expression has emerged as an indicator for

the selection of patients who are more likely to benefit from PD-1/PD-

L1 inhibitors (4, 5). Therefore, exploring PD-L1 regulatory

mechanisms is of great importance.

The expression of PD-L1 is modulated at various levels,

including epigenetic, transcriptional, post-transcriptional, and

post-translational mechanisms (3, 6–8). Deubiquitination and

ubiquitination are among the most important post-translational

modifications, which dynamically control protein degradation and

stability, thereby influencing cellular processes. Deubiquitination,

mediated by deubiquitinating enzymes (DUBs), involves the

covalent cleavage of conjugated monoubiquitin or polyubiquitin

chains from various substrates (9, 10). To date, approximately 100

DUBs have been discovered. Based on their structural homology,

DUBs can be classified into seven categories as follows: ubiquitin-

specific proteases (USPs), otubain proteases (OTUs), and JAB1/

MPN/Mov34 metalloenzymes (JAMMs), ubiquitin C-terminal

hydrolases, Machado-Joseph disease proteases, MIU-containing

novel DUB family proteases, and Zn-finger and UFSP domain

proteins. With the exception of JAMMs, all of these DUBs belong

to the cysteine protease family.

DUBs have been extensively studied in a variety of cellular

activities including cell proliferation, apoptosis, cell cycle control,

and adaptive immune response (11). Several DUBs have been

demonstrated to deubiquitinate PD-L1 and regulate its expression

in cancer (7) (Figure 1). Here, we provide a comprehensive review

of the recent advancements in deubiquitination modifications of

PD-L1, focusing on their impact and the underlying mechanisms

related to anti-tumor immunity (Table 1).
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2 Emerging progress on the regulation
of PD-L1 by DUBs in cancer

2.1 CSN5

The constitutive photomorphogenesis 9 signalosome 5 (CSN5)

contains a conserved JAMM motif, which belongs to the JAMM

subfamily (32). On one hand, CSN5 could directly interact with a

variety of molecules, including c-Jun and p53, thereby influencing

tumor proliferation (12). On the other hand, as a deubiquitinase,

CSN5 deubiquitinates PD-L1, promoting tumor progression and

immune escape (12). One study demonstrated that the activation of

nuclear factor kB (NF-kB), further transactivates CSN5, leading to

PD-L1 deubiquitination and stabilization (12). Moreover, PD-L1

and CSN5 expression levels are positively correlated in breast

cancer (12). The application of a CSN5 inhibitor, curcumin,

results in PD-L1 destabilization, increases the cytotoxic activity of

T cells, and synergizes with anti-cytotoxic T-lymphocyte associated

protein 4 antibodies (12).

Multiple mechanisms regulate CSN5-mediated PD-L1

deubiquitination. Golgi membrane protein 1 upregulates the

expression of PD-L1 in hepatocellular cancer cells through the

CSN5-mediated deubiquitination of PD-L1, leading to the

suppression of CD8+ T cells (14). Ma et al. reported that protein

disulfide isomerase family A member 6 interacts with CSN5 and

promotes the deubiquitination of PD-L1 in pancreatic cancer cells

(15). In colorectal cancer, macrophages-derived C-C motif

chemokine ligand 5 (CCL5) promotes the activation of NF-kB
p65 activation, which binds to the CSN5 promoter, increases CSN5

expression, and upregulates PD-L1 protein level (16). In triple

negative breast cancer, long non-coding RNA GATA binding

protein 3 antisense RNA 1 stabilized PD-L1 via the miR-676-3p/

CSN5 axis (13). Interestingly, berberine, an established anti-

inflammatory drug, interacts with CSN5 and inhibits CSN5/PD-

L1 interaction, resulting in PD-L1 ubiquitination (17).
B CA

FIGURE 1

Deubiquitination of PD-L1 protein by DUBs causes increased PD-L1 stability and suppressed T-cell cytotoxicity. (A) Binding of PD-L1 on the tumor
cell surface to their receptor PD-1 on the T cell surface releases the immune suppression signal, thereby inhibiting T cell activation and cytotoxicity.
(B) The administration of specific antibodies to PD-L1/PD-1 reverses the T cell activation suppression signal, facilitating for the immune attack form
of cytotoxic T cells to target tumor cells. (C) DUBs of PD-L1 stabilize PD-L1 and protect it from ubiquitin-mediated proteolysis, promoting tumor cell
immune escape from T cell attack. The figure was created with Biorender.com. PD-L1, programmed death-ligand-1; DUB, deubiquitinating enzyme;
MHC-I, major histocompatibility complex class I; PD-1, programmed death receptor-1; TCR, T cell receptor.
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2.2 USP7

USP7 is a deubiquitinase that contains a USP domain (33), and

is aberrantly expressed in several human cancers. USP7 mediates

cell cycle control, tumor growth, chemoresistance, and tumor

immunity by regulating multiple cellular signaling pathways,

including the p53 and Wnt pathways (33, 34).

