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Background: Immunogenic cell death (ICD) is considered a particular cell death

modality of regulated cell death (RCD) and plays a significant role in various

cancers. The connection between kidney renal clear cell carcinoma (KIRC) and

ICD remains to be thoroughly explored.

Methods: We conducted a variety of bioinformatics analyses using R software,

including cluster analysis, prognostic analysis, enrichment analysis and immune

infiltration analysis. In addition, we performed Quantitative Real-time PCR to

evaluate RNA levels of specific ICD genes. The proliferation was measured

through Cell Counting Kit-8 (CCK-8) assay and colony-formation assay in RCC

cell lines.

Results: We determined two ICD subtypes through consensus clustering

analysis. The two subtypes showed significantly different clinical outcomes,

genomic alterations and tumor immune microenvironment. Moreover, we

constructed the ICD prognostic signature based on TF, FOXP3, LY96, SLC7A11,

HSP90AA1, UCN, IFNB1 and TLR3 and calculated the risk score for each patient.

Kaplan-Meier survival analysis and ROC curve demonstrated that patients in the

high-risk group had significantly poorer prognosis compared with the low-risk

group. We then validated the signature through external cohort and further

evaluated the relation between the signature and clinical features, tumor

immune microenvironment and immunotherapy response. Given its critical

role in ICD, we conducted further analysis on LY96. Our results indicated that

downregulation of LY96 inhibited the proliferation ability of RCC cells.

Conclusions: Our research revealed the underlying function of ICD in KIRC and

screened out a potential biomarker, which provided a novel insight into

individualized immunotherapy in KIRC.
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Introduction
Renal cancer is one of the most common malignant tumors

around the world (1). Renal cell carcinoma (RCC) accounts for 90%

of renal cancer and kidney renal clear cell carcinoma (KIRC)

accounts for the majority of RCC (2). Although surgical

operation brings a good prognosis to early-stage KIRC patients

(3), advanced and metastatic KIRC still have poor clinical prognosis

and outcome due to their insensitivity to radiotherapy or

chemotherapy regimens (4). With the improved awareness of the

role of immunological factor in tumor progression and prognosis,

immunotherapy, especially checkpoint inhibitors, has become an

important approach for unresectable KIRC (5, 6).

Immunogenic cell death (ICD) is a particular cell death

modality of regulated cell death (RCD) (7, 8). Previous researches

have indicated that ICD can induce adaptive immune response

against the antigens of dead or dying tumor cells through damage-

associated molecular patterns (DAMPs), which include ATP

release, calreticulin exposure, and HMGB1 (high mobility group

box 1) secretion (9, 10). The pivotal factor of cancer

immunotherapy is how to avoid the immune escape of cancer

(11). Specific immunogenic chemotherapy induces ICD to

transform immune cold tumors into hot ones and increase the

sensitivity of tumor cells to checkpoint inhibitors in several tumor

cell lines (12). However, evidence of the effectiveness of this

procedure is still lacking, which prompts us to explore the

possibility of using ICD in clinical application.

In this study, we categorized patients on the premise of their

expression of ICD genes and evaluated the difference in prognosis

and immunotherapy response. We further identified several ICD

biomarkers and constructed a scoring signature in which risk score

was prominently associated with clinical features and tumor

progression. Eventually, we predicted several drugs with high

sensitivity to high-risk patients. We furthermore speculated that

LY96 may serve as a potential novel therapeutic target and we

verified the findings by experiments. Our results provided new clues

for the development of tumor immunotherapy for KIRC.
Materials and methods

Retrieval of ICD genes

We obtained 1,736 ICD-related genes using the keyword

“immunogenic cell death” in the GeneCards database (https://

www.genecards.org/). At the same time, we summarized 171

ICD-related genes from relevant literature (13, 14). Then, the

intersection of two gene sets yielded 73 genes that were

considered as ICD key genes and included in our research.
Acquisition and preprocessing of data

The TPM transcriptome data that involved 541 tumor samples

and 72 normal samples and matched clinical data of KIRC were
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obtained from the TCGA database (https://portal.gdc.cancer.gov/).

