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Basophils are rare cells in the peripheral blood which have the capability to

infiltrate into the skin. Invasion of basophils has been detected in pruritic skin

diseases, including atopic dermatitis, bullous pemphigoid, chronic spontaneous

urticaria and contact dermatitis. In the skin, basophils are important players of the

inflammatory immune response, as they release Th2 cytokines, including

interleukin (IL)-4 and IL-13, subsequently inducing the early activation of T-

cells. Further, basophils release a multitude of mediators, such as histamine and

IL-31, which both play an important role in the initiation of the pruritic response

via activation of sensory nerves. Chronic pruritus significantly affects the quality

of life and the working capability of patients, though its mechanisms are not fully

elucidated yet. Since basophils and neurons share many receptors and channels,

bidirectional interaction mechanisms, which drive the sensation of itch, are

highlighted in this review.
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Introduction

Basophil granulocytes are named due to their affinity to basic dyes (1). The diameter of

basophils is 10 - 14 μm (2) and basophils are the least abundant type of granulocytes in

human blood, where they comprise less than 1% of all leucocytes (1). After differentiation

from hematopoietic stem cells in the bone marrow, fully matured basophils enter the blood

stream (2). Basophils do not proliferate (3) and have a short lifespan of 60 - 70 h in mice (4).

In humans, lifespans of up to 11 days have been reported (5). During helminth elimination,

basophils are involved in protective mechanisms and also play a significant role in enhancing

inflammation (6). Basophils are an important early source of Th2-type cytokines such as

interleukin (IL)-4 and IL-13 in inflammation (Figure 1) (7). Moreover, basophils release the

pruritic cytokine IL-31, and express its receptor complex consisting of the IL-31 receptor A

(IL-31RA), and the oncostatin M receptor b (OSMRb) (Figure 1, Table 1) (21). Stimulating

basophils with IL-31 induces basophil chemotaxis and promotes the secretion of Th2

cytokines (21). Another itch mediator is histamine. The pruritogen is released after
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activation of the high-affinity IgE receptor FcϵRI (Figure 1) (33). A
specific characteristic of human basophils is the potentiation of

mediator release after stimulation with priming factors. In the

pathogenesis of inflammatory diseases, enhancing factors, such as

IL-3, nerve growth factor (NGF), IL-5 and granulocyte macrophage-

colony stimulating factor (GM-CSF), modulate the functional activity

of basophils. IL-3 is the most potent activator of basophils and also

promotes basophil differentiation (35). Its receptor a-chain CD123 is

expressed by basophils (Figure 1) (13–17). Another priming agent for

basophils is the neurotrophin NGF, which induces the release of

histamine and the synthesis of leukotriene C4 (LTC4) after
Frontiers in Immunology 02
stimulation with agonists (Figure 1) (36). NGF has similar effects