Regulatory T cells (Tregs) suppress the activity of effector T cells

and promote immune escape (35). Moreover, Tip60, a histone

acetyltransferase, promotes the acetylation and dimerization of

the key transcription factor, forkhead box P3 (Foxp3), and

regulates the activity of Tregs (35). A previous study discovered

that USP7 directly deubiquitinates Foxp3 and stabilizes it. Further,
Frontiers in Immunology 03
USP7 depletion disrupts the immunosuppressive functions of Tregs

in vivo (36). Another investigation revealed that USP7 is a

deubiquitinase of both Tip60 and Foxp3, which enhances Tregs

functions by increasing protein abundance (37).

Emerging studies have demonstrated that USP7 expression

correlates with PD-L1 levels in cancer (18, 38). One recent

investigation observed the overexpression of USP7 and PD-L1

proteins in glioma (18). USP7 mediates the deubiquitination of

PD-L1, leading to increased PD-L1 expression. Abrogated USP7

expression promotes CD8+ T cell proliferation, elevates tumor

necrosis factor (TNF) alpha and interferon gamma (IFN-g) levels,
and inhibits glioma cell immune evasion, which can be reversed by

PD-L1 overexpression (18). Similarly, USP7 expression is
TABLE 1 Major deubiquitinating enzymes (DUBs) of PD-L1 and their biological effects in cancer.

DUBs Categories Mechanism Types of
cancer

Related
molecules Effects References

CSN5 JAMM Removes K48-linked ubiquitin
on PD-L1

Breast cancer NF-kB p65,
GATA-AS1

Inhibits anti-tumor function of T cells (12, 13)

Hepatocellular
cancer

GOLM1 Inhibits CD8+ T cell cytotoxicity (14)

Pancreatic
cancer

PDIA6 Inhibits NK cell function (15)

Colorectal
cancer

CCL5, NF-kB
p65

Inhibits CD8+ T cell cytotoxicity (16)

NSCLC BBR Inhibits intratumor T cell infiltration 17)

USP7 USP Stabilizes PD-L1 through
deubiquitination

Glioma N/A Inhibits CD8+ T cell cytotoxicity (18)

Gastric cancer N/A Inhibits T cell mediated cytotoxicity and
tumor cell proliferation

(19)

USP8 USP Removes K63-linked ubiquitin
on PD-L1

Multiple cancer
types

TRAF6, NF-kB Inhibits MHC-I-dependent antigen
presentation

(20)

Stabilizes PD-L1 through
deubiquitination

Pancreatic
cancer

N/A Inhibits CD8+ T cell cytotoxicity (21)

NSCLC LncRNA
SNHG12, HuR

Inhibits CD8+ T cell cytotoxicity (22)

USP5 USP Stabilizes PD-L1 through
deubiquitination

NSCLC N/A Inhibits CD8+ T cell cytotoxicity (23)

USP9X USP Stabilizes PD-L1 through
deubiquitination

Oral cancer N/A Inhibits T cell cytotoxicity (24)

USP20 USP Stabilizes PD-L1 through
deubiquitination

Breast cancer TINCR N/A (25)

USP21 USP Removes K48-linked ubiquitin
on PD-L1

Lung cancer N/A N/A (26)

Colorectal
cancer

STAT3, Foxp3 Promotes Treg cell function (27)

USP22 USP Stabilizes PD-L1 through
deubiquitination

NSCLC CSN5 Inhibits T cell cytotoxicity (28)

Liver cancer N/A Inhibits intratumor T cell infiltration (29)

OTUB1 OTU Removes K48-linked ubiquitin
on PD-L1

Breast cancer N/A Inhibits T cell cytotoxicity (30)

