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glycolytic genes to construct a
signature for predicting
prognosis and immune
infiltration analysis of
hepatocellular carcinoma
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Jiayi Peng3 and Wenxiang Huang3*

1Department of General Practice, The First Affiliated Hospital of Chongqing Medical University,
Chongqing, China, 2Department of Infectious Disease, The First Affiliated Hospital of Chongqing
Medical University, Chongqing, China, 3Department of Geriatrics, The First Affiliated Hospital of
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Background: Hepatocellular carcinoma (HCC) comprises several distinct

molecular subtypes with varying prognostic implications. However, a

comprehensive analysis of a prognostic signature for HCC based on molecular

subtypes related to disulfidptosis and glycolysis, as well as associated

metabolomics and the immune microenvironment, is yet to be fully explored.

Methods: Based on the differences in the expression of disulfide-related

glycolytic genes (DRGGs), patients with HCC were divided into different

subtypes by consensus clustering. Establish and verify a risk prognosis

signature. Finally, the expression level of the key gene SLCO1B1 in the

signature was evaluated using immunohistochemistry (IHC) and quantitative

real-time PCR (qRT-PCR) in HCC. The association between this gene and

immune cells was explored using multiplex immunofluorescence. The

biological functions of the cell counting kit-8, wound healing, and colony

formation assays were studied.

Results: Different subtypes of patients have specific clinicopathological features,

prognosis and immune microenvironment. We identified seven valuable genes

and constructed a risk-prognosis signature. Analysis of the risk score revealed

that compared to the high-risk group, the low-risk group had a better prognosis,

higher immune scores, and more abundant immune-related pathways,

consistent with the tumor subtypes. Furthermore, IHC and qRT-PCR analyses

showed decreased expression of SLCO1B1 in HCC tissues. Functional

experiments revealed that SLCO1B1 overexpression inhibited the proliferation,

migration, and invasion of HCC cells.
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Conclusion: We developed a prognostic signature that can assist clinicians in

predicting the overall survival of patients with HCC and provides a reference

value for targeted therapy.
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1 Introduction

Primary liver cancer is a prevalent malignancy worldwide and

the fourth leading cause of cancer-related deaths. The highest

incidences were observed in East Asia, Southeast Asia, and North

Africa (1). Hepatocellular carcinoma (HCC) accounts for

approximately 80% of all primary HCCs (2). HCC typically arises

from the progression of metabolic liver disease or viral hepatitis B

and C infections (2). Numerous genetic mutations build up during

the development of HCC, including TP53 mutations in hepatitis B-

associated HCC and CTNNB1 and TERT mutations in HCC

associated with alcoholic liver disease (3). Owing to its insidious

onset, HCC is usually diagnosed at an advanced stage when surgical

intervention is not feasible. Current treatment options for patients

with advanced HCC include radiotherapy, immunotherapy, and

targeted therapy. However, their efficacy is often limited by drug

resistance (4, 5). Therefore, identifying new tumor markers is

crucial for improving HCC-targeted therapies.

Recent studies have revealed that the accumulation of

intracellular disulfide induces a stress response leading to

disulfidptosis, a novel form of programmed cell death (6). Cancer

cells typically rely on the amino acid transporter protein SLC7A11

to transport cystine intracellularly and regulate tumor growth.

However, cystine is a disulfide that may have cytotoxic effects. To

balance this, cells rapidly convert toxic disulfide to other non-toxic

molecules using nicotinamide adenine dinucleotide phosphate

(NADPH) (7). NADPH is mainly produced by glucose

metabolism, and in cases where tumor cells are deficient in

glucose, it can trigger disulfidptosis in tumor cells, which in turn

inhibits tumor growth. However, this process does not cause

cytotoxic to normal tissues (8). Since the introduction of the

concept of disulfidptosis, it has attracted considerable attention

from the medical community, particularly in the field of tumor

treatment (9). Therefore, understanding the state of disulfidptosis in

different patients with HCC is valuable for exploring targeted

therapies for HCC.

Glycolysis is a method of metabolic reprogramming in tumor

cells and was initially identified during the study of HCC. The

hallmark feature is that tumor cells use glycolysis as the main energy

source, even when mitochondria function normally and oxygen is

available, leading to a significant increase in the cellular uptake of

glucose and lactic acid production (10, 11). In addition to playing a
02
crucial role in tumor proliferation, metastasis, and invasion,

glycolysis partly explains the development of resistance to

sorafenib in HCC (12, 13). Targeting glycolysis holds promise for

improving drug resistance and is a potential therapeutic target

for HCC.

As two important biological processes in tumors, the

relationship between disulfidptosis and glycolysis has received

considerable attention. Although the concept of disulfidptosis is

relatively new, studies on sulfur metabolism in tumors have been

reported. Researchers have proposed that sulfur-containing

compounds from garlic inhibit the proliferation of HCC cell lines,

a process closely associated with the highly reactive sulfane sulfur

(14, 15). In humans, sulfur-containing amino acids, such as

cysteine, and sulfur-containing proteins, such as glutathione, are

metabolized to produce sulfane sulfur, which has both anti-cancer

and pro-cancer effects. However, the mechanism of action is

unclear, and we speculate that there may be a link between

disulfidopathy and the therapeutic outcomes of sulfur-containing

compounds (14, 16–18). Additionally, sulfur-containing amino

acids and disulfide proteomics have great potential for regulating

glycolysis (19, 20). These studies inspired us to further explore the

association between disulfidroptosis and glycolysis in patients with

HCC and healthy individuals to guide targeted therapy and

prognosis of HCC. In this study, we developed a prognostic

signature by combining disulfide-related genes (DRGs) and

glycolysis-related genes (GRGs) to predict the prognosis of HCC

patients. The flowchart in Figure 1 illustrates how this study

was conducted.
2 Materials and methods

2.1 Collation and collection of data

First, we downloaded clinicopathological information, gene

expression matrix data, and somatic mutation data of patients

with HCC from The Cancer Genome Atlas (TCGA) database.

Another set of data containing the survival information of

patients with HCC was downloaded from the Gene Expression

Omnibus (GEO) database, and joint analysis of data from multiple

databases helped reduce the heterogeneity of individual datasets.