on basophils as IL-5 and GM-CSF (36). While IL-5 belongs to the

group of Th2 cytokines (37), GM-CSF is a monomeric glycoprotein

that is present at sites of tissue inflammation (38). Both are produced

by basophils and promote inflammation (39). Activation of basophils

is associated with upregulation of the cell surface markers CD13,

CD45, CD63, CD203c (40), and CD69, for which increased

expression is mostly observed after stimulation with IL-3 (41). A

method to assess human basophil activation is to determine changes

in the amount of these surface proteins. The most reliable activation

markers are CD63 and CD203c (40). CD63 is a membrane protein,
FIGURE 1

Expression of receptors and release of cytokines in human basophils. Basophils interact with other immune cells and neurons through inflammatory
mediators and receptor expressions. Interleukin (IL)-31, as well as its receptor complex consisting of the IL-31 receptor A and the oncostatin M receptor
b, are expressed by basophils and contribute to pruritus. Stimulation with IL-31 leads to the secretion of the pro-inflammatory cytokines IL-4 and IL-13.
Their respective receptors are IL-4R and IL-13R. Basophils express the high-affinity receptor FcϵRI. Upon crosslinking of the receptor with IgE, histamine
is released, mediating itch. The hormone receptors are present on the cell surface, with the histamine 4 receptor being the most highly expressed.
Activation of the neurokinin 1 receptor through substance P (SP) also causes histamine release. Basophils can be primed by IL-5, IL-3 and granulocyte
macrophage-colony stimulating factor (GM-CSF). The respective receptors are CD125 and CD131 for IL-5, CD123 and CD131 for IL-3 and the GM-CSF
receptor consists of GM-CSFRa and GM-CSFRb. Activation of these receptors leads to increased histamine release. Another priming factor is nerve-
growth factor, which binds to the tyrosine kinase A receptor on the cell surface. Basophils express the Mas-related G protein-coupled receptor X2
(MRGPRX2), which is part of the signaling cascade in inflammation and serves as a receptor for SP. Another pruritogen is thymic stromal lymphopoietin
(TSLP), which binds to the TSLP receptor complex consisting of TSLP receptor and IL-7 receptor a and is proposed to cause itch. Whether basophils
respond to TSLP is controversial. The lipid mediator sphingosine-1-phosphate (S1P) is stored in granules and its receptor S1P receptor 1 is expressed on
the cell surface. It is proposed to have an anti-inflammatory effect on basophils. The leukotriene C4 (LTC4) is released by basophils and its receptor
cysteinyl leukotriene receptor (LTCR) is expressed by basophils. GM-CSF: granulocyte macrophage-colony stimulating factor; GM-CSFRa: GM-CSF
receptor a; GM-CSFRb: GM-CSF receptor b; H1/H4: histamine 1/4 receptor; IL: interleukin; IL-4R: IL-4 receptor; IL-5R: IL-5 receptor; IL-7RA: IL-7
receptor a; IL-13R: IL13 receptor; IL-31RA: IL-31 receptor A; LTC4: leukotriene C4; LTCR: cysteinyl leukotriene receptor; MRGPRX2: Mas-related G
protein-coupled receptor X2; NK1R: neurokinin 1 receptor; OSMRb: oncostatin M receptor b; trkA: tyrosine kinase receptor A; TSLP: thymic stromal
lymphopoietin; TSLPR: TSLP receptor; SP: substance P; S1P: sphingosine-1-phosphate; S1PR1: S1P receptor 1.
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that is associated with histamine containing granules. After

anaphylactic degranulation (42, 43), CD63 is translocated to the

cell surface of activated basophils as a result of histamine release (43).

The ectoenzyme CD203c (pyrophosphatase/phosphodiesterase) is

weakly expressed on resting basophils (44). Whereas CD63

externalization is closely related to basophil degranulation (44).

Upon activation, CD203c, which is not associated with mediator

release, is upregulated rapidly (43). Basophil infiltration has been

observed in atopic dermatitis (AD), bullous pemphigoid (BP),

chronic spontaneous urticaria (CSU) and contact dermatitis (7), all

of which are pruritic inflammatory skin diseases. The mechanism

how basophils are recruited into the skin remains to be fully

elucidated. It is assumed that basophils are attracted by a variety of

mediators present in the skin, i.e. the chemokines, CCL2, CCL5,

CCL11, CXCL12, and prostaglandin D2 (45). Basophils express the

respective receptors, CCR4 for CCL2 and CCL5, CCR3 for CCL11,

CXCR4 for CXCL12 and chemoattractant receptor-homologous

molecule expressed on Th2 cells (CRTH2) for prostaglandin D2

(45, 46). CCL11 is produced by dermal fibroblasts and CRTH2 is

elevated in AD (46). Other potential chemoattractants of basophils

are thymic stromal lymphopoietin (TSLP), IL-3, IL-31, histamine,

substance P (SP) and sphingosine-1-phosphate (S1P). TSLP and IL-3

cause the upregulation of CXCR4 and thereby lead to infiltration of

basophils into the skin (47). The pruritogen IL-31 has been shown to

induce chemotaxis in basophils in vitro (21). Upon histamine release

from mast cells, murine basophils are recruited to the site of allergen

exposure in nasal tissue (48). SP has also been shown to chemoattract

basophils, resulting in the infiltration of basophils into the skin of

healthy individuals (49). Recently, it was shown that in healthy

donors, basophils migrate towards S1P which was observed in an

in vitro study, while in AD patients a chemorepulsive effect was

detected (31). It has however, so far not been described if basophils,

that migrated into the skin, return to the blood or travel to draining

lymph nodes (45, 50). Pruritus elicits the desire to scratch the skin

and is categorized into acute and chronic pruritus. Chronic itch, by

definition, lasts longer than 6 weeks, and strongly impairs patients’