NSCLC PKP3 Inhibits CD8+ T cell infiltration (31)
PD-L1, programmed death-ligand-1; DUBs, deubiquitinating enzymes; USP, ubiquitin-specific proteases; OTU, otubain proteases; JAMM, JAB1/MPN/Mov34 metalloenzymes; NF-kB, nuclear
factor kB; GATA-AS1, GATA binding protein 3 antisense RNA 1; CSN5, The constitutive photomorphogenesis 9 (COP9) signalosome 5; GOLM1, Golgi membrane protein 1; PDIA6, protein
disulfide isomerase family A member 6; CCL5, C-C motif chemokine ligand 5; NSCLC, non-small cell lung cancer; BBR, berberine; N/A, not applicable; TRAF6, TNF receptor associated factor 6;
LncRNA SNHG12, lncRNA small nucleolar RNA host gene 12; HuR, human antigen R; TINCR, tissue differentiation inducing non-protein coding RNA; STAT3, signal transducer and activator
of transcription 3; Foxp3, forkhead box P3; PKP3, plakophilin 3; MHC-I, major histocompatibility complex class I; NK, natural killer.
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upregulated and positively associated with PD-L1 in gastric cancer.

Silencing USP7 decreases PD-L1 expression on cell surfaces, and

augments the T cell-mediated killing of cancer cells (19). However,

the regulatory relationship between USP7 and PD-L1 appears to be

context-dependent. A negative association between the USP7 and

PD-L1 expression in lung adenocarcinoma was revealed using The

Cancer Genome Atlas data (38). In addition, the targeted inhibition

of USP7 significantly increases PD-L1 protein levels in both cancer

cells and the tumor microenvironment. Furthermore, abrogated

USP7 expression inhibits the M2 macrophages transformation and

their function, and promotes IFN-g+CD8+ T cells infiltration,

augmenting anti-tumor immunity. Additionally, a USP7 inhibitor,

P5091, has shown a synergistic anti-tumor effect with a PD-1

inhibitor in vivo (38, 39).
2.3 USP8

Increasing evidence suggests that USP8 expression is

upregulated, which stabilizes multiple oncogenes, in various

cancers (22, 40). Additionally, USP8 is involved in T cell

development and homeostasis. It is also essential for thymocyte

maturation, proliferation, and the suppressive function of Treg cells

on gd T cells. Mechanistically, USP8 interacts with Gads and 14-3-

3b, forming a complex with the T cell receptor (TCR)−CD28 cluster

upon stimulation. Subsequently, USP8 is degraded via a caspase-

dependent pathway, leading to the downregulation of interleukin-7

receptor subunit alpha (IL-7Ra) levels through the Forkhead box

protein O1−IL-7Ra axis (41). Another study demonstrated that

USP8 deubiquitinates and increases the expression of the type II

transforming growth factor-b receptor (TbRII) in tumor-derived

extracellular vesicles (TEVs). The inhibition of USP8 reduces the

abundance of TbRII+ circulating TEVs and prevents CD8+ T cell

exhaustion (42).

In a screening study performed by Xiong et al., it was revealed

that DUBs-IN-2, a USP8 inhibitor, significantly increases PD-L1

protein levels in multiple cancer cell lines (20). Furthermore, a

negative association between USP8 and PD-L1 was confirmed in

lung squamous cancer tissues. Mechanistically, USP8 specifically

removes K63-linked ubiquitination, but promotes the K48-linked

ubiquitination of PD-L1, which finally promotes PD-L1

degradation. Furthermore, by deubiquitinating the K63-linked

modification of TNF receptor associated factor 6 (TRAF6), USP8

up-regulates the expression of most genes in the major

histocompatibility complex class I pathways, which limits the NF-

kB signaling pathway and inhibits the immune response and

antigen presentation. A USP8 inhibitor synergizes with anti-PD-

1/PD-L1 treatments, dramatically inhibits tumor growth, and

improves survival rates in mouse colon cancer models (20).

Conversely, a recent study showed that the expression levels of

USP8 and PD-L1 are positively correlated in pancreatic cancer.

