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Currently, anti-PD-1/PD-L1 immunotherapy using immune checkpoint inhibitors

is widely used in the treatment of multiple cancer types including lung cancer,

which is a leading cause of cancer death in the world. However, only a limited

proportion of lung cancer patients will benefit from anti-PD-1/PD-L1 therapy.

Therefore, it is of importance to predict the response to immunotherapy for the

precision treatment of patients. Although the expression of PD-L1 and tumor

mutation burden (TMB) are commonly used to predict the clinical response of

anti-PD-1/PD-L1 therapy, other factors such as tumor-specific genes, dMMR/

MSI, and gut microbiome are also promising predictors for immunotherapy in

lung cancer. Furthermore, invasive peripheral blood biomarkers including blood

DNA-related biomarkers (e.g., ctDNA and bTMB), blood cell-related biomarkers

(e.g., immune cells and TCR), and other blood-related biomarkers (e.g., soluble

PD-L1 and cytokines) were utilized to predict the immunotherapeutic response.

In this review, the current achievements of anti-PD-1/PD-L1 therapy and the

potential biomarkers for the prediction of anti-PD-1/PD-L1 immunotherapy in

lung cancer treatment were summarized and discussed.

KEYWORDS

lung cancer, biomarker, anti-PD-1/PD-L1 immunotherapy, immune checkpoint, dMMR/
MSI, CtDNA, bTMB, cytokines among these immune checkpoints
1 Introduction

Lung cancer is the leading cause of cancer death in the world, which is traditionally

divided into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) (1, 2).

NSCLC accounts for approximately 85% of lung cancer, which mainly includes lung

adenocarcinoma (LUAD), lung squamous cell carcinoma (LSCC), and lung large cell

carcinoma (LLCC) (2). Surgery, radiation therapy, chemotherapy, targeted therapy,
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immunotherapy, and combined therapy are current treatment

strategies of lung cancer (3). Importantly, the efficiency of these

treatment strategies varies from the type and stage of lung cancer.

Surgery is the main treatment choice for early-stage (stage I and II)

patients, which may provide a longer survival time (4). Primary

radiation therapy (such as stereotactic body radiotherapy) is an

alternative therapeutic strategy for patients unsuitable for surgery

and patients who are medically inoperable (4). However, more than

70% of patients diagnosed with lung cancer are at stage III or IV (5).

The standard strategy is adjuvant chemotherapy postoperatively for

stage IIIA patients who can benefit from surgery (6). Moreover, the

concurrent chemoradiotherapy (CCRT) followed by programmed

death 1 ligand (PD-L1) inhibitor treatment is the standard strategy

for unresectable stage III lung cancer patients (7).

It was well known that the targeted therapy was the first-line

treatment for lung cancer with specific targetable oncogenic drivers,

while the platinum-based combination chemotherapy was the

standard treatment for lung cancer without specific targetable

oncogenic drivers (6). However, in recent years, the

immunotherapy was introduced to the treatment of stage IV lung

cancer patients and improved the therapeutic effect and survival

time of patients (8–10). The immune checkpoint blockade (ICB)

therapy including anti-programmed death 1 (PD-1) therapy, anti-

programmed death 1 ligand (PD-L1), and anti-cytotoxic-T-

lymphocyte-associated protein 4 (CTLA-4) therapy has been

proven to be beneficial in some lung cancer patients in clinical

trials (8–12). The immune checkpoints are important regulators of
Frontiers in Immunology 02
the immune system that maintain self-tolerance, protect tissue from

damage, and prevent autoimmune responses by modulating the

duration and intensity of the immune response in normal states

(13). However, the immune checkpoints also affect the antitumor

immunity because of their role as mediators in tumor immune

evasion. PD-1 on T lymphocytes and its principal ligand PD-L1 on

tumor cells are two well-known immune checkpoints that deliver

inhibitory signals of T-cell proliferation, cytokine production, and

cytotoxicity when they are bound (14). Therefore, blockage of PD-

1/PD-L1 by their inhibitors could boost the killing effect of immune

system on tumor cells (Figure 1). It was confirmed that the anti-PD-

1/PD-L1 immunotherapy has shown significant antitumor

efficiency and good safety in the treatment of lung cancer (12).

Nevertheless, some side effects occurred in the process of lung

cancer anti-PD-1/PD-L1 therapy, and some patients do not

respond well to their treatment (12). It was reported that the

expression of PD-L1, tumor mutation burden (TMB), tumor-

specific genes, dMMR/MSI, gut microbiome, and the invasive

peripheral blood biomarkers including blood DNA-related

biomarkers, blood cell-related biomarkers, and other blood-

related biomarkers were potential biomarkers to predict clinical

response of anti-PD-1/PD-L1 therapy in cancers (15). Therefore, it

is of importance to explore some biomarkers to predict the response

to immunotherapy, which is helpful for the precision medicine of

lung cancer patients (Figure 2).

Here, we summarized and discussed the current achievements of

anti-PD-1/PD-L1 therapy and the potential biomarkers for
FIGURE 1

A schematic diagram of the molecular mechanism using anti-PD-1/PD-L1 therapy to restore T-cell functions. PD-1 on T lymphocytes and PD-L1 on
tumor cells are two important immune checkpoints that, when combined, transmit inhibitory signals for T-cell activation. The inhibitors of PD-1 or
PD-L1 could block the PD-1/PD-L1 axis and rescue the T-cell functions. PD-1, programmed death 1; PD-L1, programmed death 1 ligand.
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the prediction of anti-PD-1/PD-L1 immunotherapy in lung cancer

treatment. Abbreviations and their full names were shown in Table 1.
2 Mechanisms of anti-PD-1/PD-L1
immunotherapy

Cancer immunotherapy, which functions by leveraging the

cytotoxic potential of human immune system to kill cancer cells,

has become a powerful strategy for cancer treatment. A large

number of antibodies and small molecules targeting immune

checkpoints are currently undergoing pre-clinical and clinical

studies (16). The immune checkpoint proteins under study

mainly include PD-1, PD-L1, CTLA-4, lymphocyte-activation

gene 3 (LAG3), and T-cell immunoglobulin and mucin domain 3

(TIM3) (17). Notably, PD-1 and PD-L1 are the focus of all these

immune checkpoints, which are also well studied (16). PD-1 is a

type I transmembrane protein that is mainly expressed on activated

T cells, B cells, and natural killer (NK) cells (18). PD-L1 is a member

of the B7 protein family and is mainly expressed on the tumor cells,

tumor-infiltrating cells, and antigen-presenting cells (APCs) (19).