quality of life. Although its complete mechanism has yet to be

elucidated, complex crosstalk between the stratum corneum,

keratinocytes, immune cells, and nerve fibers (Figure 1) plays an

important role in the initiation and maintenance of pruritus. Itch can

originate in the skin or have neuropathic, psychogenic or systemic

causes (51). Histamine, IL-31, SP, LTC4, IL-4, IL-13, NGF, brain-

derived neurotrophic factor (BDNF), and TSLP, which all are

released by or affect basophils (Figure 1), have been reported to

cause itch (7, 12, 21, 52–54) and are described in the chapter

“Basophils and neuro-immune interactions”. Current therapies for

itch target different receptors on basophils, such as IL-31RA,

neurokinin 1 receptor (NK1R), tropomyosin-receptor kinase A

(trkA), or released mediators, i.e. IL-13. The monoclonal IL-31RA

antibody nemolizumab binds to IL-31RA and thereby interrupts IL-

31 itch signaling in basophils. A trial from Japan in which

nemolizumab was administered, found improvements in pruritus

and quality of life, leading to the approval of the drug for AD (55).

NK1R is expressed in basophils and its antagonists inhibit pruritic

signaling and decrease itch in patients. However, the inhibitors are

not licensed for use (56). In mice, treatment with signal transducer
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and activator of transcription 6 (STAT6) inhibitors led to decreased

scratching. IL-13 targets STAT6, inducing pruritus (57). Janus kinase

(JAK) inhibitors interrupt the JAK-STAT signaling pathway. This

disruption, which occurs after treatment with JAK inhibitor

upadacitinib, leads to improvement of pruritus in patients (58).

Application of the trkA inhibitor CT327 resulted in a significant

decrease of pruritus in psoriasis patients (59). The role of basophils as

important effector cells in different inflammatory skin diseases and

their involvement in pruritus, are described in the following chapters.
Atopic dermatitis

Atopic dermatitis (AD) is an inflammatory skin disease,

associated with recurrent dry skin, and the main bothersome

symptom, itch (60). In patients with AD, infiltration of basophils

into the skin and peripheral blood has been observed, although not

in as high numbers as in other skin diseases (46, 61). In one study,

significantly less basophil numbers could be detected in peripheral

blood of AD patients than in healthy controls (62). Interestingly,

increased basophil count is suggested to be a potential causal risk

factor for AD (63). Basophils were found to exhibit increased

externalization of the activation markers CD63 and CD203c in

AD patients (61). This indicates possible involvement of basophils

in the pathogenesis of AD. Basophils can be primed by NGF

(Figure 1), which is produced by a variety of cells, such as

keratinocytes (53), eosinophils (64), T cells (65), and mast cells
TABLE 1 Shared receptors of basophils and neurons with their
respective ligand.

Shared receptor Ligand References

GM-CSFRa/b GM-CSF (8, 9)

H1/H4 Histamine (10, 11)

IL-4R IL-4 (12)

IL-3R IL-3 (13–18)

IL-5R IL-5 (19, 20)

IL-13R IL-13 (12)

IL-31 receptor complex IL-31 (21, 22)

LTCR LTC4 (23)

MRGPRX2 SP (24, 25)

NK1R SP (12, 26, 27)

trkA NGF (28, 29)

TSLP receptor complex TSLP (12, 30)

S1PR1 S1P (31, 32)

FcϵRI IgE (33, 34)
GM-CSF, granulocyte macrophage-colony stimulating factor; GM-CSFRa/b, GM-CSF
receptor a and b; H1/H4, histamine 1/4 receptor; IL, interleukin; IL-3R: IL-3 receptor; IL-
4R: IL-4 receptor; IL-5R, IL-5 receptor; IL-7RA, IL-7 receptor a; IL-13R, IL13 receptor; IL-
31RA, IL-31 receptor A; LTC4, leukotriene C4; LTCR, cysteinyl leukotriene receptor;
MRGPRX2, Mas-related G protein-coupled receptor X2; NK1R, neurokinin 1 receptor;
OSMRb, oncostatin M receptor b; trkA, tyrosine kinase receptor A; TSLP, thymic stromal
lymphopoietin; TSLPR, TSLP receptor; SP, substance P; S1P, sphingosine-1-phosphate;
S1PR1, S1P receptor 1.
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(66). NGF has been shown to be either increased (53), or