The E-MTAB-1980 dataset (https://www.ebi.ac.uk/arrayexpress/

experiments/E-MTAB-1980/) was selected as external validation

cohort, which comprised RNA sequencing data and clinical

information of 101 KIRC samples. Samples without survival data

were removed from the cohort.
Differentially expressed ICD genes and
protein–protein interaction network

Differentially expressed ICD genes (DEIGs) were identified by

the “limma” R package (15). The protein–protein interactions

(PPIs) among DEIGs were constructed using the Search Tool for

the Retrieval of Interacting Genes (STRING) database (https://

string-db.org/). Cytoscape v3.9.1 was used to draw the network

(16). MCODE was a plugin of Cytoscape, which we conducted to

identify highly interconnected functional cluster.
Construction of ICD-related subtypes and
functional enrichment analyses

The R package “ConsensusClusterPlus” was performed to

identify ICD molecular subtypes. The maximum subtypes were

set at nine and the maximum number of iterations was set to 1,000

to guarantee the reliability of statistical analysis. Samples were

clustered into two subtypes according to the result. Differentially

expressed genes (DEGs) between two ICD subtypes were identified

with cutoffs of |log2 fold change (FC)| > 1 and false discovery rate

(FDR)< 0.05 for functional enrichment analyses. Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

analyses were implemented to predict proper biological functions

and pathways of DEGs between ICD subtypes through the

“ClusterProfile” package. Gene set enrichment analysis (GSEA)

was also performed to investigate proper mechanism of actions of

DEGs via GSEA version 4.1.0 (http://software.broadinstitute.org/

gsea/). KEGG, Hallmark, and Reactome gene sets were downloaded

from the Molecular Signature Database (MSigDB, https://

www.gsea-msigdb.org/gsea/downloads.jsp). The minimum gene

set was set as 5 and the maximum gene was set as 5,000 based on

the gene expression profile and phenotypic grouping. Each gene set

was repeatedly permutated 1,000 times for each analysis. p-

value< 0.05 was considered to be statistically significant.
Comparison of genomic alterations of
different ICD subtypes

Somatic mutation data of KIRC patients were downloaded from

the TCGA database in “maf” format. Waterfall plots were plotted by

the “Maftools” R package to visualize and summarize gene

mutation. We further downloaded the segmented copy number

variation (SCNV) data of KIRC from the GDC portal using the

“TCGAbiolinks” R package for somatic copy number analysis

according to a previous study (17). The alteration of gene copy
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number and GISTIC score for each sample were analyzed through

GISTIC 2.0 software (https://cloud.genepattern.org/). We also

calculated the burden of copy number loss or gain on the basis of

total number of genes with copy number changes at focal and arm

levels for further comparison between two ICD subtypes (18).
Tumor immune microenvironment
of ICD subtypes

The ESTIMATE algorithm was conducted to evaluate the

tumor immune microenvironment (TME) of KIRC patients (19).

The ESTIMATE algorithm calculated the stromal and immune

score to predict the infiltration of matrix and immune cells. The

CIBERSORT algorithm was applied to convert the gene expression

data into expression of 22 immune cell types (20). The immune cell

type with low expression was removed. By analyzing the correlation

and difference of immune cell types between two subtypes, we

mapped the correlation heatmap and multiple-group barplot to

visualize the results. Furthermore, we analyzed the difference of

HLA and checkpoint genes expression between the two subtypes.

The HLA and checkpoint genes were acquired from a previous

study (21).
Construction and validation of ICD
prognostic signature

Univariate Cox regression was performed to screen out

prognosis-related ICD genes with the criteria p< 0.05 of training

set. Dimension reduction was carried out through the supervised

regression random forest algorithm of the “randomForestSRC”

package (ntree = 1,000) (22). The top 10 significant genes were

selected for further multivariate Cox regression. ICD risk score was

calculated by the following formula:

Risk score =oN
i=1aixi

N, a, and x represent the number of selected genes, coefficient,

and expression value. Patients in the training and validation set

were divided into two groups according to ICD risk score. Kaplan–

Meier (KM) survival curve and ROC curve were used on both the

training set and validation set to assess the reliability of the ICD

Prognostic Signature. Area under the curve (AUC) was used to

quantify the ROC curve. We then visualized the clinical features of

two risk groups by a heatmap. Variation analyses of clinical factors

between different risk groups and correlation analyses focused on

ICD risk score and clinical factors were also conducted. Univariate

and multivariate Cox regression analyses were used to figure out

independent prognostic factors. A nomogram was plotted based on

the R package “NomogramEX” (23) and proportional hazards

assumption was examined. Calibration curves of 1, 3, and 5 years

were plotted to assess the nomogram.
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Immunotherapy response prediction

TIDE (Tumor Immune Dysfunction and Exclusion) was an

algorithm that integrated the characteristics of T-cell dysfunction and

T-cell exclusion to predict immunotherapy response in tumor patients.

