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A novel signature predicts
prognosis and immunotherapy in
lung adenocarcinoma based on
cancer-associated fibroblasts

Qianhe Ren1†, Pengpeng Zhang1†, Haoran Lin1†, Yanlong Feng1†,
Hao Chi2, Xiao Zhang1, Zhijia Xia3*, Huabao Cai4* and Yue Yu1*

1Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University,
Nanjing, China, 2Clinical Medical College, Southwest Medical University, Luzhou, China, 3Department
of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany,
4Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
Background: Extensive research has established the significant correlations

between cancer-associated fibroblasts (CAFs) and various stages of cancer

development, including initiation, angiogenesis, progression, and resistance to

therapy. In this study, we aimed to investigate the characteristics of CAFs in lung

adenocarcinoma (LUAD) and develop a risk signature to predict the prognosis of

patients with LUAD.

Methods: We obtained single-cell RNA sequencing (scRNA-seq) and bulk RNA-

seq data from the public database. The Seurat R package was used to process the

scRNA-seq data and identify CAF clusters based on several biomarkers. CAF-

related prognostic genes were further identified using univariate Cox regression

analysis. To reduce the number of genes, Lasso regression was performed, and a

risk signature was established. A novel nomogram that incorporated the risk

signature and clinicopathological features was developed to predict the clinical

applicability of the model. Additionally, we conducted immune landscape and

immunotherapy responsiveness analyses. Finally, we performed in vitro

experiments to verify the functions of EXO1 in LUAD.

Results: We identified 5 CAF clusters in LUAD using scRNA-seq data, of which 3

clusters were significantly associated with prognosis in LUAD. A total of 492

genes were found to be significantly linked to CAF clusters from 1731 DEGs and

were used to construct a risk signature. Moreover, our immune landscape

exploration revealed that the risk signature was significantly related to immune

scores, and its ability to predict responsiveness to immunotherapy was

confirmed. Furthermore, a novel nomogram incorporating the risk signature

and clinicopathological features showed excellent clinical applicability. Finally,

we verified the functions of EXP1 in LUAD through in vitro experiments.

Conclusions: The risk signature has proven to be an excellent predictor of LUAD

prognosis, stratifying patients more appropriately and precisely predicting

immunotherapy responsiveness. The comprehensive characterization of LUAD
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based on the CAF signature can predict the response of LUAD to

immunotherapy, thus offering fresh perspectives into the management of

LUAD patients. Our study ultimately confirms the role of EXP1 in facilitating the

invasion and growth of tumor cells in LUAD. Nevertheless, further validation can

be achieved by conducting in vivo experiments.
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1 Introduction

Lung cancer is a highly malignant tumor with a high diagnostic

frequency and ranks first in cancer-related deaths worldwide (1).

Among the several histologic types of lung cancer, lung

adenocarcinoma account for the highest percentage (2, 3). Over

the past decades, significant progress has been made in exploring

the molecular mechanism of LUAD progression, leading to the

development of precision therapeutics such as tyrosine-kinase

inhibitors (TKIs) (4). With the advent of molecular profiling, it

has become clear that lung adenocarcinoma is a genetically

heterogeneous disease, characterized by a range of driver

mutations and alterations that are amenable to targeted therapy

(5). Besides, mounting evidence has indicated a significant

association between m6A regulators and malignant neoplasms

(6). For example, the significant correlation between

downregulation of METTL14 in liver cancer and tumor

metastasis has been observed (7). Several prior studies have

identified abnormal expression patterns of m6A regulators in

LUAD as well (8). Molecular targeting of lung adenocarcinoma

involves the use of drugs or other agents that specifically target the

genetic alterations that are present in the cancer cells, with the aim

of achieving more effective and less toxic treatments (9). Oncogenic

KRAS is a prominent driver of lung adenocarcinoma (LUAD),

which has yet to be effectively targeted by therapeutics. One study

has presented evidence that the SLC7A11/glutathione axis

demonstrates metabolic synthetic lethality with oncogenic KRAS.

Research has demonstrated that LUAD cells harboring KRAS

mutations are sensitive to SLC7A11 inhibition, suggesting

possible therapeutic avenues for this presently untreatable

condition (10). This approach has revolutionized the

management of lung adenocarcinoma, leading to improved

outcomes for patients with specific molecular subtypes of the

disease. However, a considerable proportion of LUAD patients

still experience poor prognosis due to innate or acquired

resistance to targeted therapy (11). For example, Tyrosine kinase

inhibitors (TKIs) targeting sensitizing mutations in the epidermal

growth factor receptor (EGFR) gene constitute a vital cornerstone of

non-small cell lung cancer management. Despite the outstanding

disease control obtained through primary EGFR TKI therapy, the

development of acquired resistance is pervasive and represents a

major obstacle (12). Immunotherapy provides a novel approach to
02
the management of LUAD patients (13). In recent years,

immunotherapy has emerged as a promising treatment option for

lung adenocarcinoma (14). Immunotherapy works by activating the

body’s immune system to recognize and attack cancer cells. It does

this by targeting specific proteins on the surface of cancer cells,

called checkpoint proteins, that can inhibit immune cell activity

(15). The two main types of immunotherapies used to treat lung

adenocarcinoma are immune checkpoint inhibitors and adoptive

cell therapy (16). Immune checkpoint inhibitors block checkpoint

proteins on cancer cells, allowing immune cells to attack the cancer.

Adoptive cell therapy involves removing immune cells from a

patient’s body, genetically modifying them to recognize and

attack cancer cells, and then infusing them back into the patient

(17). Immunotherapy has shown promising results in treating lung

adenocarcinoma, particularly in patients whose cancer has spread

and is no longer responding to traditional treatments. However, it is

not effective for all patients, and there can be significant side effects

(18). Further research is needed to determine which patients will

benefit most from immunotherapy and how to minimize

side effects.