The GSE76427 and TCGA-LIHC data downloaded from the GEO
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database were combined using the “merge” package (21). The “sva”

package in R language was used to correct for differences and

normalize for different sequencing batches (22), excluding patients

with missing survival information. We finally obtained 371 patients

with HCC from TCGA database and 115 patients from the GEO

database, which were used for the subsequent analysis.
2.2 Clinical sample collection

We randomly collected 14 pairs of fresh HCC and adjacent

normal tissue samples from the First Affiliated Hospital of

Chongqing Medical University (Chongqing, China) between

February and March 2023. In addition, 26 pairs of paraffin-

embedded sections of HCC and para-cancerous tissues between

June 2022 and December 2022 from the Pathological Diagnosis

Center of Chongqing Medical University (Chongqing, China).
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None of the patients participating in our study underwent

radiotherapy, chemotherapy, and immunotherapy before surgery.

This study was approved by the Ethics Committee of the First

Affiliated Hospital of Chongqing Medical University.
2.3 Cell culture and transfection

Human HepG2 and Huh7 HCC cells were purchased from the

Cell Collection Center of the Chinese Academy of Sciences

(Shanghai, China). All cells were maintained in Dulbecco’s

Modified Eagle’s Medium (DMEM; Gibco, USA) containing 10%

Fetal Bovine Serum (Wisent, Canada) and cultured at 37°C in a cell

incubator with 5% CO2.

Lentiviruses targeting SLCO1B1 (forward, 5’-GGGGTAC

CATCATGGACCAAAATCAAC-3’, and reverse 5’-CTCGAGT

GGAAACACAGAAGCAGAAG-3’) were purchased from
FIGURE 1

Flow chart of our study. DRGs, disulfidptosis related genes; GRGs, glycolysis related genes; DRGGs, disulfidptosis related glycolytic genes; TCGA, The
Cancer Genome Atlas; GEO, Gene Expression Omnibus; TMB, tumor mutational burden; CNV, copy number variation; GSEA, Gene Set Enrichment
Analyses; TME, tumor microenvironment; MSI, microsatellite instability; CSCs, cancer stem cells; IHC, immunohistochemical; DEGs, differentially
expressed genes; CCK-8, Cell counting kit-8; mIF, multiplex immunofluorescence.
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GeneChem (Shanghai, China). Huh7 and HepG2 cells were

transfected according to the manufacturer’s instructions. Stable

strains were screened using 2 µg/ml puromycin. Three days after

transfection, gene expression of the SLCO1B1 marker was observed

under a fluorescence microscope, and cells with a transfection

efficiency of >80% were selected for subsequent analysis.
2.4 Quantitative real time PCR

Total RNA was extracted from 14 pairs of fresh HCC and

paraneoplastic tissues using the TRIZOL reagent (Takara

Biotechnology Co., Ltd., Dalian, China) according to the

manufacturer’s instructions. Total RNA was reverse transcribed

into cDNA using the PrimeScrip™ RT kit (Takara Biotechnology

Co., Ltd.). The polymerase chain reaction (PCR) was performed

according to the manufacturer’s instructions. The amplification

product was designed by Takara Biotechnology Co., Ltd. with the

following sequence: SLCO1B1: forward, 5’-GAATGCCCA

AGATGATGCTT-3’, and reverse, 5’-AATCCAGTGCAAGT

GATTTCAAT-3’; b-actin: forward, 5’-AGAAAATCTGGCAC

CACACCT-3 ’ , and reverse, 5 ’-GATAGCACAGCCTGGA

TAGCA-3’. Expression was normalized to that of b-actin and

relative expression was calculated using the 2-DDCt method (23).
2.5 Immunohistochemistry stain

IHC was performed on 18 pairs of paraffin-embedded HCC and

normal paracancerous tissue samples. The specific experiments

were performed as previously described (24). Anti-human

SLCO1B1 antibody (1:500, DF4534, Affinity Biosciences, China)

was used to incubate the tissues overnight at 4°C. After application

of the appropriate secondary antibody, the labeled antigen was

visualized using a standard 3, 3’-diaminobenzidine (DAB) protocol.

The slides were stained with hematoxylin. Two pathologists

evaluated the staining results in a double-blind manner. The

intensity of IHC staining was calculated from the intensity and

number of stained cellular sections. The evaluation criteria for

staining intensity were as follows: 0, 1, 2, and 3 represented

negative, weak, moderate, and strong staining, respectively. The

evaluation criteria for the number of stained cells were 0, 1, 2, 3, and

4, representing the percentages of stained cells as <10%, 10–25%,

25–50%, 50–75%, and >75%, respectively. IHC score = staining

intensity × staining number. A score ≥6 is a high expression;

otherwise, it is a low expression (25).
2.6 Multiplex immunofluorescence analysis

MIF detection of SLCO1B1 and CD86 was performed in

pathological sections of HCC and adjacent normal tissues. First,

the sections were deparaffinized and rehydrated, and antigen

retrieval was performed using EDTA antigen retrieval buffer.
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Subsequently, the sections were incubated with 3% hydrogen

peroxide at room temperature for 25 min in the dark to block

endogenous peroxidase, and 3% Bovine Serum Albumin was used to

block the sections for 30 min. Cyclic staining for both antigens in

each section was then performed, including incubation with primary

and secondary antibodies, fluorescence signal enhancement by

Cyanine 3 Tyramide, and removal of Tyramide Signal

Amplification (TSA) -antibody complexes using EDTA buffer.

Subsequently, the cell nuclei were counterstained with DAPI for

10 min, and an autofluorescence quencher was added, reacted for

5 min, and rinsed with distilled water. Subsequently, sections were

mounted in an anti-fluorescence quenching mounting medium.

Finally, observed and collected images were obtained using a

fluorescence microscope (Nikon ECLIPSE C1, Nikon DS-U3).

The scanned images were analyzed using the InForm software,

and the results were independently analyzed by two experienced

pathologists. The numbers 1, 2, and 3 represented low, medium, and

high fluorescence intensities, respectively. The histochemical scoring

formula was as follows: (high fluorescence intensity) × 3 + (median

fluorescence intensity) × 2 + (low fluorescence intensity) × 1 (26).