The TIDE webserver (http://tide.dfci.harvard.edu/) was used to analyze

the normalized expression data, and assigned a TIDE score to each

patient where >0 was determined as no responder and<0 was

determined as responder. The Subclass Mapping (SubMap) method

was also put into use to predict the response of different groups to anti-

PD-1 and anti-CTLA4 immunotherapy. In this analysis, we compared

the expression profile of the two ICD risk groups we defined with

another published dataset containing 47 patients with melanoma that

responded to immunotherapies (24).
Connectivity map analysis

The Cmap website (https://clue.io/) provides a connectivity

map analysis to predict potential useful small molecular drugs

using the 150 most significant up- and downregulated DEGs

between two risk groups. All 300 DEGs included in our analysis

were identified using the “limma” R package and showed a

significant difference with the criterion of p< 0.05. The inclusion

criterion for determining potential useful small molecular drugs was

the absolute value of Cmap score greater than 90.
Cell culture and quantitative real-time PCR

Human RCC cell lines, including 786-O and 769-P, and the

human renal tubular epithelial immortalized cell line HK-2 were

obtained from the Cell Bank of the Chinese Academy of Sciences

(Shanghai, China). 786-O and 769-P cells were cultured in Roswell

Park Memorial Institute medium (RPMI-1640; Gibco) and HK-2

was cultured in DMEM/F-12 (Gibco). All these cells were

maintained in medium supplemented with 10% fetal bovine

serum (Gibco) and 1% penicillin/streptomycin (Thermo Fisher)

at 37°C in a 5% humidified CO2 atmosphere.

A total of nine paired fresh-frozen KIRC tissues and normal

tissues were obtained from patients diagnosed with KIRC at The

Second Affiliated Hospital of Nanjing Medical University.

The total RNAs were isolated from tissues or cells using Trizol

reagent (Invitrogen Life Technologies) according to the manufacturer’s

instructions. The quantity and quality of the extracted total RNA were

assessed by using a NanoDrop 2000c spectrophotometer (Thermo

Scientific). The total RNA was reverse-transcribed using HiScript III

All-in-one RT SuperMix Perfect for qPCR (Vazyme; R333).

Quantitative real-time PCR (qRT-PCR) was performed with Taq Pro

Universal SYBR qPCRMaster Mix (Vazyme; Q712-02) using a CFX96

Touch Real-Time PCR Detection System (Bio-Rad). Beta-actin was

used as an internal control, and the relative expression level for genes

was calculated by the 2−DDCt method. The primers used for qRT-PCR

are listed in Table S3.
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Cell transfection

For transfection, cells were seeded in six-well plates and grown

to 40%–60% confluence by the time of transfection. Small

interfering RNA (siRNA) and its negative control reagents were

purchased from GenePharma Company. siRNAs were transfected

with Lipofectamine™ 3000 reagent (Invitrogen, USA) according to

the manufacturer’s instructions. Target sequences of the siRNAs are

shown in Table S4.

Cell Counting Kit-8 assay

Cell proliferation was measured by using the Cell Counting Kit-

8 (CCK-8) (Vazyme; A311-01) according to the manufacturer’s

instructions. Briefly, cells were seeded onto plastic 96-well plates at

an initial density of 2 × 103 cells/well. Then, CCK8 solution was

added to each well at the indicated times and incubated for an

additional 2 h at 37°C. Thereafter, OD450 values were measured.

Colony formation assay

The clonogenic potential of transfected or infected cells was

evaluated by plate colony formation assay. Cells were seeded onto

plastic six-well plates at an initial density of 1 × 103 cells/well in

appropriate growth media and incubated for 2 weeks. The cells were

fixed with 4% paraformaldehyde, and stained with Crystal Violet

Staining solution (Beyotime; C0121). The stained cell colonies were

counted and analyzed.

Statistical analysis

Statistical analysis and figures were performed using R software

v4.1.0 and GraphPad Prism 8 (San Diego, USA). Spearman analysis

was performed to calculate correlation coefficients. Chi-square test was

used for categorical data. The association between clinicopathologic

data and expression profile was estimated by the Wilcoxon rank test

and logistic regression. All results with p-value< 0.05 were considered

statistically significant. The pheatmap and ggplot2 R packages were

engaged for the mapping. KM survival and ROC curve based on

survival and timeROC packages were performed to assess survival

outcomes. Sangerbox (www.sangerbox.com) was used to improve the

quality offigure. *, **, ***, and **** represent p< 0.05, p< 0.01, p< 0.001,

and p< 0.0001, respectively.

Results

Identification of differentially expressed
ICD genes and the protein–protein
interaction network

From previous literatures and GeneCards database (25), 73

common genes were considered as ICD core gene (Table S1).