Cancer initiation, progression and immigration incur a range of

dynamic alterations in host tissues, bringing about a complex tumor

stroma, illustrated as the tumor microenvironment (TME) (19).

The evolution and homeostasis of the TME largely depend on an

intimate communication within and across several cellular

compartments, including malignant, stromal, and immune cells.

Among them, cancer-associated fibroblasts (CAFs) are the principal

component of stromal cells and release inflammatory, growth

factors, and extracellular matrix, accelerating tumor proliferation

and contributing to therapy resistance (20). CAFs can promote

progression of malignant cells by serving TME crucial nutrients,

such as alanine and lipoids (21). Besides, accumulating evidence

have confirmed that CAFs are significantly correlated with several

cancers, such as breast cancer, gastrointestinal cancer and lung

cancer (22–24). In-depth research on the crosstalk between CAFs

and other TME cells could provide new insights into subsequent

targeted therapy.

Despite significant efforts to study CAFs in LUAD, comprehensive

characterization and prediction of immunotherapy response are

lacking. Herein, transcriptome and single-cell RNA-sequencing

(scRNA-seq) data from public database were collected and further

processed. Distinguished CAFs subclusters were obtained and based
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on which a risk signature was established for LUAD. The signature’s

independent prognostic prediction values were validated by several

methods. A novel nomogram integrating the risk signature and

clinicopathological features was constructed to facilitate the clinical

application of CAF in LUAD. The risk signature, along with the novel

nomogram, has the potential to enable more accurate patient

stratification for LUAD and offer more precise prognostic

predictions. Furthermore, the CAF-related signature was evaluated

for immune landscape and responsiveness to immunotherapy,

providing new insights into the management of LUAD and

improving patient outcomes.
2 Methods

2.1 Data collection and processing

We obtained scRNA-seq data from the Gene Expression

Omnibus (GEO) database (accession number GSE149655), which

comprised four samples: two primary lung adenocarcinoma (LUAD)

samples and two normal tissue samples. We filtered out single cells

expressing fewer than 250 genes or those with any gene expressed in

fewer than three cells. We also evaluated the percentage of

mitochondria and rRNA using the PercentageFeatureSet function

in the Seurat R package (25, 26). This resulted in a total of 12,554 cells

for further analysis.

We collected transcriptome data, copy number variants (CNV),

single-nucleotide variants (SNV), and corresponding clinical data of

LUAD from The Cancer Genome Atlas (TCGA) database. We

excluded samples lacking survival data or outcome status and

included 500 tumor samples and 59 normal samples in the

analysis. We also utilized two external validation cohorts:

GSE72094 cohort with 398 samples and GSE26939 cohort with

115 samples after removing samples without follow-up.

From the literature, we identified ten cancer-associated

pathways (HIPPO, Cell Cycle, MYC, NRF1, NOTCH, PI3K, RAS,

TP53, TGF-Beta, and WNT) and analyzed their gene expression

profiles in our dataset (27).
2.2 CAF definition

The Seurat package was used to re-analyze the scRNA-seq data

of LUAD (28), with the aim of systematically characterizing the

CAF signature. Firstly, expressed genes were log-normalized after

removing cells with below 250 or over 6000 expressed genes. Then,

the FindIntegrationAnchors function was employed to remove

batch effects for the four samples. Non-linear dimensional

reduction was performed using the uniform manifold

approximation and projection method, with a resolution of 0.2

and 30 principal components selected. Subsequently, single cells

were clustered into different subgroups using the FindNeighbors

and FindClusters (dim = 30 and resolution =0.2) functions. UMAP

dimensional reduction was performed using the RunUMAP

function. Fibroblasts were annotated based on four marker genes,
Frontiers in Immunology 03
including FAP, PDGFRB, ACTA2, and NOTCH3. The fibroblasts

were re-clustered using the same algorithm of FindClusters and

FindNeighbors functions. Marker genes for each CAF cluster were

defined with the FindAllMarkers function by comparing different

clusters with minpct = 0.35, logFC =0.5, and adjust p-value<0.05.

We also used the CopyKAT R package (29) to analyze the CNV

characteristics of CAFs clusters and distinguish between tumor cells

and normal ones. Finally, we performed Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analysis on the marker

genes using the clusterProfiler package (30).
2.3 Hub genes of CAF identification

Firstly, the limma package (31, 32) was used to identify

differentially expressed genes (DEGs) between normal and tumor

tissue based on |log2(FoldChange)|>1 and a false discovery rate

(FDR)<0.05. Then, correlations between CAF clusters and DEGs

were evaluated, followed by the identification of key CAF-related

genes with p<0.01 and cor>0.4. To identify prognosis-related genes,

univariate Cox regression analysis was conducted using the survival

package (33). To reduce the number of genes, the least absolute

shrinkage and selection operator (lasso) was performed (34–36).