The activation of T cells relies on at least two signals. The first

signal is the T-cell receptor (TCR) recognition of the antigen

presented by the major histocompatibility complex (MHC)

antigen in the form of peptides. The second signal is the co-

stimulatory signal provided by antigen-presenting cells (APCs),

which is generated by the interaction between co-stimulatory

ligands on APCs and corresponding receptors on the surface of T

cells (20). Co-stimulatory signals are necessary for the induction of
Frontiers in Immunology 03
productive immune responses as it is essential for the optimal

proliferation, differentiation, and survival of T cells. Under

physiological conditions, the PD-1/PD-L1 axis is crucial in the

development of immune tolerance, which can prevent excessive

immune cell activity-induced tissue destruction and autoimmunity

by regulating the quantity and activity of antigen-specific T cells

(21). However, in tumor environments, the interaction between

PD-1 and PD-L1 could inhibit T-cell activation and cause T-cell

apoptosis, reduced cytokine production, T-cell lysis, and induction

of tolerance to antigen, thus enabling the tumor to evade immune

surveillance (22). PD-1 is mainly expressed on activated T cells and

can serve as a brake for T-cell activation when combined with its

ligands PD-L1. After binding with PD-L1, PD-1 is phosphorylated

at its immune receptor tyrosine-based inhibitory motif (ITIM) and

immune receptor tyrosine-based switch motif (ITSM), leading to

the recruitment of tyrosine phosphatase SHP2 (Src homologous

phosphatase 2) and subsequent dephosphorylation of TCR and

CD28, thereby inhibiting T cell-related signaling (23–26). In

addition to inhibiting some early activation pathways of T cells, a

recent study has shown that PD-1 can directly prevent antigen

recognition by disrupting the cooperative TCR–pMHC–CD8

trimolecular interaction (27). Under the intervention of PD-1/

PD-L1 immune checkpoint inhibitors (ICIs), the membrane motif

of PD-1 cannot be phosphorylated, resulting in the inability of cells

to recruit SHP-2. Then, the dephosphorylation of TCR and CD28 is

blocked, leading to effective transmission of activation signals to

downstream proteins and signaling pathways, ultimately

stimulating T-cell proliferation and differentiation. Ultimately, the

immune function of T cells is effectively exerted.
FIGURE 2

Potential predictive biomarkers of response for anti-PD-1/PD-L1 therapy. Biomarkers could be found from two traditional biopsy samples and the
peripheral blood. Biomarkers isolated from traditional biopsy mainly include PD-L1 expression, TMB, dMMR/MSI, and tumor-specific genes (TP53,
TP53/KMT2C, KRAS, and EGFR). Peripheral blood biomarkers include ctDNA, bTMB, immune cells, TCR, soluble PD-L1, and cytokines. Gut
microbiome is also a promising predictor for immunotherapy in lung cancer. PD-L1, programmed death 1 ligand; TMB, tumor mutation burden;
dMMR, MMR deficiency; ctDNA, circulating tumor DNA; bTMB, blood tumor mutation burden; TCR, T-cell receptor.
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TABLE 1 Summarization of abbreviations and their full name.

Abbreviation Full name

SCLC Small cell lung cancer

NSCLC Non-small cell lung cancer

LUAD Lung adenocarcinoma

LSCC Lung squamous cell carcinoma

LLCC Lung large cell carcinoma

CCRT Concurrent chemoradiotherapy

PD-1 Programmed death 1

PD-L1 Programmed death 1 ligand

CTLA-4 Cytotoxic-T-lymphocyte-associated protein 4

anti-PD-1 Anti-programmed death 1

anti-PD-L1 Anti-programmed death 1 ligand

anti-CTLA-4 Anti-cytotoxic-T-lymphocyte-associated protein 4

FDA Food and Drug Administration

ORR Overall response rate

OS Overall survival

PFS Progression-free survival

EGFR Epidermal growth factor receptor

ALK Anaplastic lymphoma kinase

TMB Tumor mutation burden

mut/Mb Mutations/megabase

IV Intravenously

TMB-H TMB-high

ES-SCLC Extensive-stage SCLC

ICIs Immune checkpoint inhibitors

WES Whole exome sequencing

MMR Mismatch repair

MSI Microsatellite instability

dMMR MMR deficiency

VAF Variant allele fraction

bTMB Blood TMB

ctDNA Circulating tumor DNA

TILs Tumor infiltrating lymphocytes

QIF Quantitative immunofluorescence

SCFAs Short chain fatty acids

TME Tumor microenvironment

CAR-T Chimeric antigen receptor T

NSqNSCLC nonsquamous non-small-cell lung cancer

nab nano-particle albumin-bound

ECOG Eastern Cooperative Oncology Group

TPS Tumor Proportion Score
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3 Mechanisms of resistance for anti-
PD-1/PD-L1 immunotherapy

In recent years, anti-PD-1/PD-L1 immunotherapy has achieved

surprising effects in the treatment of variousmalignant tumors (28, 29).

However, many patients have developed resistance to PD-1/PD-L1

inhibitors, which severely limits the wide application of this therapy

and has become a serious clinical problem in this field. Therefore, it is

necessary to deeply reveal the molecular mechanism of PD-1/PD-L1

inhibitor resistance and therefore improve the response rate of cancer

patients to anti-PD-1/PD-L1 immunotherapy.

The resistance to anti-PD-1/PD-L1 therapy can be classified

into primary resistance and acquired resistance based on clinical

outcomes (30). In primary resistance, patients failed to exhibit

clinical response when treated with PD-1/PD-L1 inhibitors (30).