Subsequently, the R package “limma” was applied to identify

DEIGs (Figure 1A). A total of 61 DEIGs, namely, 52 upregulated

and 9 downregulated genes, were screened out. A heatmap was used
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for visualization of the expression (Figure 1E). The PPI network of

DEIGs was retrieved using the STRING database (Figure 1B) and

visualized by the Cytoscape software (Figure 1C). Functional key

subnetwork analysis was performed through the MCODE

algorithm, consisting of the following modules: LY96, TLR4,

IRF3, and RIPK1, which was considered as a significant module

with a high MCODE score (Figure 1D).
Generation of two ICD subtypes through
consensus clustering

To further reveal the relationship between expression of DEIGs

and KIRC, we utilized the “ConsensusClusterPlus” R package to

classify molecular subtype with KIRC patients according to the

expression levels of DEIGs. Samples were clustered into two clusters

after K-means clustering (Figures 2A, B). Then, KM survival

analysis indicated that patients in the ICD-low subtype showed

dismal prognosis compared with patients in the ICD-high subtype

(Figure 2C). Furthermore, as displayed in Figure 2D, the genomic

expression of ICD genes was compared in two clusters. Cluster C1

(n=383) was considered as ICD-high subtype for exhibiting a higher

expression of ICD genes while cluster C2 (n = 145) was considered

as ICD-low subtype. Differences of clinical features between the two

distinct subtypes were also plotted for visualization in Figure 2D.
Functional enrichment analyses

In order to investigate the potential molecular mechanism and

biological activity of ICD subtypes, subtype-related DEGs were figured

out for functional enrichment analysis for GO and KEGG analysis. GO

analysis demonstrated that DEGs were mainly involved in immune

response, regulation of immune system process, defense response, and

leukocyte activation (Figure 3A). KEGG analysis revealed that DEGs

were mainly enriched in cancer-associated pathways, including the

PI3K-Akt signaling pathway, EGFR tyrosine kinase inhibitor

resistance, PD-L1 expression and the PD-1 checkpoint pathway in

cancer, and the chemokine signaling pathway (Figure 3B), implying

that immunogenic cell death acts as a crucial factor in the progression

of RCC. Moreover, GSEA based on KEGG, Hallmark, and Reactome

gene sets was used for further exploration. The results suggested that

immunity and cancer-related pathways were highly concentrated in the

ICD-high subtype, including the T- and B-cell receptor signaling

pathway, the p53 signaling pathway, IL2-STAT5 signaling, and

interleukin 1 and 17 signaling (Figures 3C–E).
Genomic alterations of different ICD
subtypes

The somatic mutation landscape was also analyzed in two subtypes

(Figures 4A, B). Although VHL, PBRM1, TTN, and SETD2 were the

most frequent mutations, the relative frequency varied among different

subtypes. We then analyzed the GISTIC scores and copy number gain/

loss percentage in the ICD-high and -low group. The result revealed

that the ICD-low subtype was more likely to have a higher GISTIC
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score (Figure 4C) and copy number gain/loss percentage (Figure 4D).

The burden of copy number gain and loss in the ICD-high group was

decreased compared with the ICD-low group at arm level while there

was no remarkable difference at focal level (Figures 4E, F). It appeared

that arm level copy number alterations mainly contributed to the

difference in ICD expression level.
Assessment of tumor immune
microenvironment and checkpoints in
distinct subtypes

Accumulating evidence revealed that ICD had significant

correlation with antitumor immunity. In our research, we

analyzed the tumor immune microenvironment of two subtypes
Frontiers in Immunology 05
and discriminated immune-related characteristics between two

subtypes. We first calculated the TME status using the

ESTIMATE algorithm. As depicted in Figure 5A, the stromal

score, immune score, and ESTIMATE score (p< 0.05) were

significantly higher in the ICD-high subtype than those in the

ICD-low subtype while tumor purity was the opposite.

Then, we calculated the fraction of 22 kinds of tumor-

infiltrating immune cells (TIICs) through the CIBERSORT

algorithm and removed the low-expression cell line. Grouping

histogram showed the distribution of TIICs (Figure 5B).

Macrophages and T cells accounted the most for the total.

Pearson’s correlation was performed to analyze TIIC correlation

(Figure 5C). We next examined immune cell infiltration to assess

differences in the immune context of the tumor immune

microenvironment between two subtypes. The ICD-high subtype
A

B

D

E

C

FIGURE 1

Acquisition of common ICD genes. (A) Venn diagram of the 73 common ICD genes. (B) Protein–protein interactions among the 73 common ICD
genes. (C) Visualization of the PPI network conducted on Cytoscape. (D) Visualization of the functional subnet module. (E) Heatmap of differentially
expressed ICD genes between normal and tumor samples in KIRC. * represents p< 0.05, ** represents p< 0.01, *** represents p< 0.001.
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showed high infiltration of CD8 T cells, activated CD4 memory T

cells, follicular helper T cells, regulatory T cells (Tregs), and M0

macrophages, while the ICD-high subtype was characterized by

high infiltration of resting CD memory T cells, monocytes, M1 and

M2 macrophages, and resting dendritic cells (Figure 5D).