Multivariate Cox regression analysis was conducted using the

stepwise regression method to establish a CAF-based risk

s ignature , which was ca lcu la ted us ing the formula :

0.123CLEC3B+0.114EXO1 + 0.103CCNB1+-0.177CD302. Patients

were classified into low- and high-risk groups using zero-mean

normalization. The predictive value of the risk signature was

evaluated using receiver operating characteristic curve (ROC)

analysis with the timeROC package (37, 38).
2.4 A novel nomogram constructed based
on the risk signature

Following the univariate and multivariate Cox regression

analysis based on the risk signature and clinicopathological

features (39), we constructed a novel nomogram to predict the

prognosis of LUAD using variables with p<0.05 in the multivariate

Cox model. We evaluated the predictive accuracy of the model by

generating a calibration curve.
2.5 Immune landscape analysis

We comprehensively assessed the correlation between the

risk signature and the tumor immune microenvironment (TIME)

using several algorithms, including CIBERSORT, EPIC,

MCPCOUNTER, and TIMER. The “estimate” R package was

used to calculate stromal scores, immune scores, and estimate

scores (stromal scores + immune scores) to evaluate differences in

the tumor microenvironment of patients. Additionally, we

estimated the proportions of 22 immune cell subtypes using the

CIBERSORT algorithm based on the TCGA cohort.
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2.6 Responsiveness to immunotherapy

Anti-PD-1 or anti-PD-L1 checkpoint inhibition therapy has gained

increasing attention as a crucial component of immunotherapy.

To evaluate the performance of the risk signature in predicting

responsiveness to immunotherapy (immune checkpoint blocks), we

collected transcriptomic data as well as corresponding clinical

data from patients who received anti-PD-L1 therapy from the

IMvigor210 cohort. We also downloaded transcriptomic data

from the GSE78220 cohort, which included melanoma patients

who received anti-PD-1 checkpoint inhibition therapy

before treatment.
2.7 Cell lines culture of lung
adenocarcinoma cells and cell transfection

All patients conferred their informed consent before being

enrolled in the study. Sample collections were conducted

following procedures approved by the Ethics Committee of

Jiangsu Province People’s Hospital (2019-SR-156). Lung

adenocarcinoma cell lines including A549 and H1299 cells was

purchased from ATCC. All cells were cultured using Ham’s F-12K

and RPMI 1640 medium (Gibco, USA), supplemented with 10%

FBS (HyClone Sera, USA) and 1% penicillin‐streptomycin (Sangon

Biotech, China), and maintained in an atmosphere containing 5%

CO2 at 37°C. The EXO1 siRNA expression vector and scrambled

siRNA nontarget control were obtained from Genewiz (China).

Plasmids were transfected using Lipofectamine 3000 (Thermo

Scientific, USA), as per the manufacturer’s protocols (40).
2.8 RNA extraction and quantitative real-
time polymerase chain reaction

Total RNA was extracted from the cell lines using TRIzol in

accordance with the manufacturer’s instructions (15596018,

Thermo). Subsequently, cDNA was synthesized utilizing the

PrimeScript TMRT kit (R232-01, Vazyme). Real-time polymerase

chain reaction (RT-PCR) was performed using SYBR Green Master

Mix (Q111-02, Vazyme). The expression levels of each mRNA were

standardized to the level of mRNA GAPDH, and the quantification

of expression levels was executed using the 2–DDCT method (41).
2.9 Cell counting kit-8 assay and EdU

The suspension of cells was seeded in 96-well plates at a density

of 5×103 cells per well. After adding 10 ml of CCK-8 labeling agent

(A311-01, Vazyme) to each well, the plate was incubated for 2 hours

in the dark at 37°C. Cell viability was evaluated by measuring

absorbance at 450 nm at 0, 24, 48, 72, and 96 hours using an

enzyme-labeled meter (A33978, Thermo). The experiment was

performed using a 96-well plate with 2×104 treated cells in each

well, after the cells had adhered to the wall. The 5-Ethynyl-2’-
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deoxyuridine (EdU) assay was performed according to the

manufacturer ’s instructions (Ribobio, China), and cell

proliferation was quantified using an inverted microscope.
2.10 Wound-healing assay and
transwell assay

The transfected cells were seeded in 6-well plates and cultured

in a cell incubator until they reached 95% confluence. Each well was

gently scraped using a sterile 200 ml plastic pipette tip, and any

unattached cells and debris were rinsed twice with PBS. The breadth

of the scratch wounds was measured using the Image J program,

and photographs were taken at 0 h and 48 h. For the cell invasion

and migration experiments, treated A549 and H1299 cells (2×104)

were incubated in the upper chamber of 24-well plates for 48 hours.

The top surface of the plate was either precoated with matrigel

solution (BD Biosciences, USA) or left untreated to assess the cells’

ability to invade and migrate. After removing the cells from the top

surface, the remaining cells on the bottom layer were fixed with 4%

paraformaldehyde and stained with 0.1% crystal violet

(Solarbio, China).
2.11 Statistical analysis

All statistical analyses were performed using R software (version

4.1.0). Wilcoxon test was used for comparing two groups, while

Spearman or Pearson correlation was used for correlation matrices.

The Log-rank test was used to assess survival differences through K-M

curves, where statistical significance was defined as p-value < 0.05.
3 Results

3.1 CAF clustering and screening in
scRNA samples

The flow chart of our study is depicted in Figure 1. Following

initial screening, a total of 12,554 cells were obtained from scRNA-

seq data. Detailed results of data preprocessing are presented in

Figure S1. Firstly, after performing log-normalization and

dimensionality reduction, we identified 31 subpopulations

(Figure 2A). Using four marker genes (FAP, FDGFRB, ACTA2,

and NOTCH3), we further identified five CAF populations, as

shown in Figure 2B. Cells collected from the four CAF

populations were then separated for clustering and dimensionality

reduction in subsequent research. Utilizing the same clustering

algorithm, we discovered five clusters, as depicted in Figure 2B.

Moreover, after performing the R package ‘FindVariableFeatures’,

we obtained 756 DEGs from the five CAF clusters. The top 5 DEGs,

which were characterized as CAF cluster marker genes, are

exhibited in Figures 2C, D. Histograms illustrating the proportion

of the five clusters in each cohort are shown in Figure 2E.