In contrast, acquired resistance means that patients respond to anti-

PD-1/PD-L1 therapy at the beginning of treatment, but then the

therapeutic effect of the therapy is significantly weakened or

unresponsive (30). The mechanism of primary resistance mainly

includes lack of immunogenic antigens (31), restriction of T-cell

infiltration (32), lack of interferon responsiveness (33), abnormal

gut microbiome composition (34), epidermal growth factor

receptor (EGFR) mutations, or anaplastic lymphoma kinase

(ALK) rearrangements (35). The mechanism of acquired

resistance may be associated with the weakened recognition of

tumor antigens by immune cells, the loss of neoantigen, the change

of the tumor microenvironment (TME), and aberrant cellular

signaling transduction (18, 19).

Tumor cells can avoid processing and presenting tumor

antigens by silencing or altering the expression of antigen-

presenting machinery, beta-2-microglobulin (B2M), or major

histocompatibility complex (MHC) molecules (36). B2M plays an

important role in supporting MHC class I molecules to present

tumor-specific peptide antigens to T cells. The loss of functional

B2M may be a mechanism of tumor resistance to T cell-mediated

immune responses (37).

Neoantigen loss is also a mechanism of acquired resistance to

immune checkpoint therapy (38). The analyses on matched

pretreatment and resistant tumors showed that resistant clones lost

7 to 18 putative mutation-associated neoantigens (38). This result

proved that the loss of neoantigen could augment acquired resistance

as an escape mechanism after PD-1/PD-L1 blockade therapy (38).

In immunosuppressive TME, tumor cells can interact with the

stromal cells and immune cells to prevent immune surveillance and

immune system killing (39). In TME, in addition to tumor cells,

other components that might be associated with primary or

acquired resistance include exhausted T cells, T regulatory cells,

myeloid-derived suppressor cells (MDSCs), macrophages,

immunosuppressive cytokines, and gut microbiome (40).

Moreover, the alterations of metabolic landscape of the TME

could also suppress the infiltration of immune cells and other

antitumor immune functions by producing immunosuppressive

metabolites (41). For primary resistance, a study has shown that

TGFb shaped the TME to attenuate tumor response by restricting

T-cell infiltration in anti-PD-L1 therapy (32).
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Abnormal cellular signaling transduction is also an important

factor leading to immunotherapy resistance. For example, the IFN-g
pathway has been proved to be associated with resistance to

checkpoint blockade therapy (42). Interferon-g produced by

tumor-specific T cells that have recognized their cognate antigen

on tumor cells or APCs could induce effective antitumor immune

response. Lack of IFN responsiveness resulted in resistance to anti-

PD-1 therapy (33). However, the duration of tumor interferon

signaling allowed immuno-editing of tumors and resulted in

adaptive resistance to immune checkpoint blockade therapy (42).

The abnormal gut microbiome composition may be responsible

for primary resistance to immune checkpoint blockade therapy. A

study has shown that antibiotics reduced the clinical benefit of

immune checkpoint blockade therapy for patients with advanced

cancer (34). The antitumor effects of PD-1 blockade therapy on

germ-free or antibiotic-treated mice can be enhanced by

performing fecal microbiota transplantation (FMT) from cancer

patients who responded to ICIs, but not from the nonresponding

patients (34). Metagenomics of patient stool samples at diagnosis

showed that the clinical response of patients to ICIs was related to

the relative abundance of Akkermansia muciniphila (34).

EGFR mutations and ALK rearrangements are associated with

primary resistance to PD-1/PD-L1 blockade therapy in NSCLC. A

retrospective analysis evaluated the efficacy of anti-PD-1/PD-L1

therapy on EGFR-mutant, ALK-positive, and EGFR wild-type/

ALK-negative patients who received anti-PD-1/PD-L1 therapy

(35). The results revealed that the NSCLC patients who harbored

EGFR mutations or ALK rearrangements are associated with low

objective response rates to anti-PD-1/PD-L1 therapy, which may be

due to low rates of co-localized PD-L1 expression and CD8(+)

tumor-infiltrating lymphocytes (TILs) (35).
4 Anti-PD-1 immunotherapies for lung
cancer

4.1 Nivolumab

Nivolumab, a fully human antibody targeting PD-1, has been

approved for the treatment of several cancers including lung cancer by

the Food and Drug Administration (FDA) (43). In 2015, nivolumab

was approved as the second-line treatment strategy for advanced

squamous NSCLC patients with progression during or after

platinum-based chemotherapy based on the CheckMate 017 study

(44). The median overall survival (OS) of patients treated with

nivolumab was 9.2 months, which is longer than that of the patients

treated with docetaxel (6.0 months), proving the positive effect of

nivolumab for patients with advanced squamous NSCLC. In 2020, the

combination therapy of nivolumab and ipilimumab (an CTLA-4

inhibitor) was approved for the treatment of patients with metastatic

NSCLC without epidermal growth factor receptor (EGFR) or

anaplastic lymphoma kinase (ALK) genomic aberrations (45, 46).

The CheckMate-9LA study is a randomized and open phase III

study that involved stage IV or recurrent NSCLC patients (45, 46).

This study compared the clinical benefit of combination therapy

(nivolumab plus ipilimumab with two cycles of chemotherapy) and
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chemotherapy alone. Compared with 10.7 months median OS of

chemotherapy, the combination of nivolumab plus ipilimumab with

two cycles of chemotherapy improved OS to 11.4 months. The

approval of the CheckMate-9LA regimen benefited from the safety

and efficacy data of CheckMate 568 and CheckMate 227 (47, 48).

Moreover, CheckMate 568 is an open phase II study and aimed to

evaluate the efficacy and safety of nivolumab combined with

ipilimumab in the treatment of advanced/metastatic NSCLC, and to

investigate the correlation between PD-L1 expression and TMB on the

treatment efficacy (47). The results proved the safety and effectiveness

of the combination and also indicated that 10 or more mutations/

megabase (mut/Mb) of TMB were associated with better response and

longer progression-free survival (PFS) regardless of PD-L1 expression

(47). In linewith this finding, theCheckMate-227 studywas performed

as an open phase III study. The results indicated that the combination

of nivolumab and ipilimumab exhibited a longer OS time than

chemotherapy in NSCLC patients without causing new safety

concerns (48).