USP8 deficiency decreases PD-L1 protein abundance by promoting

PD-L1 ubiquitination-mediated degradation. Moreover, a

combined strategy comprising a USP8 inhibitor and PD-L1

inhibitor decreases tumor growth and enhances CD8+ T cell

mediated killing of cancer cells (21).
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2.4 USP5

USP5 belongs to the USP subfamily and can specifically

recognize unconjugated polyubiquitin and cleave ubiquitin

linkages. USP5 participates in multiple cellular procedures,

including inflammatory responses (43, 44). The NLR family pyrin

domain-containing 3 (NLRP3) inflammasome is critical for defense

against microbial pathogens, and its dysregulation is implicated in

various inflammatory diseases. Notably, USP5 is involved in

regulating NLRP3 inflammasome activity, unrelated to its DUBs

function. Mechanistically, USP5 acts as a pivotal scaffold protein

recruiting a specific E3 ligase to NLRP3, promoting its

ubiquitination and autophagic degradation. In addition, in alum-

induced peritonitis mouse models, the overexpression of USP5

reduces interleukin 1 beta (IL-b) levels and polymorphonuclear

infiltration (45). Furthermore, recent studies have demonstrated

that USP5 directly deubiquitinates and stabilizes PD-L1. In NSCLC

tissues, elevated USP5 expression correlates with PD-L1 expression,

indicating of unfavorable clinical outcomes. Moreover, the

inhibition of USP5 suppresses tumor growth in vivo by

downregulating PD-L1 expression (23).
2.5 USP9X

USP 9, X-linked (USP9X) is a positive regulator of the TCR

signaling pathway. Silencing of USP9X in vivo suppresses T-cell

growth, cytokine production, and the differentiation of T helper

(Th) cells, without affecting T-cell survival and the development of

specific T-cell populations in the thymus. Moreover, USP9X

knockdown in human and mouse T-cell lines attenuates the TCR

signal ing-mediated act ivat ion of NF-kB through the

deubiquitination of Bcl10 (46). USP9X knockout also results in a

proliferation defect in both CD4+and CD8+ T cells, impairs the

development of T cells in the thymus, and downregulates proximal

TCR signaling. In vivo studies demonstrated that the T cell-specific

knockout of Usp9x elevates PD-1-expressing T cell populations,

leading to the incidence of specific autoimmune disease (47). In B

lymphocytes, USP9X is necessary for the kinase activity of protein

kinase C beta after B cell antigen receptor-dependent activation

(48). In a model of sepsis with liver injury, USP9X promotes CD8+

T cells dysfunction in the liver through the inhibition of autophagy,

which can be reversed by the conditional depletion of mechanistic

target of rapamycin (49). Moreover, USP9X directly binds PD-L1,

and USP9X reduces PD-L1 ubiquitination and increases its protein

abundance. Additionally, a positive association was found between

USP9X and PD-L1 expression in oral cancer (24).
2.6 USP20

USP20 has been linked to antiviral response, metabolic disease,

neuroinflammation, and tumor progression (50–52). Tax is a viral

oncoprotein which persistently activates NF-kB signaling and

causes adult T cell leukemia. Through deubiquitination of TRAF6
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and Tax, USP20 suppresses activation of NF-kB signaling and

inhibits proliferation of leukemia cells (53).

A recent study demonstrated that USP20 interacts with PD-L1

and deubiquitinates it, which can be regulated by a long non-coding

RNA, tissue differentiation inducing non-protein coding RNA

(TINCR). Mechanistically, LncRNA TINCR acts as a competing

endogenous RNA, which promotes stability of USP20 mRNA and

upregulates the expression of PD-L1 in breast cancer (25).
2.7 USP21

Numerous studies have implicated USP21 in regulating cancer

cell stemness, tumor growth, and metastasis (26, 54). In regard to

immune regulation, Yang et al. have demonstrated a direct

interaction between USP21 and PD-L1, whereby USP21 removes

polyubiquitin chains from PD-L1, leading to its stabilization.

Notably, the expression of USP21 is upregulated in lung cancer

tissues, showing a positive association with PD-L1 protein levels

(26). Additionally, USP21 has a role in regulating Treg cell

functions (27). Li et al. demonstrated that USP21 suppresses the

transformation of Th1-like Treg cells by deubiquitinating and

stabilizing Foxp3. Mouse models of Usp21 depletion in Tregs

exhibit spontaneous T cell activation and the expanded

transformation of Tregs toward the Th1-like phenotype (55).

Furthermore, emerging evidence suggests that USP21 suppresses

antiviral responses in various immune cell types, including mouse

embryonic fibroblasts and bone marrow-derived dendritic cells.