Furthermore, KEGG analysis revealed that these DEGs were

enriched in divergent pathways such as ECM-receptor
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interaction, focal adhesion, proteoglycans in cancer, PI3K-Akt

signaling pathway, and others, as presented in Figure 2F. Finally,

the distribution of tumor and normal cells based on the five CAF

clusters according to the CNV characteristics is shown in Figure 2G.
3.2 The analysis of cancer-related
pathways in CAF

We explored the characteristics of ten tumor-related pathways

in the five CAF clusters to elucidate the correlations between tumor

progression and the CAF clusters. GSVA was employed to

investigate the underlying mechanisms involved in the

progression and prognostication of LUAD. GSVA scores of those

pathways were calculated based on different CAF clusters, and the

results are presented in Figure 3A. As shown in Figure 3B, the

percentage of normal cells in CAF_0 cluster was the highest, while

the ratio of malignant cells from CAF_1 was significantly higher

than that in the others. Significant differences were only identified

among the CAF_0, CAF_2, and CAF_4. Furthermore, GSVA scores

were analyzed based on the ten tumor-related pathways between
Frontiers in Immunology 05
normal and malignant cells in each CAF cluster, with slight

differences observed in CAF_2 and CAF_4 (Figures 3C–F). (The

results of GSVA score analysis in CAF_0 is shown in Figure S2).

Moreover, to explore the correlations between the CAF clusters

and crucial clinicopathologic features, we analyzed the ssGSEA

score of the marker genes (the top 5 DEGs referred to in Figures 2C,

D) of each CAF cluster according to the TCGA cohort. The results

showed that tumor samples had a significantly higher score

compared with normal ones in each cluster (Figure S2B). Using

the survminer R package, LUAD samples of TCGA cohort were

divided into low-and-high CAF score groups based on the optimal

cut-off value. The samples in the low-CAF score group had a

significantly worse prognosis in CAF_0, CAF_1, and CAF_3.

Although no significant differences were observed in the other

two clusters, there was a trend that patients in high-CAF score

groups shared a better prognosis (Figure S2C). Furthermore, other

clinicopathologic features, including T. stage, N. stage, M. stage, and

stage, were included in the analysis. Only slight differences were

observed between low-and-high CAF group patients (Figure S3).

However, patients in high-CAF groups tended to share favorable

clinicopathologic features.
FIGURE 1

The flow chart of this study.
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3.3 Hub genes identification and risk
signature construction

To construct a risk signature, we first screened for DEGs between

normal and tumor tissues. A total of 1731 DEGs were obtained, with

725 up-regulated and 1006 down-regulated (Figure 4A). Out of these,

492 genes were significantly correlated with the prognosis-related CAF

clusters. Using univariate Cox regression analysis, we further evaluated

the prognosis of each gene, identifying 49 genes related to risk factors

and 62 genes exhibiting protective values (Figure 4B). To reduce the

number of genes, we conducted Lasso Cox regression analysis, resulting

in 4 genes with lambda=0.074 (Figure 4C). Finally, we used the

stepwise regression method to construct the risk signature after

multivariate Cox regression analysis. The signature consists of 4

genes (Figures 4D, E), namely Exonuclease 1 (EXO1), Cyclin B1

(CCNB1), C-Type Lectin Domain Family 3 Member B (CLEC3B),

and Type I C-type lectin receptor CD302. The final signature formula is

as follows: RiskScore = -0.123CLEC3B+0.114EXO1 + 0.103CCNB1+-

0.177CD302. Using z-mean normalization, we calculated the risk score

for each sample, dividing patients into high and low-risk groups.

Kaplan-Meier survival analysis showed that low-risk patients had

significantly better survival outcomes compared to high-risk patients,

not only in the TCGA cohort (Figure 4F) but also in the GSE72094

(Figure 4G) and GSE26939 (Figure 4H) cohorts. Additionally, based on
Frontiers in Immunology 06
the TCGA and GEO cohorts, the AUC values of the signature for 1-3-

5-year survival were satisfying, indicating the model’s excellent

predictive power (Figures 4F-H). We also presented the distribution

of risk score, patient survival status, and expression of hub genes in the

TCGA cohort in Figure S3A. Similarly, the results of GSE72094 and

GSE26939 were shown in Figures S3B-C.
3.4 Recognition of independent risk factors
and development of nomogram

To construct a more accurate predictive model, we integrated

the risk score with clinicopathological characteristics using both

univariate and multivariate Cox regression analyses. The

multivariate analysis demonstrated that the risk signature was the

most significant independent prognostic factor for lung

adenocarcinoma (p-value < 0.001), followed by N-stage

(Figures 5A, B). Accordingly, we developed a novel nomogram

incorporating T-stage, N-stage, and risk score (Figure 5C),

which demonstrated strong predictive power for actual survival

outcomes according to calibration plot analysis (Figure 5D).

TimeROC analysis in the TCGA cohort confirmed that the AUC

of the nomogram and risk score exceeded that of other

indicators (Figure 5E).
A B

D

E F

C

FIGURE 2

The identification of CAF clusters according to scRNA-data of LUAD patients. (A) Umap plots of distribution of 31 clusters and fibroblasts-based
marker genes expression. (B) Umap plots of distributions of five fibroblasts after clustering. (C) Bubble diagram of the top5 marker gene expression
of subgroups. (D) Volcano plot of the top5 marker gene expression of subgroups. (E) Subgroups in cancer and adjacent tissue and proportion as well
as cell number calculation. (F) KEGG analysis of five fibroblasts subgroups. (G) Umap distribution of malignant and non-malignant cells predicted by
copycat package.
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3.5 Correlations between the risk signature
and clinicopathologic features in
LUAD patients

After examining the clinicopathologic features (Age, Gender,

Stage, T-stage, N-stage, and M-stage) between high- and low-risk

groups, we found that gender, T-stage, N-stage, and stage were

significantly associated with the risk signature (Figure S4A).