Meanwhile, the expressions of HLA genes and immune

checkpoint genes were different among the distinct subtypes. The

result suggested that HLA genes (Figure 5E) and checkpoint genes

(Figure 5F) were markedly higher in the ICD-high subtype.
Construction and validation of the ICD
prognostic signature

For the purpose of predicting the prognosis accurately and

credibly, we constructed an ICD prognostic signature based on

supervised regression random forest algorithm. The top 10
Frontiers in Immunology 06
significant genes—7 risk genes and 3 protect genes—were screened

out (Figures 6A-C). KM analysis were carried out on the 1,023

combinations of the top 10 genes (Table S2). We selected

the combination with the lowest p-value of KM analysis as ICD

prognostic signature containing TF, FOXP3, LY96, SLC7A11,

HSP90AA1, UCN, IFNB1, and TLR3. The ICD risk score was

calculated as follows: ICD score = (0.10917254 * TF) + (0.16458303

* FOXP3) + (0.90393805 * LY96) + (0.50920311 * SLC7A11) +

(−0.88020896 * HSP90AA1) + (0.99872821 * UCN) + (1.28833498 *

IFNB1) + (−0.78540411 * TLR3). We allocated patients into high-risk

and low-risk group according to their ICD risk score. KM survival

analysis was performed to determine the overall survival (OS) time

between different risk groups and ROC curve quantifying by AUC was

utilized to examine prognosis on the training set (TCGA cohort) and

validation set (E-MTAB-1980 cohort). According to our results,

patients with low ICD risk score demonstrated a prominent survival

benefit in both training set and validation set (Figures 6D, E). The AUC
A B

D

C

FIGURE 2

Construction of two ICD subtypes through consensus clustering. (A) Heatmap exhibits consensus clustering result for k = 2. (B) Consensus
clustering cumulative distribution function (CDF) and delta area under the CDF curve for k = 2 to k = 9. (C) Kaplan–Meier curves of OS in ICD-high
and ICD-low subtypes. (D) Heatmap of 73 ICD gene expression and clinical factors in different subtypes. Corresponding feature names are shown at
the right of the heatmap.
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curves showed that ICD risk score had an acceptable prognostic value

for KIRC patients. The AUC values for predicting 1-, 3- and 5-year OS

in the training set were 0.76, 0.72, and 0.76, respectively, and those in

the validation set were 0.68, 0.71, and 0.72 (Figures 6G, H).

Additionally, expressions of survival status and heatmap of each set

were also presented (Figures 6F, I).
Clinical features of the prognostic
ICD risk signature

After clinical information analysis, we first drew a heatmap to

illustrate the difference between two risk groups (Figure 7A). Then,

Chi-square test was performed to evaluate the clinical difference

between two risk groups. Grade, stage, T staging, and M staging

were considered to have a significant difference between the high-

and low-risk group whereas age and gender had no difference

(Figures 7B-G). Meanwhile, we further analyzed the correlation of

ICD risk score and four diverse clinical parameters. The boxplots

showed the substantially elevated ICD risk score in the higher grade,

stage, T staging, and M staging according to the p-value of

difference analysis between the groups (Figures 7H-K). Thus, it

was surprising that the value of ICD risk score had the capability to

assess tumor progression.
Frontiers in Immunology 07
Establishment of nomogram to predict
patient prognosis

We applied univariate and multivariate Cox regression analyses to

explore independent prognostic factors. Clinicopathologic features

including age, gender, grade, and stage with ICD risk score were

displayed in the training set, which confirmed that ICD risk score was

an independent prognostic factor of KIRC (univariate Cox: HR: 2.758,

95% CI: 2.231–3.404, p-value< 0.001; multivariate Cox: HR: 2.095, 95%

CI: 1.671–2.827, p-value< 0.001, respectively) (Figures 8A, B). Owing to

the high correlation between ICD risk score and prognosis, clinical

parameters including age, N staging, and grade together with ICD risk

score were incorporated to construct a nomogram. All features in the

nomogram met the standard of p-value of proportional hazards

assumption greater than 0.05. The nomogram was utilized to

estimate 1-, 3-, and 5-year OS for KIRC patients (Figure 8C). As

shown in Figures 8D–F, calibration curves of 1, 3, and 5 years were

established to evaluate the performance of nomogram and presented

great accuracy between actual observations and predicted values.
Relation between ICD signature and tumor
immune microenvironment

Based on the findings above, we had confirmed the potential

role of ICD in antitumor immune response. The relation between
A

B

D

E

C

FIGURE 3

Functional enrichment analysis of differentially expressed genes in different subtypes. (A, B) Lollipop plot of GO (A) and KEGG (B) signaling pathway
enrichment analysis. (C–E) GSEA analyses based on KEGG (C), Hallmark (D), and Reactome (E) gene sets.
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ICD risk score and TIICs was scrutinized. The results demonstrated

that patients with elevated ICD risk score exhibited a negative

correlation with CD8 T cells, follicular helper T cells, activated NK

cells, and a positive correlation with M0 macrophages (Figure 9A).