We used SLCO1B1 and CD86 (Proteintech, 13395-1-ap) as

primary antibodies, of which, SLCO1B1 was the key gene in our

signature, and CD86 was the surface marker of M1 macrophages

(27, 28). Goat Anti-Mouse IgG (H+L)-Alexa Fluor 488 was used as

the secondary antibody (AIFang biological, SA002).
2.7 Colony formation assay

Cells (1×103 cells per well in a six-well plate, and 5 ml of

complete medium) was added to each well, shaken, mixed, and

cultured in a cell incubator for approximately 14 days. The cells

were fixed with 4% paraformaldehyde, stained with 1 ml of 0.5%

crystal violet, rinsed with tap water, dried, and photographed.
2.8 Cell counting kit-8

First, we inoculated the well-growing cells into a 96-well plate,

adjusted the cell concentration to 1.5×10 4/ml, added 200 µl of cell

suspension to each well, repeated three times for each group of cells,

and place them in an incubator for culture. Then, after the cells

adhered to the wall, 100 µl of CCK-8 working solution was added to

each well, which was recorded as 0 h of the measurement, and the

cells were placed in the incubator for 2.5 h. Finally, at specified time

points (0, 24, 48, and 72 h), the absorbance value was measured at a

wavelength of 450 nm by a microplate reader (Varioskan Flash,

version: 4.00.53), and the cell viability curve was drawn according to

the absorbance value.
2.9 Wound healing

First, we adjusted the cell concentration to 3×10 5/ml,

inoculated them into a 6-well plate, cultured in an incubator,
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observed that the cell confluence reached 100%, took a 200 µl sterile

pipette tip and drew three vertical lines, and washed the exfoliated

cells using the sterile phosphate buffered saline, and then, 2 ml

DMEM was added to each well. Finally, the scratches were observed

under a microscope and photographed at 0, 12, and 24 h.
2.10 Differential analysis, genomic
characteristics of DRGGs and drug
sensitivity analysis of DRGGs subtypes

We retrieved 14 DRGs from the relevant literature (Supplementary

Table 1), 326 GRGs were extracted from the MSigDB website (https://

www.gsea-msigdb.org/gsea/msigdb/) (Supplementary Table 2). Then,

we normalized the data from TCGA and GEO databases using the

“limma” and “survival” package of R language, and obtained 45

disulfidptosis-related glycolytic genes (DRGGs) with the screening

condition of |cor|>0.65 (29). Then, the frequency and type of

mutations of 45 DRGGs in patients with HCC were analyzed by the

“maftools” package, and the results were presented as “waterfall plots”

(30). In addition, the somatic copy number variation (CNV)

frequencies of the above genes were shown by “bubble plots”, and

the sites where the mutations occurred were shown by “circle plots”.

Next, in order to clarify the sensitivity of patients with DRGGs

molecular subtypes of HCC to chemotherapy drugs, we calculated

the drug concentration values when half of the cells were induced to

undergo apoptosis by drugs for the treatment of HCC (IC50) using the

“pRRophetic” package (31).
2.11 Consensus clustering analysis
of DRGGs

Consensus clustering analysis was performed using the

“ConsensusClusterPlus” R language package to classify the

enrolled patients with HCC were divided into different molecular

subtypes according to the differential expression of DRGGs (32).

Intragroup associations were enhanced and intergroup associations

were reduced after clustering. Subsequently, heterogeneity between

the two groups was described by principal components analysis

(PCA) and cumulative density functional (CDF) curves. To assess

the value of consistent clustering analysis in the treatment of

patients with HCC, we compared the between-group differences

in clinicopathological characteristics of patients with different

subtypes by heat map. Kaplan-Meier (K-M) curves were used to

determine survival differences between the two subtypes by the

“survival” and “survminer” package in R Studio. To clarify the

functional differences between the two subtypes, gene set variation

analysis (GSVA) was performed by the Kyoto Encyclopedia of

Genes and Genomes (KEGG). In addition, differences in immune

cell infiltration were analyzed using single-sample gene set

enrichment analysis (ssGSEA) to understand the differences in

the immune microenvironment between the groups.
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2.12 Screening, functional analysis and
prognostic analysis of differential genes
between molecular subtypes of DRGGs

Differentially expressed genes (DEGs) between molecular

subtypes of DRGGs were screened using the “limma” package in

R language with FDR<0.05 and |log2fold change (FC)|≥0.585 as

criteria. Functional enrichment analysis was conducted using Gene

Ontology (GO) and KEGG to further explore the potential gene

functions and enrichment pathways of DRGGs.

Next, differential genes with prognostic value between the two

subtypes were screened by univariate Cox regression analysis, and

patients were classified into different genetic subtypes based on

these genes. Survival analysis was performed using K-M to verify

the prognostic differences between different gene subtypes. In

addition, differences in clinicopathological characteristics between

patients with different subtypes were assessed to guide the direction

for targeted therapy.
2.13 Construction of a prognostic signature

First, genes with prognostic value were screened using univariate

Cox regression analysis, and the accuracy of the signature was

improved using LASSO regression analysis. Independent prognostic

factors associated with HCCwere screened based onmultivariate Cox

regression analysis, and the risk score was calculated using the

multivariate Cox regression coefficients and the expression of

DRGGs in patients with HCC. Then, the prognostic signature was

constructed. The scoring formula was as follows:

risk score  =o(Expi  ∗ coefi)

where Expi and coefi represent the expression of genes and

regression coefficients, respectively. Subsequently, all patients with

HCC were randomly divided into a training group and test group at

a 1:1 ratio. Then, the patients were further classified into high-risk

and low-risk groups based on their median of the prognostic scores.
2.14 Analysis and validation of clinical
relevance of the prognostic signature