These findings were consistent with previous studies that

identified gender as a risk factor for LUAD, with males being
Frontiers in Immunology 07
more likely to be in the high-risk group (Figure S4B). Moreover,

patients in the high-risk group tended to have more advanced

clinical stages (Figures S4C-E).
3.6 Tumor mutation analysis

Exploring SNVmutations in lung adenocarcinoma based on the

TCGA cohort to investigate the SNV mutations in lung

adenocarcinoma, the top 20 genes with the highest mutation
A

B D

E F

C

FIGURE 3

The characteristics of tumor-associated pathways in CAF clusters. (A) Heatmap of 10 tumor-associated pathways enriched in CAF cells. (B) Comparison
between each cluster based on proportions of malignant and non-malignant cells. Comparison of each pathway between malignant and non-malignant
cells based on GSVA score in CAF_0 (Figure S2A), CAF_1 (C), CAF_2 (D) CAF_3 (E) CAF_4 (F). (Wilcox. Test, *P < 0.05; ***P < 0.001; ns, not significant.).
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frequency were analyzed based on the TCGA cohort, as shown in

Figure 6A. Subsequently, the SNVmutations of the four genes in the

risk signature were examined. As displayed in Figure 6B, EXO1 had

the highest mutation frequency, with Missense-Mutation being the

most common type of mutation. Conversely, no mutations were

observed in CD302. Additionally, the probability of co-occurrence

of the 10 most mutated genes and the risk genes (except for CD302)

was assessed, and the results indicated a low likelihood of co-

occurrence of mutations in these three genes. However, EXO1 was

found to significantly co-occur with MUC16, CSMD3, RYR2,

ZFHX4, and USH2A (Figure 6C). Further analysis revealed that

only a few samples had loss/gain of CNV based on the four genes

(Figure 6E). The fraction of the pathway affected by these risk

genes was also calculated in the TCGA cohort (Figure 6D).

Moreover, the relationships between the risk genes and several

molecular signatures of LUAD were explored to demonstrate

the links between the risk genes and LUAD. The results indicated

that EXO1 and CCNB1 were positively correlated with molecular

signatures such as Aneuploidy Score, Homologous Recombination
Frontiers in Immunology 08
Defects, and Fraction Altered, while CLEC3B and CD302 were

negatively correlated with these signatures (Figure 6F).
3.7 Gene set enrichment analysis

Based on these four genes from the risk signature, Gene Set

Enrichment Analysis was performed. The results showed that 16

pathways were significantly correlated with these four genes in total

(Figures 7A, B), such as the p53 signaling pathway, cell cycle, and

DNA replication. Similar to the results obtained previously, EXO1

and CCNB1 were positively correlated with these pathways, while

CD302 and CLEC3B were negatively related to them. The GSEA

score was estimated based on the high-and-low-risk subgroups

(Figures 7C, D). Centromere Complex Assembly, Cell Cycle

Checkpoint Signaling, and Cell Cycle G2 Phase Transition were

significantly enriched in the high-risk group. In contrast, Positive

Regulation of Lipase Activity, Axoneme Assembly, and Cilium

Movement were significantly enriched in the low-risk group.
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FIGURE 4

A novel risk signature constructed based on several CAF-related genes. (A) Volcano plot of differentially expressed genes between tumor and normal
samples in TCGA cohort. (B) Volcano plot of prognosis-correlated genes obtained by univariate Cox regression analysis. (C) Each independent
variable’s trajectory and distributions for the lambda. (D-E) The multivariate Cox coefficients for each gene in the risk signature. (F) K-M and ROC
curves of the risk signature in TCGA cohort. (G) K-M and ROC curves of the risk signature in GSE72094 cohort. (H) K-M and ROC curves of the risk
signature in GSE26939 cohort.
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Finally, the results of KEGG and GO analysis are shown

in Figure 7E.
3.8 Landscape of immune infiltrations
and relationship between risk
genes and immunity

After investigating the landscape of immune and stromal cell

infiltrations in both low- and high-risk groups, we found that

Figure 8A illustrates how patients in the low-risk group have

higher proportions of immune and stromal cell infiltrations

compared to those in the high-risk group. Moreover, using the

CIBERSORT algorithm (42, 43), we calculated the immune cell

proportions between the high- and low-risk groups (Figure 8B) and

found that patients in the high-risk group significantly shared

higher proportions of CD8 T cells, activated memory CD4 T

cells, activated NK cells, Macrophages (M0), and Macrophages

(M1). On the other hand, B cells, resting memory CD4 T cells,

Monocytes, resting dendritic cells, and Activated mast cells were

significantly enriched in the low-risk group.

We then explored the relationship between risk genes and

immunity. Our results showed that EXO1 and CCNB1 had a

significantly negative relationship with the majority of T cells,
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while CLEC3B and CD302 were remarkably correlated with

Macrophages (Figure 8C). Additionally, correlation analysis

presented that EXO1 and CCNB1 were negatively linked with

Stromal Score, Immune Score, and ESTIMATE Score. In contrast,

the other risk genes exhibited the opposite trend (Figures 8D, E, G).