significantly decreased in AD patients, correlating with disease

severity when compared to healthy subjects (67). In lesional skin

of subjects with AD, the number of NGF positive nerve fibers is

increased (68). Whether basophils are a source of NGF, has yet to be

elucidated. In the epidermis, the lipid mediator sphingosine-1-

phosphate (S1P) plays an important role regarding structure, lipid

signaling and the regulation of keratinocytes. Our group recently

discovered that isolated basophils of atopic patients exhibited

decreased S1PR1 expression, and possessed intracellular S1P in

isolated basophils (31). Furthermore, in the stratum corneum of AD

patients, the lipid is decreased, which might alleviate colonization

with Staphylococcus aureus (69). The lipid, as well as mRNA

expression of the S1P receptors (S1PR) S1PR1, S1PR2, S1PR3 and

S1PR4, have been observed in human basophils (Figure 1) (31). The

presence of S1PR1 was also confirmed at the cell surface (31)

(Table 1). S1PR1, S1PR2 and S1PR4 have been detected in the

brain (32), indicating another point of neuro-immune crosstalk.

Due to the inhibiting effect of the lipid mediator on chemotaxis, S1P

is proposed to have an anti-inflammatory effect on basophils (31).

In both mice and humans, significant upregulation of FcϵRI on

basophils during AD has been observed, indicating that IgE might

also be an important factor in pruritus (70). The pro-inflammatory

effect of basophils in AD might be reduced by treatment with

dupilumab. The monoclonal IgG4 antibody, which binds to IL-4Ra,
showed success in reducing symptoms, such as itch, of AD patients

(71). Since the antibody binds to IL-4Ra, the assumption arises, that

the cytokines which contribute to the disease are partially derived

from basophils (71). Aside from their pro-inflammatory properties,

basophils can aid in the resolution of AD. The expansion of M2-like

macrophages was promoted by murine basophils, as well as

epidermal repair (72), which additionally affirms the role of

basophils in AD.
Bullous pemphigoid

Bullous pemphigoid (BP) is a blistering skin disease, that most

commonly occurs in elderly people and only rarely affects

adolescents or children. An autoimmune reaction against the

hemidesmosomal proteins BP180 and BP230 leads to the

formation of blisters (73). A case study showed that basophil

infiltration took place in early- as well as late-stage lesions (74).

The twofold involvement of basophils in BP was shown by Kimura

et al. (75). During the early stage of BP, basophil infiltration was

correlated with eosinophil infiltration. Cell-to-cell contact was

observed, indicating that Th2 immunity is promoted by

eosinophils and basophils (75). A case study detected the

colocalization of basophils and eosinophils in urticarial plaques

(74). The presence of basophils was also demonstrated, as well as

eosinophils, underneath the subepidermal cleft during the late-stage

of BP (74). Basophils in BP were shown to be present with a high

density, similar to that observed in urticaria, but higher than that in

AD (46), and increased compared to skin healthy controls (76).

Circulating basophils from untreated BP patients were stimulated

with BP180, resulting in significantly higher histamine release than
Frontiers in Immunology 04
those basophils of treated BP patients or healthy controls (77). This

suggests an important role for basophils in the development of BP.

The amount of anti-basement membrane zone antibodies was

positively correlated with IgE serum levels (78). Treatment with

the anti-IgE monoclonal antibody omalizumab resulted in the

downregulation of FcϵRI on basophils in two cases (79).