The validation cohort showed the same tendency (Figure 9B).

To investigate the role of ICD risk score on response to

immunotherapy, we used TIDE (http://tide.dfci.harvard.edu)

analysis to quantify the rate of response to TIDE score for each

patient. The results showed that the high-risk group had a higher

percent of non-responder patients (Figure 9C). Notably,

immunotherapy responder patients showed a lower ICD score

compared with non-responder patients (p-value< 0.05)

(Figure 9D). In addition to TIDE prediction, we also compared

the expression profile of two risk groups with a published dataset

containing 47 patients with melanoma that responded to

immunotherapies. As for our result, the high-risk group was

more conceivable to respond to anti-PD-1 therapy with the

Bonferroni-corrected p-value of 0.011 (Figure 9E).
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Prediction of small molecular drug

We employed the Connectivity Map (CMap) tool, which was

widely used to discover potential small molecular drugs, with 150

up- and downregulated DEGs between two risk groups. We finally

identified 12 candidate small molecular drugs with absolute CMap

score > 90, namely, fostamatinib, YC-1, NM-PP1, torin-2,

tipifarnib-P2, apigenin, SB-431542, cycloheximide, amonafide,

linifanib, piperacillin, and ochratoxin-a (Table 1).
LY96 promotes the proliferation of
KIRC in vitro

The eight ICD signature genes’ expression was analyzed by

qRT-PCR in nine pairs of KIRC and adjacent tissues (Figure S1).

We measured the mRNA expression of LY96 in human renal cortex

proximal convoluted tubular epithelial cell (HK-2) and two human
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C

FIGURE 4

Comparison of genomic alternations between different subtypes. (A, B) Oncoprint display of the 10 most frequently mutated genes in the ICD-high
subtype (A) and ICD-low subtype (B). (C, D) Comparison of GISTIC score (C) and gain/loss percentage (D) of copy number profiles between different
subtypes. (E) Focal level of CNV burden between two subtypes. (F) ICD-low subtype showed a higher arm level of CNV burden. *** represents p< 0.001.
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KIRC cell lines (786-0 and 769-P), and the highest expression was

found in 786-O (Figure 10A). To evaluate the biological roles of

LY96 in KIRC, small interfering RNA (siRNA) that specifically

target LY96 was designed. According to the expression of LY96 in

different cell lines, siRNA-LY96 was transfected into 786-O. The

knockdown efficiency was confirmed by qRT-PCR analyses, which
Frontiers in Immunology 09
showed that more than 50% LY96 was knockdown. As shown in

Figure 10B, the expression levels of LY96 were significantly

decreased in siRNA-infected 786-O cells compared to negative

control (NC) cells. CCK-8 and colony formation experiments

demonstrated that downregulation of LY96 inhibited the

proliferation ability of 786-O cells (Figures 10C, D).
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FIGURE 5

Immune landscape of different ICD subtypes. (A) Violin plots of ESTIMATE, immune, stromal scores, and tumor purity of ICD-high and -low
subtypes. (B) Relative proportion of immune infiltration. (C) Correlation heatmap of 21 immune cells. (D–F) Box plots of differential expression of 21
immune cells (D), HLA genes (E), and immune checkpoints (F) between ICD-high and -low subtypes. *, **, ***, and **** represent p< 0.05, p< 0.01,
p< 0.001, and p< 0.0001, respectively.
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Discussion

Cancer immunotherapy has made a revolution in cancer treatment

through establishing a connection between the human immune system

and cancer (26). Various types of immunotherapies, including cellular

or antibody therapy (27), immune checkpoint therapy (28), CAR T-cell

therapy (29), and cancer vaccination (30), have been applied to KIRC

patients (31). ICD is a kind of RCD and considered sufficient to activate

an adaptive immune response (32, 33). The mechanism of action

encompasses the release of DAMPs, which can be recognized by innate

pattern recognition receptors (PRRs) from dying tumor cells, which

results in tumor-specific immune response (34). In addition, numerous

drugs in other kinds of radiation therapy, chemotherapy, or

immunotherapy have the potential to augment ICD (35). Overall, we
Frontiers in Immunology 10
believed that ICD therapy together with other therapies will be greatly

beneficial for cancer treatment.