Finally, Figure 8F revealed the correlation between the four risk

genes and the 75 immune-related genes.
3.9 Response to PD-L1 blockade
immunotherapy based on risk signature

We analyzed the response to PD-L1 blockade immunotherapy

in the IMvigor210 and GSE78220 cohorts after assessing immune

infiltrations. The 348 patients from the IMvigor210 cohort

presented different responses to anti-PD-L1 receptor blockers,

including stable disease (SD), partial response (PR), complete

response (CR), and progressive disease (PD). We found that CR/

PR patients had lower risk scores than SD/PD patients (Figure 9B).

Additionally, in the low-risk group, the proportion of SD/PD

patients was lower than that in the high-risk group (Figure 9C).

Our analysis of the IMvigor210 cohort revealed that patients in the

low-risk group had significantly better clinical outcomes than those

in the high-risk group (Figure 9A). Furthermore, we identified
A
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FIGURE 5

Development of a novel nomogram integrating the risk signature and several clinicopathologic features. (A) Results of univariate Cox regression analysis
based on risk score and clinicopathologic features. (B) Results of multivariate Cox regression analysis based on risk score and clinicopathologic features.
(C) Construction of the nomogram integrating the risk score and clinical stage. (D) Calibration curves for 1, 3, and 5 years of nomogram. (E) Evaluation of
predictive capacity of nomogram and clinicopathologic features by time-ROC analysis. (*P < 0.05; **P < 0.01; ***P < 0.001).
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significant survival differences between different risk groups not

only in Stage I+II but also in Stage III+IV patients (Figures 9D, E).

To confirm our findings, we enrolled the GSE78220 cohort into

further analysis. Corresponding with the results obtained in

IMvigor210, PR/CR patients had lower risk scores and shared a

lower percentage in the high-risk group (Figures 9F–H).
3.10 Validation of the tumor-related role of
EXO1 in NSCLC

In order to further elucidate the function of EXO1 in LUAD, we

conducted in vitro research to scrutinize the function of EXO1 in

LUAD cells. We gauged the degree of EXO1 expression after 24

hours of transfection via qRT-PCR to assess the efficacy of siRNA-

mediated EXO1 knockdown in A549 and H1299 cell lines. As

compared to the NC group, we observed a marked reduction in the

expression of EXO1 in A549 and H1299 cells upon treatment with

siRNA (Si-1 and Si-2) sequences (P < 0.001) (Figures 10).

Correspondingly, the CCK-8 assay revealed that suppression of

EXO1 significantly curbed the viability of A549 and H1299 cells as

compared to control cells (Figure 10A). The findings of the EdU

staining assay provided further evidence that inhibition of EXO1

expression impeded the proliferation of A549 and H1299 cells
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relative to the NC group (Figure 10B). This implies that EXO1

might play an indispensable role in the proliferation of LUAD cells.

The transwell experiments confirmed that EXO1 knockdown

considerably reduced the migration and invasion of A549 and

H1299 cells (Figure 10C). The scratch-wound healing experiment

also produced congruent results, wherein decreased EXO1

expression led to a noteworthy deceleration in the rate of wound

healing in cells (Figure 10D). To ensure the accuracy and

consistency of the results, all tests were performed in two LUAD

cell lines (A549 and H1299), and all data were presented as means

with standard deviations from three independent experiments. *P <

0.05, **P < 0.01, ***P < 0.001.
4 Discussion

With a growing understanding of the tumor microenvironment

(TME), research focus has broadened from immune cells to other

cellular components, such as cancer-associated fibroblasts (CAFs)

(22). As a crucial component of the TME, CAFs have divergent

functions, such as matrix remodeling and deposition, extensive

reciprocal signaling interactions with infiltrating leukocytes and

crosstalk with cancer cells (44). Cancer-associated fibroblasts

(CAFs) present in primary and metastatic neoplasms are
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FIGURE 6

Tumor mutations analysis (TMB) (A) The landscape of mutations based on the TCGA cohort. (B) Waterfall diagram displaying SNV mutations of four key
genes. (C) Mutual exclusion and collinearity analysis of the four genes and the 10 most mutated genes in tumors. (D) The proportions of 10 tumor-
related pathways were depicted. (E) CNV mutations (gain, loss, none) of four key genes. (F) Correlation heatmap of six key genes with Homologous
Recombination Defects, Aneuploidy Score, Number of Segments, Fraction Altered, and Nonsilent Mutation Rate. (*P < 0.05; **P < 0.01; ***P < 0.001).
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extremely adaptable, malleable, and robust cells that actively

participate in the advancement of cancer by engaging in

intricate cross-talk with other cellular entities in the tumor

microenvironment (19). Within the microenvironment of cancer,

stromal cells play a significant role, and among them, cancer-

associated fibroblasts (CAFs) make up the largest portion and are

closely linked to cancer progression. Additionally, the cancer

stroma can promote tumor recurrence and contribute to

therapeutic resistance, explaining why current anti-tumor

therapeutic approaches often fail to eliminate malignancy (45).

Therefore, investigating the tumor microenvironment (TME) with

a focus on cancer-associated fibroblasts (CAFs) could not only

enhance our understanding of their phenotypic diversity but also

provide new insights into anti-tumor therapies. In this study, we

utilized single-cell RNA sequencing (scRNA-seq) data to investigate

the heterogeneity of CAFs and systematically identify and classify

them in lung adenocarcinoma (LUAD). As a result, we identified

five distinct CAF clusters that may play a critical role in regulating

the TME’s biology. Furthermore, growing evidence suggests that a

CAF-related gene signature can accurately predict the prognosis of

LUAD patients (46, 47). Consistent with these findings, our results

showed that three of the clusters had significant association with

LUAD prognosis. By performing the GSVA analysis, a slight

correlation was observed between the ten cancer-related pathways

and the five clusters. The Hippo signaling was significantly enriched
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in no-malignant part in our data, and a recent study has revealed

that Hippo signaling might work as a crucial tumor suppressor

pathway, which may account for the prognostic value of CAF to

some extent.