This is achieved through the binding and deubiquitination of

retinoic acid-inducible gene-I, which restricts type-I interferon

production and antiviral immune defense (56). Notably, Usp21-

knockout mice display enhanced resistance to vesicular stomatitis

virus infection with increased production of interferons (56).
2.8 USP22

USP22, of which expression levels are elevated in various cancer

types, is correlated with disease progression and an unfavorable

prognosis (57, 58). This DUB plays a critical role in regulating PD-

L1 stability. On one hand, USP22 directly deubiquitinates PD-L1.

On the other hand, USP22 interacts with CSN5 and deubiquitinates

it, thereby facilitating the interaction between PD-L1 and CSN5

(28). Moreover, USP22 and PD-L1 protein levels are positively

correlated in NSCLC samples. The inhibition of USP22 enhances

the cytotoxicity of T cells and reduces tumor growth (28). Another

study revealed that USP22 interacts with the C terminus of PD-L1

and deubiquitinates it. In mouse models of hepatocellular

carcinoma, knockout of Usp22 increases the infiltration of tumor-

infiltrating lymphocytes, augments anti-tumor immunity, and

synergizes with anti-PD-L1 treatments and chemotherapy (29).

Furthermore, USP22 plays a part in regulating the tumor

microenvironment. The knockout of USP22 in pancreatic ductal

adenocarcinoma cells results in reduced myeloid cells infiltration

and increased tumor infiltration of NK cells and T cells, leading to a

synergistic response with combined immunotherapy (59). USP22 is
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also involved in regulating invariant NK T (iNKT) cells. USP22

suppression inhibits the development of iNKT cells, and attenuates

iNKT1 and iNKT17 cell differentiation, while favoring iNKT2

polarization (60).
2.9 OTUB1

OTUB1, a member of the OTU superfamily, exhibits a preference

for deubiquitinating K-48 and K-63 ubiquitin chains. Its involvement

in cancer development and progression has also been observed (61).

Extensive research has highlighted the role of OTUB1 in modulating

immune cell responses. Depletion of OTUB1 activates NK cells and

CD8+ T cells, leading to increased tumor infiltration of NK cells, DCs

and T cells. Additionally, OTUB1 depletion enhances the cytokine

production and the proliferation of CD4+ T cells (62, 63).

Moreover, OTUB1 has been reported to specifically interact

with of PD-L1, wherein it removes the K48-linked ubiquitin chain

from PD-L1 and stabilizes it. Functionally, OTUB1 depletion

decreases PD-L1 expression, and increases the cytotoxicity of

human peripheral blood mononuclear cells against tumor cells.

The expression of OTUB1 is positively correlated with PD-L1

expression in breast cancer samples. Furthermore, OTUB1

depletion increases CD8+ T cell infiltration, elevates serum IFN-g,
and augments anti-tumor immune responses in mouse models (30).

Liu et al. reported that circIGF2BP3 acts competitively to upregulate

plakophilin 3 (PKP3) expression, which further stabilizes OTUB1

mRNA. CircIGF2BP3/PKP3 suppression synergized with anti-PD-1

treatment in mouse models of lung cancer (31).
3 Discussion

Over the past few decades, the application of anti-PD-1/PD-L1

treatments has significantly improved the clinical prognoses of patients

with cancer. Nevertheless, the clinical response to single-agent anti-PD-

1/PD-L1 antibody therapy is limited to only a subset of patients (64,

65). Combinatorial treatments comprising anti-PD-1/PD-L1

antibodies with antiangiogenic drugs, chemotherapy, and targeted

therapy have resulted in more promising clinical outcomes (66). As

described above, several DUBs are participated in deubiquitination

modifications of PD-L1, and regulated its expression. Thus, developing

small-molecule inhibitors targeting these DUBs and the combination

therapy represent an attractive therapeutic strategy.

However, despite the importance of these reported DUBs, there

are still questions remain to be elucidated. One such question is

determining which specific DUB plays the predominant role in

regulating PD-L1 expression within a particular type of cancer.

Second, although some studies have demonstrated synergistic

efficacy of DUBs inhibitors with anti-PD-1/PD-L1 treatments,

further exploration through clinical trials is needed to validate

these findings and assess their potential for clinical application. In

recent years, multiple selective inhibitors of DUBs, including

inhibitors of USP7, USP8, and USP9X, have been developed (11).

Accordingly, further investigation of these inhibitors in clinical

trials is required.
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