In 2022, FDA approved the combination of nivolumab and

chemotherapy as adjuvant therapy for resectable NSCLC based on

CheckMate 816 clinical trials (49). In the study, stage IB to IIIA

resectable NSCLC patients were treated with nivolumab and

platinum-based chemotherapy or platinum-based chemotherapy

alone before resection. The median event-free survival of the

combination of nivolumab and platinum-based chemotherapy was

31.6 months, compared with the 20.8 months of chemotherapy

alone. Importantly, compared with the 2.2% pathological complete

response for chemotherapy alone, the pathological complete

response was 24.0% for the patients who received the combined

therapy. Moreover, the combined therapy did not increase adverse

events or hinder the surgery feasibility. Therefore, the combination of

nivolumab and platinum dramatically improved the clinical benefit

of treatment for patients with resectable NSCLC compared with

chemotherapy alone.

Furthermore, nivolumab was also approved for the treatment of

SCLC as a salvage regimen (43). In the CheckMate-032 study, the

efficiency and safety of nivolumab as a monotherapy or in

combination with ipilimumab (an CTLA-4 inhibitor) in the

treatment of multiple types of tumors were evaluated (43). Those

SCLC patients who failed in previous platinum-based

chemotherapy were treated with nivolumab or a combination of

nivolumab and ipilimumab. The overall response rate (ORR) for the

single treatment of nivolumab and the combination of nivolumab

and ipilimumab was 10% and 23%, respectively. However, the

median OS was 4.4 months and 7.7 months, respectively. These

results indicated that both the monotherapy of nivolumab and the

combination therapy of nivolumab and ipilimumab showed

significant efficacy in the treatment of SCLC.
4.2 Pembrolizumab

Pembrolizumab, the humanized monoclonal antibody targeting

and blocking the PD-1, was approved as the second-line treatment for

advanced NSCLC in 2015 based on the KEYNOTE-001 study, which

aimed to assess the efficacy and safety of pembrolizumab in the
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treatment of NSCLC (50–52). The inclusion criteria of this study are

the locally advanced or metastatic non-small cell lung cancer patients

with or without treatment previously. The study presented 22.3

months and 10.5 months median OS for the naive patients and

previously treated patients, respectively. Therefore, pembrolizumab

provided acceptable antitumor activity and tolerable safety for the

treatment of patients with advanced NSCLC, paving the way for the

FDA approval (52, 53). Importantly, in 2016, pembrolizumab was

approved as the first-line treatment of NSCLC patients with high PD-

L1 expression based on the KEYNOTE-024 trial, which aimed to test

its therapeutic effect onmetastatic treatment-naiveNSCLC (51, 54, 55).

In this clinical trial, 154 previously treatment-naive patients with

advanced NSCLC received pembrolizumab treatment and at least

50% of tumors cells of these patients expressed PD-L1 without

EGFR or ALK genomic aberrations. The other 151 patients received

platinum-based chemotherapy. Conclusively, the PFS of the

pembrolizumab group and chemotherapy group was 10.3 months

and 6.0 months, respectively. Furthermore, the pembrolizumab group

exhibited a better OS and improved response rate. Moreover, the

serious adverse events were 56.6% and 26.6% in the chemotherapy

group and in the pembrolizumab group, respectively (55).

In 2017, FDA approved the combination of pembrolizumab,

pemetrexed, and carboplatin for the treatment of patients with

previously untreated metastatic NSCLC based on the KEYNOTE-

021 study (56). The results of this study indicated that the

combination group (pembrolizumab plus chemotherapy) achieved

better ORR and PFS than the chemotherapy group. Moreover, in

2018, based on the results of the KEYNOTE-189 study, the

combination of pembrolizumab, pemetrexed, and platinum was

approved as the first-line treatment for the patients with metastatic

non-squamous non-small-cell lung cancer (NSqNSCLC) and the

patients lack EGFR or ALK genomic tumor aberrations (57). The

results from the KEYNOTE-189 study showed that the combination

of pembrolizumab, pemetrexed, and platinum dramatically

increased the ORR and PFS. In 2018, based on the clinical results

of the KEYNOTE-407 study, FDA also approved the combination

of pembrolizumab, carboplatin, and paclitaxel or nab-paclitaxel as

first-line treatment for metastatic squamous NSCLC (58). The

results showed that the median OS of the pembrolizumab

combination group was 15.9 months, which is longer than that of

the placebo combination group (11.3 months). Moreover, the

median PFS was 6.4 months in the pembrolizumab combination

group and 4.8 months in the placebo combination group. Therefore,

these results indicated that the application of pembrolizumab in

chemotherapy with carboplatin and paclitaxel or nab-paclitaxel

significantly improved clinical benefit. In 2019, based on the

study of KEYNOTE-024, FDA approved pembrolizumab as first-

line treatment for patients with stage III NSCLC (59). The results

showed that compared with platinum-based chemotherapy,

pembrolizumab treatment significantly prolonged the OS of

patients, suggesting that pembrolizumab treatment was a

reasonable treatment option for NSCLC patients with low PD-L1

TPS and without EGFR mutation or ALK translocation.