Our research identified 73 core ICD genes through searching

previous studies and public databases. Consensus clustering analysis

was applied to split patients into two subtypes based on ICD gene

expression. Our research revealed that the ICD-low subtype tended to

have a favorable clinical outcome.We then screened the DEGs between

high and low subtypes of ICD and used them in biological function and

pathway enrichment analyses. Based on the results of enrichment

analysis, DEGs were mainly enriched in biological functions such as

immune response, regulation of immune system process, defense

response and leukocyte activation, and pathways associated with

immunity and cancer-related signaling pathways, including the

PI3K-Akt signaling pathway, P53 pathway, IL2-STAT5 signaling
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FIGURE 6

Construction and validation of the ICD prognostic signature. (A) Volcano plot of prognosis-related ICD genes preliminarily identified by univariate
Cox analysis with the screening criteria p< 0.05. The red icons represent risk factors (HR > 1), and the blue icons represent protective factors (HR< 1).
(B) The top 10 important ICD genes based on the relative importance calculated by random forest algorithm. (C) Sankey diagram demonstrated the
prognosis effect of top 10 important ICD genes. (D-F) Kaplan–Meier curve of OS prognosis (D), timeROC plot (E), and risk plot including risk score
distribution, survival status, and heatmap of eight signature genes (F) in the training set. (G, I) Kaplan–Meier curve of OS prognosis (G), timeROC plot
(H), and risk plot including risk score distribution, survival status, and heatmap of eight signature genes (I) in the validation set.
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pathway, PD-L1 expression and PD-1 checkpoint pathway in cancer,

and B-cell receptor signaling pathway. STAT5 is regulated by the IL-2

family and significantly contributes to tumor cell survival and

malignant progression of disease through influencing NK cell (36).

P53 plays a key role in cancer-cell-autonomous functions. The loss of

P53 can lead to the decrease of recruitment and activity of myeloid and

T cells, and eventually result in immune evasion (37). Alissa

Chackerian’s team suggested that ICD can be induced by dinaciclib

and enhance anti-PD1-mediated tumor suppression (38).

Furthermore, tumor immune infiltration landscape was

calculated by the ESTIMATE and CIBERSORT algorithms. The

score calculated by ESTIMATE for the two subtypes revealed that
Frontiers in Immunology 11
the ICD-high subtype was negatively correlated with tumor purity

and positively correlated with immune, stromal, and estimate

scores. Thus, HLA and checkpoint genes showed considerably

high expression in the ICD-high subtype.

The ICD prognostic signature was built with TF, FOXP3, LY96,

SLC7A11, HSP90AA1, UCN, IFNB1, and TLR3 to predict the

prognosis by quantification metric. Patients in the high-risk

group had significantly poorer prognosis compared with the low-

risk group according to the KM survival analysis and ROC curve,

and an external dataset was introduced for validation. We evaluated

and found a significant correlation between risk score and clinical

factors such as grade, stage, T staging, and M staging. Moreover,
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FIGURE 7

Clinical relevance of the ICD prognostic signature. (A) Heatmap of clinical factors in different risk groups. (B-G) Clinical differences between high and
low risk groups including age (B), gender (C), grade (D), stage (E), T staging (F), and M staging (G). (H-K) ICD score differences between groups of
grade (H), stage (I), T staging (J), and M staging (K). *** represents p< 0.001.
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CD8 T cells, follicular helper T cells (Tfh), and activated NK cells

showed a negative correlation with risk score whereas M0

macrophages showed a positive correlation. Tfh cells were

accepted as a distinct lineage of helper CD4 T cells. Tfh is

associated with the presence of tertiary lymphoid structures

(TLS), which were commonly linked to better outcome (39, 40).

It was reported by Timothy W. Hand and colleagues that Tfh cells

promote the formation of TLS and drive antitumor immunity in

colorectal cancer (41). In addition, Julie Niogret’s team revealed that

Tfh cells significantly contribute to CD8-dependent antitumor

immunity and anti-PD-L1 efficacy (42). Our findings indicated

that our signature was a good predictor of immunotherapy response

rate. We then validated these results through TIDE analysis. A

lower percentage of responders was observed in the high-risk group

compared with the low-risk group. The result of submap analysis
Frontiers in Immunology 12
dramatically showed the better response of the high-risk group to

anti-PD-1 therapy. Subsequently, we predicted the potential useful

small molecular drugs through CMap analysis.

According to results of Cytoscape and supervised regression

random forest algorithm, we determined LY96 (Lymphocyte

antigen 96) as a hub gene to ICD in KIRC. LY96, also known

as myeloid differentiation 2 (MD2), is a co-receptor to TLR4.