First, we calculated the differences in risk scores across the

DRGGs molecular subtypes and gene clusters to assess whether the

risk score retained its predictive power across subgroups. Differential

expression maps of DRGGs between the high- and low-risk groups

were constructed using the “ggplot2” package. The prognostic value

of clinicopathological elements and risk scores was assessed by Cox

regression analysis. Next, survival differences between patients in

various risk groups were identified using the K-M survival analysis,

plotting receiver operating characteristic (ROC) curves to assess the

diagnostic value of the scoring system. Then, the accuracy of the

results was further validated in the test group.
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2.15 Creation and verification
of nomogram

To evaluate the prognostic characteristics of patients at 1-, 3-

and 5-year, the “rms” and the “regplot” packages of R language were

used to construct the nomogram by combining clinical features

such as age, gender, risk scores and tumor stage of patients. Each

patient’s clinical information corresponded to a score and the total

score was the sum of each index used for the scoring system of the

nomogram. Finally, the scores were used to assess the probability of

survival at 1-,3-,5-year intervals.
2.16 Exploration of tumor
immune microenvironment

The main characteristics of the TIME include the extent of

immune cells infiltrate, expression profile of immune checkpoints,

and activity of anti-cancer immune responses. First, we assessed the

relation between risk scores and the proportion of immune cells

infiltration in patients with HCC using Spearman’s correlation

analysis. We also used the “CIBERSORT” package in R language to

quantify the enrichment of different immune cells in each tumor

sample and analyzed the relationship between genes and immune cells

in the signature. To further understand the differences in the TIME

between different risk groups and their relevance to immunotherapy,

we evaluated the differences in immune checkpoint expression

between the high- and low-risk groups. In addition, the ESTIMATE

algorithm was applied to calculate the stromal, immune and estimated

scores in the two risk groups, reflecting the degree of stromal and

immune cell infiltration and tumor purity for each risk group,

respectively, and a violin plot was used to visualize the differences

between groups. Besides, we evaluated the enrichment of immune-

related pathways in the different groups using gene set enrichment

analysis (GSEA) and the activity of the seven steps of the anticancer

immune response using ssGSEA to understand the role of risk scores

in the TIME and thus assess tumor prognosis (33, 34).
2.17 Exploration of genomic features in
prognostic signature

We applied mutation data downloaded from TCGA-LIHC to

analyze the tumor mutation burden (TMB) and major mutation

types in the different risk groups. TMB has emerged as a biomarker

to forecast the efficacy of immunotherapy (35). In addition, it has

been shown that microsatellite instability (MSI) is associated with

tumorigenesis, generally caused by DNA replication defects (36).

We used MSI analysis between different risk groups as a reference

for prognostic assessment. The poor prognostic of HCC is

intimately associated with the emergence of drug resistance, and

researches on cancer stem cells (CSCs) indicate that tumor

development was driven by a fraction of stem cells; therefore, it is

crucial to explore the stemness of CSCs (37). We assessed the degree

of resemblance between stem cells and tumor cells by calculating

mRNAsi to quantify the association between CSCs and risk scores.
Frontiers in Immunology 06
2.18 Statistical analysis

We analyzed the data using the R language software (version

4.2.2), performed t-tests for normally distributed data, and applied

Spearman’s test for correlation analysis. GraphPad Prism software

(version 8.0.1) was used for plotting the images, with P<0.05 as the

threshold of significance for all statistical analyses.
3 Results

3.1 Characterization and expression of
DRGGs mutations in HCC

First, we demonstrated the interactions between DRGs and

GRGs using a Sankey diagram (Figure 2A). TMB analysis of

DRGGs showed that 89 (23.99%) of the 371 patients had

mutations. Among these, the COL5A1 mutation frequency was

the highest (4%), followed by RANBP2 (Figure 2B). Next, the

somatic CNV frequency of DRGGs in HCC was further evaluated

and copy number alterations were found in all gene numbers.

Among them, most genes, such as TPR, NUP153, HK3, FLNA and

PAXIP1, had increased CNV frequencies, whereas ENO1, FLNB,

AGRN, CAPZB and ZBTB7A had decreased CNV (Figure 2C). In

addition, we showed the location of CNV of DRGGs occurring on

chromatin by a ring plot (Figure 2D) and found that most DRGGs

were located on chromosomes 1, 2, 3, and 7. Besides, we compared

the expression of DRGGs between HCC tissues and normal samples

and found that most genes, such as AGRN, B3GNT3 and FLNA,

were highly expressed in tumor tissues (Figure 2E), resulting in a

worse patient prognosis (Figures S1A–P, Figures S2A–P, Figures

S3A–E). Figure 2F shows that DRGGs are positively correlated and

play a promoting role in HCC progression. In addition, most genes

were positive associated with CNV changes, indicating that CNV

may be one of the factors affecting gene expression levels

(Figures 2E, F). Thus, the analysis of mutations and expression of

DRGGs showed significant differences between HCC and normal

tissues, indicating that this gene cluster may play a key role in

HCC progression.
3.2 Construction and prognostic analysis of
molecular subtypes of DRGGs in patients
with HCC

We evaluated the HCC subtypes based on differences in the

expression of DRGGs and performed a cluster analysis of patients

with HCC using TCGA-LIHC and GEO (GSE76427) databases.

During the cluster analysis of the 486 samples, k=2 was considered

the best clustering method to minimize the differences between

groups, and the patients with HCC were divided into two subtypes:

DRGGs cluster A and DRGGs cluster B (Figure 3A). Besides, the

results were verified by PCA (Figure 3B) and CDF curves (Figure

S3F). In addition, the tracking plot showed that the sample was the

most stable when k = 2 (Figure S3G). In the K-M survival analysis of
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patients with both subtypes, it was found that the DRGGs cluster A

had a better survival outcome (Figure 3C).
3.3 Gene set variation analysis and TIME
analysis of molecular subtypes of DRGGs

First, we plotted a heat map using clinicopathological

information, which showed the relationship between sex, age, T

and N stages, and DRGGs cluster, where DRGGs were highly

expressed in DRGGs cluster B and almost all of them were

oncogenes (Figure 3D), explaining the adverse prognosis of

DRGGs cluster B patients. Then, GSVA analysis of the two
Frontiers in Immunology 07
subtypes was performed using KEGG to compare the variation in

the enrichment pathways, it was found that DRGGs cluster A was

highly enriched in the drug metabolism cytochrome P450, steroid

hormone biosynthesis, tyrosine metabolism, PPAR signaling

pathway, whereas the remaining pathways, such as cancer

pathway, pathogenic E. coli infection and actin cytoskeleton

regulation were highly enriched in DRGGs cluster B. (Figure 3E).