Interestingly, in 2019, pembrolizumab was approved for the

treatment of patients with metastatic SCLC based on clinical results

of the KEYNOTE-028 trial and the KEYNOTE-158 trial (60). The
Frontiers in Immunology 06
KEYNOTE-028 trial was a phase Ib trial that aimed to study the

tolerability and efficiency of pembrolizumab on 20 tumor types

including SCLC (61). In this study, they found a 33.3% ORR, 1.9

months of median PFS, and 9.7 months of median OS. In the phase II

KEYNOTE-158 study, SCLC patients were treated by 200 mg of

pembrolizumab every 3 weeks, and the ORR was 18.7% and median

PFS was 2 months (61). Moreover, Hyun et al. performed a pooled

analysis of KEYNOTE-028 and KEYNOTE-158 trials and found that

pembrolizumab exhibited a durable antitumor activity in patients with

recurrent or metastatic SCLC who had received two or more previous

lines of therapy with good tolerance (62). Furthermore,

pembrolizumab was approved for the treatment of patients with

unresectable or metastatic TMB-high (TMB-H) solid tumors (≥10

mut/Mb) and yielded a 29% ORR of the TMB-H SCLC patients (63).
4.3 Cemiplimab

Cemiplimab, a human PD-1 monoclonal antibody that binds to

PD-1 and blocks its interaction with PD-L1 and PD-L2, has been

approved as monotherapy for advanced NSCLC with PD-L1

expression in more than 50% tumor cells (64, 65). The phase III

study EMPOWER-Lung 1 provided clinical data for the treatment

of cemiplimab in advanced NSCLC with PD-L1 expression in at

least 50% tumor cells (66). In this study, patients were treated with

cemiplimab or platinum-doublet chemotherapy and the transition

from chemotherapy to cimilizumab was allowed when

disease progressed. The median PFS of the cemiplimab group and

chemotherapy group was 8.2 months and 5.7 months, respectively.

Compared with chemotherapy, cemiplimab monotherapy

significantly improved the OS and PFS of NSCLC patients (at

least 50%).
5 Anti-PD-L1 immunotherapies for
lung cancer

5.1 Atezolizumab

Atezolizumab, a fully humanized monoclonal antibody

targeting PD-L1, is the first FDA-approved PD-L1 inhibitor for

the second-line therapy of NSCLC patients (51). The clinical study

NCT01375842 was performed to evaluate the tolerability, safety,

and pharmacokinetics of atezolizumab in the treatment of several

cancers (67). In this study, NSCLC patients treated with

atezolizumab showed 28% of 3-year survival rates, which proved

that atezolizumab was well tolerated and had long-term clinical

benefits in the treatment of NSCLC patients.

In 2018, FDA approved atezolizumab in combination

with bevacizumab, paclitaxel, and carboplatin as the first-line

treatment of metastatic non-squamous NSCLC with wild-type

EGFR and ALK (68). Results of the IMPOWER150, a

randomized, open-label, phase III study, indicated that patients

treated with the combination of the four-drug regimen had

improved survival rate compared with patients treated with the

combination of bevacizumab, carboplatin, and paclitaxel (68).
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Furthermore, atezolizumab was approved in combination with

paclitaxel and carboplatin to treat metastatic non-squamous

NSCLC without EGFR or ALK genomic aberrations based on the

IMpower-130, which was a multicenter, randomized, open-label,

phase III trial and aimed to assess the clinical efficacy and safety of

atezolizumab in combination with chemotherapy versus

chemotherapy alone to treat non-squamous NSCLC (69). The

median OS of patients treated by atezolizumab in combination

with chemotherapy was 18.6 months, and it was 13.9 months for the

patients treated by chemotherapy alone. Moreover, the median PFS

of the combination group was 7.0 months, and it was 5.5 months for

the chemotherapy treatment group. Together, the significant

improvement of median OS and median PFS in atezolizumab

plus chemotherapy group led to the FDA approval of atezolizumab.

Importantly, the atezolizumab is also the first ICI that was

approved to treat extensive-stage SCLC (ES-SCLC) in combination

with carboplatin and etoposide (70). In the multinational

IMpower133 trial, 403 previous untreated patients with ES-SCLC

were divided into two groups, one is the atezolizumab group in

which the patients received the combination treatment of

carboplatin, etoposide, and atezolizumab, and the other is the

placebo group in which the patients received the combination

treatment of carboplatin, etoposide, and placebo (71, 72). At a

median follow-up of 13.9 months, the median OS of the

atezolizumab group was 12.3 months, and it was 10.3 months for

the placebo group. Accordingly, the median PFS of the

atezolizumab group and placebo group was 5.2 months and 4.3

months, respectively. Therefore, the combination of atezolizumab

and chemotherapy resulted in improved clinical benefit compared

with chemotherapy alone as the first-line treatment of ES-SCLC.
5.2 Durvalumab

Durvalumab is a human IgG1monoclonal antibody that can block

the PD-L1 to restore T-cell activity (73). In 2018, durvalumab was

applied in the treatment of patients with unresectable stage III NSCLC

without progression after plat inum-based concurrent

chemoradiotherapy (cCRT) (74, 75). The data of the PACIFIC study

indicated that durvalumab treatment significantly improved PFS of

patients; therefore, durvalumab could be applied as a maintenance

therapeutic strategy after chemoradiotherapy for patients with

advanced unresectable stage III lung cancer (74, 75). Furthermore, in

2020, based on the CASPIAN study, durvalumab was approved in

combination with chemotherapy as the first-line therapy to treat

patients suffering from extensive stage small cell lung cancer (76). In

the study, ES-SCLC patients who had not received first-line

chemotherapy were treated by combination therapy or

chemotherapy alone. The median OS of patients treated by

durvalumab and platinum-based chemotherapy was 13.0 months,

while it was 10.3 months for the patients who received

chemotherapy alone. Furthermore, they observed 34% and 25% of

18-month survival rates for these two groups, respectively, which

proved the advantage of the combination of durvalumab and

platinum-based chemotherapy in the treatment of SCLC.
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6 Potential predictive biomarkers for
anti-PD-1/PD-L1 immunotherapy of
lung cancer