Next, we constructed a CAF-related risk signature using four

genes based on the prognostic values of the three identified CAF

clusters. The risk signature included two risk genes (EXO1 and

CCNB1) and two protective genes (CLEC3B and CD302). To assess

the accuracy of this signature, we validated it using external cohorts,

including TCGA, GSE72094, and GSE26939, and obtained

favorable results. Notably, EXO1, a crucial nuclease associated

with the mismatch repair system, was among the genes included

in the risk signature. Dysregulation of this gene has been linked to

proliferation, migration, and invasion in LUAD (48). Besides,

exonuclease 1 (EXO1) constitutes a plausible prognostic

biomarker and exhibits significant correlations with immune

infiltrates in lung adenocarcinoma (49). Moreover, one research

suggested that the high expression of EXO1 was significantly

correlated with aneuploidy, promoting tumor invasion in LUAD

(50). Cell cycle-promoted factor CCNB1 can be targeted by VPS33B

via c-Myc/p53/miR-192-3p to modulate the pathogenesis of non-

small cell lung cancer (NSCLC) (51). In addition, CCNB1 can be

directly targeted by microRNA-718, suppressing tumor

immigration NSCLC (52). CLEC3B and CD302 have been

verified downregulated in lung cancer and having the diagnostic
A
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FIGURE 7

Gene Set Enrichment Analysis (GSEA) (A) Heatmap exhibiting enrichment score for key pathways based on the hub genes. (B) Gene-pathway correlation
heatmap, (C) Pathways enriched in high-risk group. (D) Pathways enriched in low-risk group. (E) KEGG and GO analysis. (***P < 0.001).
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and prognostic values in lung cancer (53, 54). The patients were

then classified into high- and low-risk groups based on the median

risk score, and subsequent analysis demonstrated that the low-risk

group had a significantly better prognosis than the high-risk group.

Furthermore, univariate and multivariate Cox regression analyses

confirmed that the risk score was an independent predictor of

overall survival (OS). We developed a nomogram based on the risk

signature, which demonstrated a high degree of consistency

between predicted and observed results regarding the OS of

LUAD patients. In conclusion, our findings indicate that the risk

signature we constructed can accurately predict the prognosis of

LUAD patients. With the risk signature and novel nomogram, early

and accurate diagnosis of LUAD could be achieved and patients will

be stratified more appropriately.

Considering the fact that precise therapy for lung cancer rely on

comprehensive genomic analyses (55), the mutation profile of

LUAD patients based on TCGA cohort were depicted, which

reflected the high frequency of mutations of LUAD. The tumor

mutation burden was further performed based on our risk

signature. Among them, EXO1 was the only gene observed with

mutations in our data. Besides, EXO1 was identified co-occurring

with several highly mutated genes, including MUC16, CSMD3,

RYR2, ZFHX4, and USH2A. Additionally, EXO1 was found

positively correlated with several molecular signatures, such as

aneuploidy, fraction altered, and so on. One study has indicated

that the hyper-excision of DNA triggered by a deficiency in MLH1,

via exonuclease 1, stimulates the cGAS-STING pathway, thereby
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facilitating the migration of tumors (56). As reported, high level

of aneuploidy is related to lung cancer progression (57). Taken

as a whole, we can infer that high expression level of EXO1

might prospect unfavorable clinical outcomes, and further

endeavor on EXO1 research might promote the development of

precision therapeutics.

To elucidate the divergent pathways that the genes involved in the

signature enriched, Gene Set Enrichment Analysis (GSEA) was

conducted. The results revealed that risk genes (EXO1 and CCNB1)

were positively linked with several pathways, including p53 signaling

pathway, cell cycle, DNA replication, etc. The protective genes (CD302

and CLEC3B), however, were positively associated with only one

pathway-glycosphingolipid_biosynthesis_ganglio_series.

Accumulating evidence has confirmed that several crucial molecules

could propel the proliferation, migration, and invasion via p53

signaling pathway and DNA replication in LUAD (58–60).

Moreover, high expression of EXO1 and CCNB1 was identified

significantly correlated with p53 signaling pathway, cell cycle, and

DNA replication (61, 62). Then, GSEA was performed according to

high-and-low-risk groups. The high-risk group was remarkably

enriched in centromere complex assembly, cell cycle checkpoint

signaling, and cell cycle G2 M phase transition, which have been

confirmed significantly correlated with progression in LUAD (63–65).

Far from only aggregates of malignant cells, tumors are well-

organized complex ecosystems (66). Consisting of distinct immune

cell populations in tumor islands, the TIME is dramatically correlated

with the antitumor immunological state of the TME (67). The TIME
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FIGURE 8

The immune infiltrations analysis (A) Heatmap of results on immune cells of tumor microenvironment (TME) in LUAD with multialgorithm, including
existing data from platform TIMER and MCP-counter. TME-related scores were exhibited in the top bar. (B) Comparison of proportions of
22 immune-related cells between high-and-low-risk groups. (C) Correlations between four hub genes and 22 immune-related cells. (D,E,G)
Correlations between the four hub genes and immune score, stromal score, estimate score. (F) The correlation analysis between four hub genes and
75 immune-associated genes. (*P < 0.05; **P < 0.01; ***P < 0.001).
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have long been identified substantially associated with tumor

progression, recurrence and metastasis (68). To further understand

the implications of our risk signature, we assessed the immune

infiltration state using various algorithms. Our results

demonstrated that the low-risk group had a higher level of immune

cell infiltration, suggesting that this group was more likely to establish

a “hot” tumor state that could accelerate the immune system to

inhibit tumor progression. In contrast, the high-risk group had higher

levels of M0 and M1 macrophages. A recent study has revealed that

M0 to M2 polarization is linked to the immune suppression (69). We

also investigated the correlations between the four genes included in

the risk signature and the 22 immune infiltration cells. Our results

showed that EXO1 was positively linked with various types of T cells,

suggesting that it could be a potential target for immunotherapy.