Besides, we explored the variation in the degree of the immune cell

infiltration for both subtypes by ssGSEA. Most of the 23 immune

cells were highly infiltrated in DRGGs cluster B (Figure 3F).

However, patients with cluster B had a significantly lower CD8 T

cell/T cell regulatory (Treg) ratio than patients with subtype A,

resulting in a poorer prognosis (Figure S3H).
B

C D

E F

A

FIGURE 2

(A) The Sankey diagram showing the correlation between DRGs and GRGs. (B) Mutation frequencies and mutation types of 45 DRGGs in 371 patients
with HCC from the TCGA database. (C) Frequency of increased and decreased CNV in DRGGs. (D) Location of CNV of DRGGs on 24 chromosomes.
Red dots indicate increased copy number and blue dots indicate decreased copy number. (E) Expression of 45 DRGGs between normal and HCC
tissues. * represents P<0.05, ** represents P<0.01, *** represents P<0.001. (F) Interaction relationship between DRGGs in HCC. The thickness of the
connecting line indicates the strength of the correlation effect between genes, and the pink color represents positive correlation.
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3.4 Drug sensitivity analysis

We explored the sensitivity of patients with HCC with the two

DRGGs molecular subtypes to the chemotherapy drugs commonly

used to treat HCC, and found that patients with DRGGs cluster A

were sensitive to AICAR, BIX02189, CABOZANTINIB, NG-25,

PFI-3, RTRAIL, TASELISIB, and Y-39983 drugs. However, patients

in DRGGs cluster B were more sensitive to AXITINIB, AZD8055,

DIHYDROROTENONE, FH535, OLAPARIB, PAZOPANIB,

PONATINIB, and SB−590885 (Figure 4). There were significant

differences in drug sensitivity among different subtypes of

HCC, which could provide direction for personalized treatment

of HCC.
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3.5 Construction of gene subtypes based
on differential genes between molecular
subtypes of DRGGs and validation

First, to detect the possible biological behavior of tumor cells,

we screened a total of 3451 differential genes between DRGGs

cluster A and cluster B by “BiocManager” and “limma” packages in

R Studio. Next, using GO functional enrichment analysis, we found

that the differential genes were mainly enriched in biological

processes (BP) functional set, such as cytoplasmic translation and

xenobiotic metabolic processes, and associated with cellular

component (CC), such as cell-substrate junction and focal

adhesion. As for molecular function (MF), extracellular matrix
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FIGURE 3

(A) Diagram of the consensus matrix defining the correlated regions of the two subtypes. (B) PCA analysis showing significant differences between
the two subtypes. (C) K-M analysis showing the prognostic characteristics of patients in both subtypes. (D) Differences in clinicopathological features
and expression levels of DRGGs between the two different subtypes. (E) GSVA of biological pathways between the two different subtypes, red and
blue represent activating and inhibiting pathways, respectively. (F) The extent of infiltration of 23 immune cells in HCC subtypes. PCA, principal
component analysis; GSVA, gene set variation analysis; K-M, Kaplan-Meier. ** represents P<0.01, *** represents P<0.001.
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structural constituent and actin binding played an essential part in

neoplasm proliferation (Figure 5A) (Supplementary Table 3). Next,

The KEGG enrichment analysis was conducted on the different

genes, and the findings showed that the main pathways were

focused on metabolism, membrane transport, signal transduction,

genetic information processing, and other related pathways

(Figure 5B) (Supplementary Table 4). Therefore, DRGGs play an

essential role in HCC progression.

We then acquired 1,167 genes with prognostic value using

univariate Cox regression analysis. To further validate this
Frontiers in Immunology 09
regulatory mechanism, the samples were typed again according to

the 1167 prognostic genes, and the clustering diagram was obtained

using the “ConsensusClusterPlus” algorithm in R language. K=3

was the best clustering method for the samples (Figure 5C), and

three genetic subtypes were obtained, namely gene clusters A, B and

C. The CDF curves verified the clustering accuracy (Figure S3I). K-

M analysis suggested that patients with gene cluster C had the worst

prognosis, whereas those with gene cluster B had a higher survival

rate (p < 0.001) (Figure 5D). A heat map of the clinicopathological

features showed that gene cluster C mainly corresponded to DRGGs
FIGURE 4

The relationship between patients with different DRGGs subtypes and chemotherapy sensitivity.
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cluster B, and that patients with both subtypes had the worst

prognosis (Figure 5E). Additionally, analysis of the expression of

DRGGs in patients with the three gene subtypes revealed that the

expression of DRGGs decreased sequentially in gene cluster C, gene

cluster A, and gene cluster B, with statistically significant differences

(P<0.001) (Figure 6A).
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3.6 Construction and validation of risk
prognostic signature

First, we constructed a prognostic signature for DRGGs from

the differential genes among the three gene subtypes based on

significant gene data obtained from multifactorial Cox regression
B

C D

E

A

FIGURE 5

(A) GO enrichment analysis of DEGs between two DRGGs subtypes. The red part of the graph represents the number of enriched genes and the
redder the color, the more significant gene enrichment; the purple part represents the number of enriched differential genes. The bar graph
represents the proportion of genes. (B) KEGG enrichment analysis of DEGs between two DRGGs subtypes. (C) Diagram of the consensus matrix
defining the correlated regions of three cluster-related regions. (D) K-M curves for the three gene subtypes. (E) Relationship between the three gene
subtypes and clinicopathological features.
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analysis using LASSO regression analysis to avoid overfitting

(Figures S3J, K). Seven genes included were ETV5, FZD7, CD5,

SLCO1B1, CD79A, SNX7, and SLC1A7, and the risk score equation

was: Risk score = (0.3039 * expression of ETV5) + (0.3091 *

expression of FZD7) + (-0.2449 * expression of CD5) + (-0.1656 *

expression of SLCO1B1) + (-0.3676 * expression of CD79A) +

(0.2673 * expression of SNX7) + (0.1420 * expression of SLC1A7).