Although anti-PD-1/PD-L1 therapy has demonstrated clinical

benefits in the treatment of lung cancer, only a limited proportion of

patients would benefit from the immunotherapy. For example, only

20%–25% of patients with NSCLC showed a sustainable response to

ICIs (77). Therefore, it is urgent and important to identify effective

predictive biomarkers for patients suffering from cancer before they

are given immunotherapy.
6.1 PD-L1 expression

It was reported that the level of PD-L1 expression might be a

biomarker for the prediction of the patient response to anti-PD-1/

PD-L1 immunotherapy in clinical trials (53, 78, 79). Some results

suggested that the high expression of PD-L1 is associated with

increased response rates and clinical benefits of anti-PD-1/PD-L1

therapy (80, 81). In the Keynote-001 study, pembrolizumab

treatment resulted in a longer median OS for the advanced

NSCLC patients with a PD-L1 proportion score of ≥50% than

those with a proportion score of 1–49% (53). The Keynote-052

study indicated that the subgroup with PD-L1 expression above

10% showed a higher objective response rate than the subgroup

with PD-L1 expression below 1% (39% vs. 11%) in urothelial cancer

patients treated with pembrolizumab (82). However, not all patients

with high PD-L1 expression will respond well to anti-PD-1/PD-L1

immunotherapy while some patients with negative PD-L1

expression can also benefit from this therapy (83, 84), which

indicated that there remain challenges in defining the predictive

function of PD-L1 expression. The possible reasons might be as

follows: (1) the methods and antibodies used for IHC to detect the

PD-L1 level vary from different clinical studies; (2) the scoring

system determining the quantification of PD-L1 expression of

tumor cells, tumor-infiltrating immune cells, or both, is not

consistent and it is difficult to confirm the best cutoff value; and

(3) the expression of PD-L1 suffers from heterogeneity in space and

time. Studies also showed that the expression of PD-L1 differs in

primary and metastatic tumor sites and the PD-L1 expression may

be affected by previous chemotherapy (85, 86). The accuracy of

histological specimen may be affected by the small size of biopsy

tissue (87). Despite these disadvantages, PD-L1 expression remains

a promising predict ive biomarker for anti-PD-1/PD-

L1 immunotherapy.
6.2 TMB

TMB, the total number of mutations (including synonymous

and non-synonymous) in tumor cells, could be predictive

biomarkers for immunotherapy. Advanced sequencing

technologies can better characterize the mutational landscape to
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identify patients who are more likely to gain clinical benefits from

immunotherapy. Rizvi et al. performed whole exome sequencing

(WES) on NSCLC samples from the patients treated with

pembrolizumab and found that in the process of pembrolizumab

treatment, the patients having tumors with a high asynchronous

mutation burden exhibited improved objective response and a

lasting clinical benefit (88). Yarchoan et al. also observed a

significant correlation between the tumor mutational burden and

the objective response rate in anti-PD-1/PD-L1 therapy against

multiple cancer types (89). Importantly, the patients with high TMB

and high PD-L1 expression (>50%) had the longest PFS and OS

compared with patients with only a single factor, suggesting that the

integration of TMB with PD-L1 expression might be more precise

to identify the patients who are more likely to respond to anti-PD-1/

PD-L1 therapy (90). However, the assessment of TMB needs large

sequencing panels that require large amounts of tumor tissue (91).

The limited amount of DNA obtained from a conventional tumor

biopsy or a fine needle biopsy may make TMB evaluation

chal lenging or even imposs ib le (91) . Moreover , the

standardization of TMB assessment has not been determined.

Although the terms “low TMB” or “high TMB” are commonly

used in study, the threshold to define them has not been clearly

established. Therefore, the limitations that prevent TMB from

becoming a promising predictive marker for immunotherapy

should be overcome before it can be used in a clinical setting.
6.3 dMMR/MSI

DNA mismatch repair (MMR) is a system that aims to identify

and repair mutations that occurred during DNA replication and

recombination. Dysfunction of the DNA mismatch repair system

will lead to the accumulation of mutations. Moreover, the

microsatellite instability (MSI) is a genetically hyper-mutational

state that is a phenotypic result of MMR deficiency (dMMR).

Studies have shown that MSI-H/dMMR can predict the response

to ICIs in patients with colon cancer and endometrial cancer (92,

93). Recently, the role of the MMR system in the response to ICIs in

NSCLC was assessed and the alteration of MMR system-related

genes in NSCLC seems to be related to the enhanced response to

nivolumab immunotherapy (94).
6.4 Tumor-specific genes

It was reported that the tumor-specific driver gene mutations

are associated with the efficiency of immunotherapy (95). Wang

et al. fully analyzed the clinical, genomic, and transcriptomic data of

lung adenocarcinoma patients in a public database and evaluated

the impact of TP53 variant allele fraction (VAF) on tumor immune

microenvironment and clinical outcomes of LUAD patients treated

with ICIs (96). They found that compared with patients from the

high TP53 VAF group and the wild-type group, low TP53 VAF

group patients demonstrated more immune cell infiltration and

superior response to anti-PD-1/PD-L1 therapy, proving that low
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TP53 VAF could be a predictive marker for better clinical outcomes

of anti-PD-1/PD-L1 therapy (96). Notably, the KMT2C/TP53 co-

mutations might be a promising predictive marker of clinical

benefit for immunotherapy due to the high correlation of

KMT2C/TP53 co-mutations with naive CD8+ T cells, Th1, Th2,

and gd T cells (97). In line with this notion, it was found that KRAS

mutation was associated with an inflammatory TME and tumor

immunogenicity, leading to higher response of patients to anti-PD-

1/PD-L1 immunotherapy in NSCLC patients (98). Interestingly,

EGFR mutation is reported to be associated with decreased PD-L1

expression, low TMB, and decreased CD8+ T-cell infiltration (99).

In a clinical trial, pembrolizumab showed no effect on the treatment

of advanced NSCLC patients with EGFR-mutant and positive PD-

L1 expression (≥1%) (100). Comprehensive analysis of EGFR

mutation as a predictive biomarker of immunotherapy should be

widely carried out in NSCLC (101).
6.5 Peripheral blood-related biomarkers

6.5.1 ctDNA and bTMB
Blood DNA-related biomarkers mainly include circulating

tumor DNA (ctDNA) and blood TMB (bTMB). The amount of

circulating tumor DNA in plasma is related to the tumor burden and

clinical outcome (102). It was reported that pretreatment ctDNA is

associated with the durable clinical benefit of NSCLC patients treated

with ICIs (103). Using ctDNA to detect TMB in peripheral blood has

also been developed to estimate response to immunotherapy.

Gandara et al. found that TMB in peripheral blood (bTMB) can

identify patients who had the clinical improvement in progression

free survival after atezolizumab treatment, proving that high bTMB

may be a marker for immunotherapy efficiency in NSCLC (104).