LY96 is considered to play a key role in inflammation and

immune-related diseases such as rheumatoid arthritis, Crohn’s

disease, and inflammatory diabetic cardiomyopathy (43–45).

Several studies have shown that LY96 is correlated with

tumorigenesis and progression (46). The interaction of LY96

and TLR4 promotes the release of pro-inflammatory cytokines

and adhesive molecules, which accelerates colon cancer growth

and lung metastasis (47). In gastric cancer, LY96 can activate
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FIGURE 8

Independent prognostic factors and nomogram model. (A, B) Outcomes of univariate prognostic analysis (A) and multivariate prognostic analysis (B).
(C) Nomogram for evaluating the possibility of KIRC patients mortality at 1, 3, and 5 years. (D–F) Calibration for assessing the conformity between
nomogram OS and observed OS at 1 year (D), 3 years (E), and 5 years (F). ** represents p< 0.01, *** represents p< 0.001.
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FIGURE 9

Correlation of ICD prognostic signature with immune cells and immunotherapy responses. Scatter plots revealed the correlation between risk score
and infiltration of CD8 T cells, follicular helper T cells, activated NK cells, and M0 macrophages in the training set (A) and validation set (B). (C) The
immunotherapy responders had a higher percentage in the low risk group. (D) The immunotherapy responders had a lower risk score. (E) Submap
analysis manifested the sensitivity of patients in different risk groups to PD1 and CTLA4 therapy.
TABLE 1 Candidate small molecular drugs analyzed by CMap tools.

Name Score MOA Target

Fostamatinib 97.92 SYK inhibitor SYK, FLT3, RET

YC-1 96.26 Guanylyl cyclase activator HIF1A, GUCY1A2, GUCY1A3, GUCY1B3

NM-PP1 94.11 Mutant kinase inhibitor CAMK2A, LCK, MAPK8, PRKACA, RIPK2, SRC

Torin-2 93.59 MTOR inhibitor MTOR

Tipifarnib-P2 93.37 Farnesyltransferase inhibitor FNTA, FNTB

Apigenin 90.81 Casein kinase inhibitor, cell proliferation inhibitor, cytochrome
P450 inhibitor

AKR1B1, AR, CDK6, CFTR, CYP19A1, CYP1A2, CYP1B1, HSD17B1,
MAOA, ODC1, XDH

SB-431542 90.08 TGF beta receptor inhibitor TGFBR1, ACVR1C, ACVR1B

Cycloheximide −93.2 Protein synthesis inhibitor GSK3B, RPL3

Amonafide −95.98 Topoisomerase inhibitor TOP2A, TOP2B

Linifanib −96.26 PDGFR receptor inhibitor, VEGFR inhibitor CSF1R, KDR, PDGFRB, FLT1, FLT3, FLT4, CSF1, KIT, PDGFRA, RET,
TEK

Piperacillin −97.5 Bacterial cell wall synthesis inhibitor none

Ochratoxin-a −97.88 Phenylalanyl tRNA synthetase inhibitor SLC22A6
F
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macrophage-mediated NF-kB and STAT3 pathways to promote

tumor progression (48). The result of qRT-PCR validated the

upregulated expression of LY96 in RCC cell lines and clinical

samples . Addit ional ly , CCK-8 and colony formation

experiments demonstrated that downregulation of LY96

inhibited the proliferation ability of 786-O cells. We also

validated the different expression of all signature genes in tissues.

In conclusion, our research evaluated the associations of

prognosis, biological function and pathways, and immune

infiltration landscape with ICD subtypes in KIRC. Furthermore,

we constructed a prognosis-related ICD signature based on TF,

FOXP3, LY96, SLC7A11, HSP90AA1, UCN, IFNB1, and TLR3. The

signature was verified to have an independent prognostic value and

provided an exact survival prediction. In addition, we determined

LY96 as a potential biomarker. Based on previous studies, our

research might provide a theoretical basis for the development of a

novel immunotherapy for the treatment of KIRC. However, several

limitations remain to be addressed in our study. The cohort in

research mainly comprise Western samples, which may influence
Frontiers in Immunology 14
the usability of the findings to other populations. Further clinical

trials were also required to verify our conclusion.
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FIGURE 10

LY96 promotes the proliferation of ccRCC in vitro. (A) qRT-PCR verified the expression level of LY96 in RCC cell lines. (B) qRT-PCR analysis of LY96
mRNA in 786-O cells treated with negative control (NC) or LY96 siRNA. (C) CCK-8 was performed to determine the proliferation abilities of 786-O
cells treated with negative control (NC) or LY96 siRNAs. (D) Colony formation was performed to determine the proliferation abilities of 786-O cells
treated with negative control (NC) or LY96 siRNAs. ** represents p< 0.01, *** represents p< 0.001.
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