Besides, Sankey plots indicated a consistent relationship among the

two molecular subtypes of DRGGs, the three genetic subtypes, the

different risk groups for prognostic features, and the prognosis of

patients (Figure 6B). Next, we assessed the association between the

three gene subtypes and risk scores and observed that gene cluster B

had the lowest risk score, whereas cluster C had the highest risk

score. More importantly, DRGGs cluster B exhibited a higher risk

score compared to DRGGs cluster A, consistent with data from

previous survival analyses (Figures 6C, D). In addition, DRGGs
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were high expression in the high-risk group, further confirming the

accuracy of the differences between HCC and normal adjacent

tissues (Figure 6E).

Next, we further validated the value of the prognostic signature.

The results of survival analysis revealed remarkably shorter survival

times in the high-risk group, both in the overall study cohort and in

the train and test groups (P<0.01) (Figures 7A, B, Figure S3L). ROC

analysis of all patients with HCC according to the prognostic

signature showed that the areas under the curve (AUC) were

0.753, 0.708 and 0.666 at 1-, 3- and 5- years, respectively (Figure

S3M). In the train group, the 1-, 3-, and 5-year AUCs were 0.814,

0.757, and 0.804, respectively (Figure 7C), whereas those in the test

group were 0.692, 0.661, and 0.575, respectively, strongly

confirming the diagnostic power of the signature (Figure 7D).

Subsequently, we found the prognostic value of the tumor stage

and risk score in the train group using univariate Cox regression
B C D

E

A

FIGURE 6

(A) Differential expression of 45 DRGGs in the three gene subtypes. (B) Sankey diagram of different HCC subtypes and survival outcomes.
(C) Differences in risk score among DRGGs subtypes. (D) Risk score differences among different gene subtypes. (E) Expression differences of 45
DRGGs in high-risk and low-risk groups. * represents P<0.05, ** represents P<0.01, *** represents P<0.001.
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analysis. Multivariate Cox regression analysis suggested that the risk

score was an independent prognostic factor in all groups

(Figures 7E, F).
3.7 Creation of nomogram

Owing to the limitations of the scoring system alone in clinical

application, we integrated risk scores with the clinical information

of patients to create a nomogram to predict patients’ survival time at

1-, 3- and 5- years. Both T-stage and risk scores were independent

prognostic factors (Figure 7G). A calibration chart further

confirmed the accuracy of the signature (Figure S3N).
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3.8 Assessment of TIME and biological
characteristics between the risk groups

First, correlation between the risk scores and immune cells was

visualized using scatter plot. The results showed that naive B cells,

CD8+ T cells and plasma cells negatively related to risk scores,

whereas M2 macrophages and neutrophils positively associated

with risk scores (Figures 8A–E). In addition, the TME scores

indicated that the low-risk group had higher tumor purity,

stromal and immune scores (Figure 8F). Second, the differences

in immune checkpoint expression suggested that most immune

checkpoint molecules such as CD40LG, CD48, IDO1, CD27,

PDCD1 were strongly expressed in the low-risk population.
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FIGURE 7

(A) K-M analysis of the Recurrence free survival (RFS) of high-risk and low-risk patients in the train group. (B) K-M analysis of the RFS of high-risk and
low-risk patients in the train group. (C) ROC curves for predicting the 1-, 3-, and 5-year survival rates of patients in the train group. (D) ROC curves
for predicting the 1-, 3-, and 5-year survival rates of patients in the test group. (E) The univariate Cox regression analysis of clinical characteristics
and risk score in the train group. (F) The multivariate Cox regression analysis of clinical characteristics and risk score in the train group. (G)
Construction of a nomogram based on clinical characteristics and risk score for prognostic signature. RFS, recurrence free survival; ROC, receiver
operating characteristic.
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However, CD276 was expressed highly in the high-risk population

(Figure 8G), suggesting that immune checkpoints were involved in

tumor progression and are promising applications in the low-risk

population to help guide immunotherapy. Finally, based on the

study by Jiao Hu et al., we obtained the steps of the cancer immunity

cycle and the enrichment scores of the immunotherapy-predicted

pathways dataset (38). The “ggcor” package was used to construct

the correlation of the risk scores with the dataset. The results

showed that the IFN-g signaling pathway was mainly

concentrated in the low-risk group, and p53 signaling pathway,

cell cycle, DNA replication, and microRNAs in cancer were more

significantly enriched in the high-risk group (Figure 8H)

(Supplementary Table 5). In addition, the risk score was mostly

negatively correlated with the steps of the cancer immunity

cycle, including the recruitment process of T cell, CD4+ T cell,

Th1 cell, dendritic cell, and NK cell, whereas the recruitment of
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neutrophil was more active in the high-risk group (Figure 8I)

(Supplementary Table 6).
3.9 Relationship between risk scores and
TMB, MSI, and CSCs

HCC development is influenced by multiple complex factors,

including TMB, MSI, and CSCs. Therefore, it is crucial to explore

the relationships between the prognostic signature and these

factors. It has been suggested that patients with higher TMB may

have stronger immunogenicity and thus higher sensitivity to

immunotherapy (39). Therefore, we included 361 HCC patients

with complete mutation information from the TCGA database,

counted the number of variants and mutation types in each sample.

The top 20 genes in terms of mutation frequencies were selected
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FIGURE 8

(A–E) Correlation of risk score with immune cells. (F) Correlation of risk score with immune score, stromal score and tumor purity. (G) Differences in
the expression of immune checkpoints in the high-risk and low-risk groups. (H) The correlation between risk score and the enrichment of the
relevant pathways for immunotherapy. (I) The correlation between risk score and the steps of the cancer immunity cycle. * represents P<0.05, **
represents P<0.01, *** represents P<0.001.
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using waterfall plots. Comparative analysis of different risk groups

showed that TMB occurred in 87.93% of patients in low-risk group,

with the most significant mutation in CTNNB1 (32%). However,

TMB occurred in 83.42% of the patients with HCC in the high-risk

group, with the most significant mutation in TP53 (33%). Besides,

the difference in TMB between the two risk groups was not

statistically significant (P=0.91) (Figures 9A–C). However, it is

worth mentioning that survival analysis suggested a better

prognosis in the low TMB group (P<0.05) (Figure 9D). In

addition, by combining the risk score and the TMB from the

prognostic signature, survival analysis showed statistically

significant survival among the four groups (p<0.001) (Figure 9E).
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In conclusion, there was no significant difference in TMB between

the high-risk and low-risk groups, but TMB combined with risk

score was a better predictor of overall survival time.