6.5.2 Immune cells and TCR
Blood cell-related biomarkers mainly include immune cells and

T-cell receptor (TCR) immunophenotyping. Notably, the type and

number of immune cells and TCR immunophenotyping can reflect

the treatment effect of anti-PD-1/PD-L1 immunotherapy (105, 106).

Immune cells in peripheral blood can reflect the functions and

subtypes of tumor-infiltrating lymphocytes (TILs). The paired

whole exome DNA sequencing and multiplexed quantitative

immunofluorescence (QIF) were performed in pretreatment

samples from NSCLC patients treated with anti-PD-1

immunotherapy to figure out the role of intratumoral T cells and

their relationship with the tumor genomic landscape (107). The

results elucidated that the level of CD3+ TILs was related to a

favorable response of patients to immunotherapy (107).

Fur the rmore , Han e t a l . pe r fo rmed sequenc ing o f

complementarity-determining region 3 of TCRb chains isolated

from PD-1+ CD8+ T cells to evaluate its value as a biomarker to

predict the response to anti-PD-1/PD-L1 therapy in NSCLC patients

(108). Those results showed that the TCR diversity and clonality of

PD-1+ CD8+ T cells in peripheral blood may be promising predictors

of response to anti-PD-1/PD-L1 therapy and survival outcomes in

NSCLC patients (108).
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6.5.3 Exosomal PD-L1 and cytokines
Exosomal PD-L1 and cytokines are other important blood cell-

related biomarkers. PD-L1 was present on exosomes isolated from

the plasma of NSCLC patients, and the PD-L1-positive exosomes

can impair immune functions by inhibiting cytokine secretion and

inducing apoptosis of CD8+ T cells in lung cancer patients (109). In

support of this notion, Wang et al. analyzed the blood samples of

149 NSCLC patients and found that the exosomal PD-L1 was

correlated with the clinical response of patients to ICI treatment,

implying that exosomal PD-L1 could be used for the evaluation of

immunotherapeutic efficacy in lung cancer (110). Furthermore, a

prospective study of 26 NSCLC patients who received

pembrolizumab or nivolumab treatment was conducted (111).

The values of IFN-g, TNF-a, IL-1b, IL-2, IL-4, IL-5, IL-6, IL-8,
IL-10, and IL-12 were measured by flow cytometry at the time of

diagnosis and at 3 months after initiation of anti-PD-1 therapy

(111). Their results showed that high levels of cytokines including

IFN-g, TNF-a, IL-1b, IL-2, IL-4, IL-6, and IL-8 are associated with

improved response to immunotherapy and prolonged OS of

NSCLC patients (111). Moreover, the other study reported that

the elevated baseline serum IL-8 levels are associated with poor

outcome in NSCLC patients who received ICIs (112). The above

results together showed that the cytokine levels may be potential

predictive biomarkers in selecting NSCLC patients who can benefit

from anti-PD-1/PD-1 immunotherapy.
6.6 Gut microbiome

Accumulating lines of evidence indicated that gut microbiota

could regulate the host response to chemotherapeutic drugs and is

related to the pharmacological effects of chemotherapies and
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immunotherapies such as anti-PD-L1 and anti-CLTA-4 therapies

(113, 114). Takada et al. performed a retrospective study for 294

patients with advanced or recurrent NSCLC who received

nivolumab or pembrolizumab monotherapy at three medical

centers in Japan (115). Their univariate analyses indicated that

the utilization of probiotics was associated with better disease

control and overall response of NSCLC patients with anti-PD-1

therapy (115). These results implied that the gut microbiota might

be a novel predictor of clinical response to anti-PD-1/PD-L1

immunotherapy in NSCLC. In accordance, a metabolomics

analysis was conducted to detect volatile and non-volatile

metabolites of the gut microbiota in 11 NSCLC patients who

received nivolumab, and the results showed that 2-Pentanone

(ketone) and tridecane (alkane) were associated with early

progression, while short-chain fatty acids (SCFAs) (i.e.,

propionate, butyrate), lysine, and nicotinic acid were associated

with long-term clinical benefit, suggesting that gut microbiota

metabolic pathways may play an important role in clinical

response to immunotherapy (116). However, further in-depth

studies are warranted to validate the clinical significance of the

gut microbiota as a biomarker of immunotherapeutic efficacy.
7 Discussion

Recently, the anti-PD-1/PD-L1 immunotherapy has shown

great clinical efficacy in many cancers including lung cancer.

Anti-PD-1 drugs, including nivolumab, pembrolizumab, and

cemiplimab, and anti-PD-L1 drugs, including atezolizumab and

durvalumab, provided significant antitumor activity for lung cancer

and improved the survival time of lung cancer patients (Figure 3).

Although immune checkpoint blockade has achieved clinical
FIGURE 3

Anti-PD-1/PD-L1 inhibitors are approved by FDA for the treatment of lung cancer. The PD-1 inhibitors such as nivolumab, pembrolizumab, and
cemiplimab and the PD-L1 inhibitors such as atezolizumab and durvalumab were illustrated in the panel. PD-1, programmed death 1; PD-L1,
programmed death 1 ligand.
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success in cancer treatment and several drugs have been approved

by FDA to treat cancers, a great proportion of patients could not

exhibit sustained clinical response to the anti-PD-1/PD-L1

immunotherapy (117). Current research on anti-PD-1/PD-L1 has

shown that some patients who have high PD-L1 expression cannot

achieve ideal therapeutic benefit, while some patients who have

lower or even negative PD-L1 expression can benefit from anti-PD-

1/PD-L1 therapy (18). It is important to explore suitable biomarkers

for prediction of immune efficacy and screen suitable patients for

anti-PD-1/PD-L1immunotherapy. Here, we summarized and

comprehensively discussed the current achievements of anti-PD-

1/PD-L1 therapy and the potential biomarkers for the prediction of

anti-PD-1/PD-L1 immunotherapy in lung cancer.