Moreover, the risk genes (EXO1 and CCNB1) were found to be

negatively associated with stromal score, immune score, and estimate

score. Despite the emergence of immunotherapy, a significant

number of LUAD patients still experience this highly malignant

tumor due to innate or acquired resistance to such therapies (70).

Therefore, it is crucial to identify patients who are likely to benefit

from immunotherapy. Using the IMvigor210 and GSE78220 cohorts,

we found that our risk signature could effectively classify patients who
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were more likely to benefit from immunotherapies. In summary, our

risk signature based on CAFs can independently predict the

prognosis of LUAD patients and predict their responsiveness

to immunotherapy.

Nevertheless, there are some limitations in our study that need

to be addressed. Firstly, the risk signature was established using

retrospective data from public databases. Therefore, more

prospective and multi-center LUAD cohorts are required to

eliminate bias. Secondly, we only predicted the responsiveness to

anti-PD-L1 immunotherapy using our risk signature. Further

research is necessary to evaluate the potential of our risk

signature to predict the response to other precision therapies in

the future.
5 Conclusion

In our study, we extensively investigated the CAF populations

in LUAD and identified five CAF clusters with distinct

characteristics. Three of these clusters were found to be

significantly associated with LUAD prognosis and were used to

establish a prognostic risk signature consisting of 4 genes based on
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FIGURE 9

Prediction of responsiveness to immunotherapy using our signature based on public database. (A) Prognostic differences between risk subgroups in the
IMvigor210 cohort. (B) Differences among immunotherapy responses based on risk scores in the IMvigor210 cohort. (C) Distribution of immunotherapy
responses based on risk subgroups in the IMvigor210 cohort. (D) Prognostic differences between risk subgroups based on early stage (stage I-II) in the
IMvigor210 cohort. (E) Prognostic differences between risk subgroups based on advanced patients (stage III-IV) in the IMvigor210 cohort. (F) Prognostic
differences between risk subgroups in the GSE78220 cohort. (G) Differences among immunotherapy responses based on risk scores in the GSE78220
cohort. (H) Distribution of immunotherapy responses based on risk subgroups in the GSE78220 cohort. (**P < 0.01; ***P < 0.001).
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the CAFs. Furthermore, we developed a novel nomogram

that combined the risk signature and clinicopathological

characteristics, which performed exceptionally well in predicting

the clinical outcome of patients with LUAD. Our risk signature was

also observed to be associated with tumor mutations and immune

landscape. Additionally, our results indicated that the risk signature

is suitable for predicting the responsiveness of LUAD patients to

immunotherapy targeting PD-L1 blockade.
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6 Ethical approval and consent
to participate

All human experiments in this study have been approved by the

Ethics Committee of the First Affiliated Hospital of Nanjing Medical

University. All subjects gave their informed consent for inclusion

before they participated in the study. The study was conducted in

accordance with the Declaration of Helsinki, and approved by the
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FIGURE 10

The role of EXO1 in LUAD. (A) CCK8 assay showed that, after EXO1 knockdown, the cells showed significant reduction in viability. (B) EdU staining assay
indicated that downregulation of EXO1 expression repressed cell proliferation in LUAD cell lines. (C) Transwell assay showed that downregulation of
EXO1 expression inhibited the migration and invasion capacity of LUAD cells. (D) Scratch-wound healing assay depicted that a significantly slower wound
healing rate was observed in cells with a decreased expression of EXO1. To demonstrate the accuracy and reproducibility of the results, all experiments
were repeated in two LUAD (A549, H1299) cell lines and all data were presented as the means ± SD of three independent experiments. **P < 0.01,
***P < 0.001.
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SUPPLEMENTARY FIGURE 1

The details of re-process of scRNA-seq data of LUAD. (A) The relationship
between the amount of mRNA/UMI and mitochondrial genes, the

relationship between the amount of mRNA and UMI. (B) The relationship
among UMI, mRNA, mitochondrial content, and rRNA of each sample before

filtering. (C) Violin plots exhibited the expression of CAF-associated marker

genes before clustering. (D) Violin plots displayed the expression of CAF-
associated marker genes after clustering.

SUPPLEMENTARY FIGURE 2

(A)Comparison of each pathway betweenmalignant and non-malignant cells
based on GSVA score in CAF_0. (B) Comparison of five CAF scores in

malignant and non-malignant tissues. (C) K-M curves of high-and-low
CAF-score groups in the five clusters.

SUPPLEMENTARY FIGURE 3

Validation of the signature’s capacity in prognosis prediction (A) Distribution
of risk scores and survival status in TCGA cohort. (B)Distribution of risk scores
and survival status in GSE72094 cohort. (C) Distribution of risk scores and

survival status in GSE26939.

SUPPLEMENTARY FIGURE 4

The relationship between risk score and several clinicopathologic features.

(A) The landscape of differences between high-and-low-risk subgroups. The

differences between high-and-low-risk groups based on Gender (B), Stage
(C), T-stage (D), N-stage (E).
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