Activation of basophils was determined through measuring

CD203c expression. The expression was evaluated before and

after treatment with two doses of prednisolone and three sessions

of plasma exchange, and found to be significantly reduced after

treatment (74). These observations indicate that basophils play a

role in the development of BP. In BP, itch is an important factor,

which is confirmed as itch severity correlates with the increased

numbers of basophils present in the blisters (76). Thus, basophils

seem to play an important role in pruritus, blister development and

inflammation in BP.
Chronic spontaneous urticaria

Chronic spontaneous urticaria (CSU) presents in patients as

pruritic hives, angioedema or a combination of both (80). Patients

suffering from CSU often present with peripheral basopenia, where

low amounts of basophils are present in the blood, probably due to

the infiltration into the skin (81). An inverse correlation between

disease severity and the amount of basophils in the blood has been

observed (81). Moreover, significantly more infiltrating basophils

are present in lesions of CSU patients than in nonatopic subjects

(82). Basophil degranulation has also been observed in the skin of

CSU patients. Therefore, the reactivity in CSU seems to be partially

regulated by basophils (82). Substance P (SP) was shown to be

positively correlated with the number of basophils in the peripheral

blood of CSU patients (26). Interestingly, basophil numbers were

increased in CSU patients compared to healthy controls, in contrast

to findings of other studies. These basophils exhibited higher

expression levels of SP, as well as its associated receptor NK1R,

than those from healthy controls. When activated by its agonist,

NK1R mediated up to 41% net histamine release, which is

comparable to that induced by anti-IgE and the chemoattractant

N-formylmethionyl-leucyl-phenylalanine (fMLP) (26). A similar

effect was confirmed in mice. Blood basophil numbers increased

after injection with SP. Sensitization with ovalbumin resulted in

elevated basophils numbers as well as increased SP and NK1R

expression on basophils (26). As itch is a significant symptom of

CSU, its origin is important. One causative factor might be IL-31,

which is elevated in this disease (83). Basophils have been reported

to be the main source of IL-31 in skin lesions of CSU (Figure 1) (21).

In CSU, patients can be categorized in three groups; responders,

nonresponders and basopenics, depending on how much histamine

is released from basophils after stimulation with anti-IgE (84).

Upon application of anti-IgE, basophils of responders release high

amounts of histamine and exhibit increased CD63 externalization.

Nonresponders are characterized by low histamine secretion and

CD63 externalization, while almost no reaction can be observed in

basophils of basopenics (84). Responders, those with high histamine

release, seem to suffer from CSU longer than the other groups.
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However, the number and size of hives, as well as the itch score were

highest in basopenics (84). Another study confirmed that the

duration of the disease is longer in responders. The same group

of patients also reported increased itch (85). Treatment with the

anti-IgE monoclonal antibody omalizumab showed a decrease of

symptoms in CSU patients (86). Furthermore, the number of

peripheral blood basophils increased as a result of treatment with

omalizumab (87). Whether the monoclonal antibody inhibits

basophil migration into the skin, or promotes the release of new

basophils from the bone marrow has yet to be investigated.

Basophils of CSU patients exhibited significantly higher amounts

of CD63, than those of healthy controls. CD203c expression

however was unchanged (88). In contrast, another study revealed

no difference of activation marker levels in CSU patients in

comparison with healthy subjects. However, histamine release was

reported to be higher in patients with CSU than in controls (89). In

CSU patients in remission, basophils were more activated, as

determined through the presence of CD63 and CD203c, than in

healthy control (90). This shows that basophils are crucial in the

development of CSU.
Contact dermatitis

Irritant contact dermatitis is characterized by non-allergic,

pruritic skin inflammation, where basophils infiltrate into the

tissue (91). In human and murine irritant contact dermatitis skin

lesions, basophils were located in proximity to eosinophils, which

were recruited to the site by the basophils (91). Furthermore, in

mice, direct cell-to-cell contact of basophils with eosinophils seems

to lead to the activation of eosinophils, enhancing the development

of irritant contact dermatitis (91). Allergic contact dermatitis,

however, is caused by contact with an allergen, which also

induces basophil migration. Interestingly, infiltration lasts for

several days, where basophils can be detected after 25 hours and

then increase in number in allergic contact dermatitis (92).

Basophils represent 16% of the infiltrate in allergic contact

dermatitis at day 16, resulting in delayed hypersensitivity (92). In

accordance with this finding, degranulation of basophils was

observed to occur over 72 hours, where approx. 60% of granules

were found to be at least partially depleted (93). Eosinophil

infiltration occurs after basophil infiltration, indicating that

basophils play a role in eosinophil recruitment in contact

dermatitis (92). Thus, basophils play an important role in the

aspects of cell infiltration and pruritus during the development of

irritant and allergic contact dermatitis.
Basophils and neuro-immune
interaction

Interactions between the immune system and the nervous

system play an important role in inflammatory skin diseases and

pruritus. These neuro-immune interactions stem from intense

crosstalk between neurons and immune cells, which are located in
Frontiers in Immunology 05
close proximity to one another. Upon allergen challenge with the

irritant calcipotriol and the allergen ovalbumin, murine basophils

migrate into the skin, and are consistently observed to be located in

close proximity to sensory nerve fibers (Figure 1), indicating

neuroimmune interactions (70). The initiation and maintenance

of itch is characterized by many mediators expressed by basophils,

including IL-31, SP, LTC4, histamine, IL-4 and IL-13. Other

pruritic mediators, such as TSLP, NGF and BDNF also affect

basophils. It is assumed, that basophils interact bidirectionally

with neurons through cytokines and neurotrophins, as they share

various channels and surface receptors (Figure 1, Table 1). While

IL-31RA is present on most basophils, OSMRb can only be found

on a small subpopulation (21). IL-31RA is expressed on half of

dorsal root ganglia (DRG) with a size up to 30 μM (22), and its

ligand can act as a neurotrophin on DRG neurons (94). Through

activation of IL-31RA (22) on peripheral nerves, itch signals are

transmitted to the central nervous system (21).