A previous study showed that a large proportion of patients

cannot demonstrate sustained clinical response to anti-PD-1/PD-L1

immunotherapy (117). To conquer the problem of low response in

patients treated with single immunotherapy, the combination

therapy with anti-PD-1/PD-L1 therapy has been developed and

used in clinical trials, and they exhibited synergized clinical efficacy

and decreased the immune toxicity (Figure 4). Notably,

radiotherapy (RT) can not only kill tumor cells by damaging the

tumor DNA, but also stimulate the immune system by releasing

tumor antigens (118). Moreover, preclinical studies indicated that

radiotherapy could upregulate PD-L1 expression on tumor cells,

which synergistically improved antitumor effect when combined

with anti-PD-L1 therapy (119, 120). The combination therapy of

RT and anti-PD-1/PD-L1 therapy proved to be a safe strategy by the

clinical trial of 187 NSCLC patients (121). In support of this notion,
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studies have shown that chemotherapy may enhance the efficiency

of anti-PD-1/PD-L1 therapy by inducing a tumor-specific adaptive

immune response (122). The combined treatment of atezozumab,

carboplatin, and etoposide, and the combined treatment of

duvarumab and chemotherapy have been successively approved

by FDA as the first-line treatment of ES-SCLC (70, 76). Recently,

the combination of nivolumab and chemotherapy has been

approved as adjuvant therapy for resectable NSCLC (49).

Notably, oncolytic viral therapy can not only kill tumor cells, but

also increase cytokines such as interferon gamma and interleukins,

which are present in the TME, resulting in an improved innate

immunologic response to tumor cells (123). The combination of

oncolytic viral therapy and anti-PD-1/PD-L1 therapy might have

the potential to enhance antitumor efficacy and reduce adverse

events (123–125). Furthermore, angiogenic factors play important

roles in inducing an immunosuppressive state and anti-angiogenic

agents have been proven to enhance tumor immunity response. A

clinical study has shown that the combined therapy of anti-

angiogenic agents anlotinib and PD-1 inhibitor camrelizumab

had promising efficacy and manageable toxicity in the treatment

of NSCLC (126). Interestingly, the combination of different

immunotherapy could achieve better therapeutic effect and

outcomes. Chimeric antigen receptor T (CAR-T) cell therapy

belongs to the immunotherapy that can specifically identify and

kill tumor cells through the genetically modified T cells in vitro

(127). More notable, the combination of CAR-T therapy and anti-

PD-1/PD-L1 therapy has been proven to enhance antitumor

efficacy and improve safety on cancer treatment (128, 129). Sanaz
FIGURE 4

The combination of anti-PD-1/PD-L1 therapy with other therapies has become an important treatment strategy. The strategies used in combination
with anti-PD-1/PD-L1 therapy include radiotherapy, chemotherapy, oncolytic viral therapy, anti-angiogenic therapy, CAR-T therapy, and CD73
inhibition therapy. PD-1, programmed death 1; PD-L1, programmed death 1 ligand; CAR-T therapy, chimeric antigen receptor T therapy.
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Taromi et al. reported that the combined therapy of CAR-T cells,

anti-PD-1-antibody, and CD73 inhibitor can specifically eliminate

chemo-resistant tumor stem cells and overcome SCLC-mediated T-

cell inhibition in a humanized orthotopic SCLCmouse model (129).

Anti-PD-1/PD-L1 immunotherapy has been widely used in the

treatment of lung cancer patients. However, a great proportion of

patients could not exhibit sustained clinical response to the anti-PD-

1/PD-L1 immunotherapy. It is of significance to screen out patients

suitable for immunotherapy and to improve immunotherapy efficacy.

Accumulating lines of evidence demonstrated that predictive

biomarkers play an important role in predicting response and

safety of anti-PD-1/PD-L1 therapy and in the identification of lung

cancer patients who will benefit from anti-PD-1/PD-L1

immunotherapy. Current commonly used markers include PD-L1

expression level of tumor tissue, TMB, dMMR/MSI, and specific

driver gene mutations. However, the predictive precision was affected

by the intrinsic limitation of the markers when they are used alone to

predict the response, and then the combination of multiple

biomarkers is usually used in the prediction process (130–132). The

surgical approach and a minimally invasive intervention to collect

tumor tissues are commonly used traditional biopsy methods, while

liquid biopsy can easily be retrieved from plasma or serum (102).

Liquid biopsy has been developed to identify circulating cancer

biomarkers including blood DNA-related biomarkers, blood cell-

related biomarkers, and others such as PD-L1 and cytokines (133).

Furthermore, novel techniques, such as high-dimensional single-cell

analysis, have also been developed to predict response to anti-PD-1/

PD-L1 immunotherapy (134).

Although anti-PD-1/PD-L1 therapy has achieved clinical

success in the treatment of various cancer types, the immune-

related adverse events (irAEs) should not be ignored (135). Among

patients who received anti-PD-1/PD-L1 therapy, the incidence of

any grade irAEs and severe grade irAEs was 26.82% (95% CI, 21.73–

32.61; I2, 92.80) and 6.10% (95% CI, 4.85–7.64; I2, 52.00),

respectively (136). The irAEs caused by immune checkpoint

blockade thereby mainly involve abnormality on skin,

gastrointestinal tract, endocrine glands, lung, liver, and other

tissues. During nivolumab treatment, the most common irAE

involves skin and gastrointestinal tract, with an incidence of

approximately 13% (136). During pembrolizumab treatment, the

most common irAE was hypothyroidism with an incidence of

approximately 8% (136). Immune-related cholangitis was

observed in patients receiving nivolumab and avelumab, which

has raised concerns about liver damage induced by ICI drugs (137).

There remain challenges in the treatment of cancer using anti-

PD-1/PD-L1 therapy, including screening out patients who may

benefit from immunotherapy, improving therapeutic effect, and

reducing the side/adverse effects. Therefore, more prospective

studies are still warranted to validate the detailed function of
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biomarkers in clinical trials by increasing the tumor types and

number of enrolled cancer patients. In the future, more efforts

should be exerted to the screening of more predictive biomarkers

that will help make an accurate therapeutic strategy and identify

suitable patients who should be given the precision medicine to

reduce their suffering from cancer. On the basis of anti-PD-1/PD-L1

therapy, the combined therapy also needs to be further optimized to

improve the treatment of lung cancer with reduced adverse events.
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