In addition, it has been shown that for oncology patients, the

higher the MSI, the higher the potential for selecting immunotherapy

(40). It has been suggested that MSI is a biomarker for determining

response to immune checkpoint therapy (41). Our analysis of patients

with HCC showed that the MSI-H group had a lower risk score than

the MSS and MSI-L groups (P<0.001) (Figures 9F, G).

Besides, we assessed the association between CSCs and the

signature risk score. The results showed no statistically significant

relationship (r = 0.1, p = 0.053). These suggested that the differential
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FIGURE 9

(A, B) Waterfall plots of somatic mutation frequency and mutation type between different risk groups. Each column represents an individual patient.
The bar above each column shows the TMB, numbers on the right side indicates the mutation frequency of each gene, and the bars on the right
show the proportion of each mutation type. (C) TMB differences in different risk groups. (D) Differences in survival between the high TMB and low
TMB groups. (E) Survival differences between patients assessed by TMB and risk score combined. (F, G) Relationship between risk score, MSS and
MSI. (H) Relationship between risk score and CSCs.
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tumor stemness of patients between the two risk groups was not

significant and that the prognosis of patients with HCC was mainly

influenced by a combination of other factors (Figure 9H).
3.10 Expression and immune infiltration
characteristics of 7 genes in the signature

First, we evaluated the differential expression of the seven genes

in different risk groups, and the results are shown in Figure 10A. We

then explored the association of the seven genes in the training

group and discovered that SLCO1B1 was negatively correlated with

the other six genes and positively correlated with the remaining six

genes (Figure 10B), in accordance with the validation results of the

test group (Figure 10C). In addition, we evaluated the relationship

between seven genes in the signature and immune cells and found

that CD5, CD79A, SNX7, and SLCO1B1 were relatively strongly

correlated with immune cells, especially CD5, CD79A, and

SNX7 (Figure 10D).
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Next, we explored the expression of these seven genes in HCC

samples and paracancerous tissues using the data and found that

SLCO1B1 was expressed at low levels in HCC samples (P<0.05)

(Figure 10E), and the differential expression of the remaining genes

was not statistically significant. Therefore, we verified the expression

levels of SLCO1B1 based on qRT-PCR and IHC, which showed low

expression in HCC samples (Figures 10F–H) (Supplementary

Table 7), and the results were in accordance with the data from

TCGA. In addition, through pan-cancer analysis, we further

demonstrated that SLCO1B1 has a high immune infiltration status

in most tumors, especially in B cells, dendritic cells, CD8+ T cells,

macrophages, Tregs, and T-cell follicular helper cells. In addition,

M1 macrophages, NK cells, and CD8+ T cells showed significant

infiltration into the HCC (Figure 11). The above results indicate that

SLCO1B1 is strongly correlated with M1macrophages, and inducing

the polarization of the TIME to the tumor-suppressive M1

phenotype is the key to improving the effect of immunotherapy

(42, 43). Therefore, we selected the surface marker CD86 of M1

macrophages and evaluated the localization and expression of CD86
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FIGURE 10

(A) Expression of the seven genes in the risk signature in the high-risk and low-risk groups. (B) Correlation of the seven genes in the train group.
(C) Correlation of the seven genes in the test group. (D) Correlation between the level of immune cell infiltration and the seven genes in the risk
model. (E) Differential expression of SLCO1B1 in HCC tissues and normal tissues. The red part represents HCC patient samples, and the gray part
represents normal patient tissue samples. (F) The result of qRT-PCR. (G) Normal and cancer images of SLCO1B1 expression in liver tissues (100× and
400×) detected by IHC staining. (H) IHC score for all samples. **** represents P<0.0001.
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and SLCO1B1 in the liver tissue by mIF. The results showed that the

expression levels of CD86 and SLCO1B1 in HCC tissues were

downregulated and were positively correlated (Figure 12A).
3.11 SLCO1B1 inhibits the proliferation,
migration and invasion of HCC cells in vitro

We confirmed low expression of SLCO1B1 in HCC tissues. To

further explore the biological function of SLCO1B1, we first

constructed HCC cell lines overexpressing SLCO1B1 and then

conducted a series of experiments to explore whether SLCO1B1

could regulate tumor cell proliferation and migration. The results of

the colony formation experiments showed that overexpression of

SLCO1B1 inhibited colony formation in HepG2 and Huh7 cells
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compared to the control group (Figure 12B). In addition, the CCK-8

assay showed that the overexpression of SLCO1B1 inhibited the

proliferation of HepG2 and Huh7 cells (Figure 12C). In addition, the

results of the migration experiments showed that overexpression of

SLCO1B1 inhibited the migration ability of HCC cells (Figure 12D).

Collectively, these results suggested that SLCO1B1 inhibited the

proliferation, migration, and invasion of HCC cells.
4 Discussion

HCC is a highly heterogeneous tumor, with considerable

variation in genomics, transcriptomics, proteomics, and

metabolomics (44). Disulfidptosis is a recently identified pattern

of programmed cell death in which excessive accumulation of
FIGURE 11

Correlation of SLCO1B1 expression with the level of infiltration of various immune cells in cancers.
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intracellular cystine leads to disulfidptosis. Tumor cells expedite the

reduction of ingested cystine to cysteine to avoid disulfidptosis (45).