The Mas-related G-protein-coupled receptor (MRGPR) X2 is

expressed on human basophils (Figure 1, Table 1) (24) and DRG

(25), and evokes allergic, as well as nonallergic hypersensitivity (32).

In mice, the transient receptor potential ankyrin 1 (TRPA1) channel

is necessary for MRGPR- and TSLP-mediated pruritus (95). Upon

activation, the channel is opened and induces itch (95).

Basophils release the inflammatory mediator LTC4. Its receptor

cysteinyl leukotriene receptor 2 (CysLTR2) is expressed on

basophils and DRG (23).

After priming with IL-3, human basophils express the TSLP

receptor, while expression of the IL-7 receptor a was not detectable

(96). In contrast, mice express TSLPR and IL-7 receptor a on

basophils (Figure 1), which together form the TSLP receptor

complex (30). Stimulation of basophils with TSLP has been

shown to cause histamine release, and increase intracellular IL-4

and IL-13 expression, as well as induce the upregulation of TSLPR

in patients with allergic asthma (97). In contrast to this study, Guen

et al. reported that basophils from healthy and allergic patients did

not respond to TSLP (98). The TSLP receptor complex has also

been confirmed in DRG. Observations in mice revealed TSLP

secretion from basophils and activation of neurons through the

cytokine (12). TSLP activates TRPA1 expressing neurons and

causes itch (99). Secretion of TSLP by human basophils has not

yet been investigated.

Basophils and peripheral nerve endings express the tachykinin

neurotransmitter SP and its receptor NK1R (Figure 1) (12, 26, 27).

The neuropeptide is involved in inflammation and itch (12).

Furthermore, SP induces histamine release from basophils,

indicating possible interactions between the nervous system and

the granulocytes (26, 27), as basophils are able to communicate with

neurons via histamine. Basophils express the histamine-1 receptor

and histamine-4 receptor (H4R; Figure 1) (10), which have also

been confirmed to be expressed in the central nervous system (11).

When H4R is activated on basophils, it mediates chemotaxis.

However, activation can also lead to basophil silencing, as CD63

and CD203c surface content has been observed to be suppressed

and the production and release of sulfidoleukotrienes reduced (10).

In mice, knockout of H4R resulted in reduced inflammation and

treatment with H4R antagonists alleviated itch (12).
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Secretion of IL-4 and IL-13 from basophils (Figure 1), indicates

communication between basophils and neurons in pruritus. Their

respective receptor subunits IL-4Ra and IL-13Ra are expressed in

basophils, as well as in DRG (12). In a murinemodel, injection of IL-4

caused scratching, suggesting that IL-4 induces pruritus in mice (12).

Neurotrophins play an important role in the communication

between basophils and neurons. Basophils and the central nervous

system express tyrosine kinase receptor A (Figure 1) (100, 101), to

which NGF binds. NGF is also a priming factor for basophils,

demonstrating the influence of the neuronal system on basophils.

To conclude, interaction between basophils and the neuro-immune

system occurs through a variety of channels and mediators,

highlighting the importance of basophils in neuro-immune

interaction mechanisms.
Conclusion

Basophils play a crucial role in many pruritic inflammatory skin

diseases. In these conditions, basophils are among the first cells to

infiltrate into the skin. At this location, basophils secrete Th2

cytokines and are drivers of the inflammation. The pruritic effect

is further mediated by IL-4, IL-13, IL-31, histamine, SP, TSLP,

BDNF and NGF, of which most are released by basophils. IL-31 is a

key mediator in itch, its expression being increased in inflammatory

and pruritic skin diseases. Basophils also recruit eosinophils to sites

of inflammation in BP and CSU, further increasing the

inflammation. Moreover, basophils are able to establish cell-to-

cell contact with sensory neurons, and enable neuro-immune

interaction through the release of inflammatory mediators, such

as IL-31. Thus, basophils seem to be major drivers of inflammation

and itch in diseases such as AD, BP, CSU and contact dermatitis,

which was summarized in this review.
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