Several studies have demonstrated the potential of targeting

disulfidptosis in tumor therapy (6, 8). Additionally, the

immunomodulatory drug dimethyl fumarate (DMF) targets

glycolysis by catalyzing cysteine, which acts as an anti-

inflammatory agent (46). The glycolytic enzyme GAPDH is also

involved in regulating the glycolytic process by catalyzing cysteine

production during the tricarboxylic acid cycle, and many GRGs

have been identified as effective prognostic markers of HCC (47,

48). However, the roles of genes related to disulfidptosis and

glycolysis in HCC has not been well-studied.
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In this study, we explored the correlation between DRGGs and

HCC. Surprisingly, these genes were not significantly mutated in

HCC. However, their differential expression between HCC and

normal tissues is equally important. Subsequently, HCC patients

were divided into two distinct molecular subtypes based on DRGG

expression. The pathological staging and overall survival time of

patients with DRGG cluster B were not satisfactory compared to

those of patients with cluster A. In addition, there were significant

differences in gene expression, pathway enrichment, and immune

cell infiltration between the two subtypes. In particular, patients

with cluster B had lower CD8+ T cell/Treg ratios, leading to a

poorer prognosis, as demonstrated in a previous HCC study (49). In
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FIGURE 12

(A) Representative immunofluorescence images (magnification: ×200) of the SLCO1B1 and CD86 expressions in HCC and normal adjacent tissues.
DAPI, 4′,6-diamidino-2-phenylindole. (B) Colony formation of control group and Lenti-SLCO1B1 group. (C) The viability of HCC cells at 0 h, 24 h,
48 h, 72 h was detected by Cell counting kit-8. (*p < 0.5, **p < 0.01, ****P < 0.0001). (D) Wound Healing of control group and Lenti-SLCO1B1 group.
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addition, by constructing a risk-prognosis signature we found that

patients in the high- and low-risk groups had significant differences

in clinicopathological characteristics and prognosis by constructing

a risk prognosis signature, which would help clinicians evaluate the

prognostic characteristics of patients and formulate targeted

treatment plans.

Several factors influence the expression of prognosis-related

genes in HCC. Among the seven genes used to construct the

signature, SLCO1B1 was expressed at low levels in HCC tissues,

whereas the expression of the remaining genes did not differ

significantly between HCC and normal tissues. However, from a

prognostic perspective, CD5, SLCO1B1, and CD79A have been

demonstrated to have protective value in various tumors, whereas

ETV5, FZD7, SNX7, and SLC1A7 are involved in tumor

progression. The key gene, SLCO1B1, encodes a transporter

protein located on the cell membrane, which is downregulated in

HCC and acts as a mediator of chemotherapeutic drugs, facilitating

drug entry into cells (50, 51). In our study, we observed that the

expression of SLCO1B1 decreased at the mRNA and protein levels

in HCC tissues and was positively correlated with the infiltration of

M1 macrophages. Furthermore, we found that SLCO1B1

overexpression inhibited the proliferation, migration, and

invasion of HCC cells.

The liver is a vital immune organ containing a wide variety of

immune cells. These immune cells play crucial roles in promoting

tumor growth and inhibiting cancer progression. Therefore,

immunotherapy has become a popular topic in tumor treatment.

In this study, we combined the risk score with Spearman’s

correlation analysis of immune cells and an activity analysis of

the anti-cancer response process. We found that M2 macrophages

and neutrophils were highly infiltrated in the high-risk group,

whereas CD8+ T cells, plasma cells, and naïve B cells showed low

infiltration and a more active recruitment of neutrophils. In

contrast, T-, Th1, NK killer, and dendritic cells are more actively

recruited in low-risk populations.

Studies have demonstrated that the induction of interleukin 4

and interleukin 13 speeds up the proliferation and metastasis of

HCC cells in M2 macrophages (52, 53). Additionally, neutrophils

play an essential immunosuppressive role in the tumor

microenvironment, promote tumor progression, and serve as

prospective treatment targets for HCC (54). However, CD8+ T

cells mainly mediate tumor cell killing and infiltrate at lower levels

into the tumor microenvironment of HCC (55). Furthermore, naïve

B cells, which are the main immune cells involved in adaptive

immunity and assist other immune cells in their anti-cancer role,

have a reduced relative proportion in HCC (56). Patients in the low-

risk group had higher immune scores and significantly more

expressed immune checkpoint-related genes than those in the

high-risk group, indicating that they may be more sensitive to

immunotherapy. Moreover, we found that IFN-g signaling was

significantly enriched in low-risk populations. IFN-g acts as an

anti-tumor factor and plays an immunosuppressive role in tumors

such as melanoma and lung cancer by enhancing the immune

response of T lymphocytes (57). However, the p53 signaling

pathway, cell cycle, microRNAs in cancer, and DNA replication

were significantly enriched in the high-risk populations. In our
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constructed signature, the risk score was consistent with the

expression levels of tumor-infiltrating immune cells and their

immune checkpoints, indicating that the high-risk group had a

stronger immunosuppressive microenvironment that promoted

tumorigenesis and metastasis, leading to a worse prognosis.

Future studies on immune checkpoints may benefit low-risk

groups expected to have a better prognosis.

Our study provides a new direction for personalized targeted

therapy in patients with HCC. However, this study has several

limitations. First, all patient information was obtained from public

databases and previous surgical patients at our hospital, which lacked

representative prospective data. Secondly, the clinical information of

the samples was limited, and some essential factors for determining

patient prognosis, such as alpha-fetoprotein, ascites, portal

hypertension, and postoperative complications, were missing. in the

future, we plan to recruit more patients who meet our criteria at our

hospital for prospective research and improve mechanistic research

to gain an in-depth understanding of the clinical application value of

this signature.

5 Conclusions

Recently, bioinformatics has become increasingly popular in the

medical field. Benefiting from progress in this technology, we

developed a prognostic signature for HCC based on disulfidptosis

and GRGs. The signature showed a strong performance in predicting

patient prognosis and response to immunotherapy, among other

factors. In the future, it will have broad application prospects in the

treatment of HCC. It can identify high-risk patients early and screen

potential patients for immunotherapy to improve their survival. In

addition, we found that SLCO1B1 is an important component of this

signature; the gene is under-expressed in HCC and suppresses the

proliferation, migration, and invasion of HCC cells. To some extent,

these findings guide the development of targeted therapies for HCC.
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