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Nowadays, people have relaxed their vigilance against COVID-19 due to its

declining infection numbers and attenuated virulence. However, COVID-19 still

needs to be concern due to its emerging variants, the relaxation of restrictions as

well as breakthrough infections. During the period of the COVID-19 infection,

the imbalanced and hyper-responsive immune system plays a critical role in its

pathogenesis. Macrophage Activation Syndrome (MAS) is a fatal complication of

immune system disease, which is caused by the excessive activation and

proliferation of macrophages and cytotoxic T cells (CTL). COVID-19-related

hyperinflammation shares common clinical features with the above MAS

symptoms, such as hypercytokinemia, hyperferritinemia, and coagulopathy. In

MAS, immune exhaustion or defective anti-viral responses leads to the

inadequate cytolytic capacity of CTL which contributes to prolonged

interaction between CTL, APCs and macrophages. It is possible that the same

process also occurred in COVID-19 patients, and further led to a cytokine storm

confined to the lungs. It is associated with the poor prognosis of severe patients

such as multiple organ failure and even death. The main difference of cytokine

storm is that in COVID-19 pneumonia is mainly the specific damage of the lung,

while in MAS is easy to develop into a systemic. The attractive therapeutic

approach to prevent MAS in COVID-19 mainly includes antiviral, antibiotics,

convalescent plasma (CP) therapy and hemadsorption, extensive

immunosuppressive agents, and cytokine-targeted therapies. Here, we discuss

the role of the therapeutic approachesmentioned above in the two diseases. And

we found that the treatment effect of the same therapeutic approach is different.

KEYWORDS

macrophage activation syndrome (MAS), COVID-19, SARS-CoV-2, therapy, cytokine
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1 Introduction

Since December 2019, a new b-coronavirus named severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an

outbreak around the world, which has posed a global challenge (1–

3). According to the World Health Organization (WHO)

Dashboard (https://covid19.who.int/), up to 24 May 2023, there

have been 766,895,075 confirmed cases of COVID-19, including

6,935,889 deaths. Even now that the number of COVID-19

vaccinations has reached 13355264024, there are still two

currently circulating variants of interest (VOI), XBB.1.5 and

XBB.1.16,and seven currently circulating variants under

monitoring (VUMs) (Tracking SARS-CoV-2 variants (who.int)).

These variants have been associated with an increase in the

transmission or mortality of COVID-19 (4–9), or may escape

immunity when compared to the original strain or D614G variant

(9–14). Despite the current trend of COVID-19 being in decline, the

harm of COVID-19 cannot be underestimated due to the great

possibility of its resurgence.

The imbalanced and hyper-responsive immune system plays a

critical role in COVID-19 pathogenesis. The immune response of

SARS-CoV-2 infection is characterized by the differentiation and

proliferation of various types of immune cells and the release of

immune mediators (15, 16). Early evidence suggests that the clinical

and laboratory features of the patients severely infected with

COVID-19 are similar to the clinical phenotypes of “Cytokine

Storm Syndromes” (CSS) (17–19).In general, the patterns and

levels of inflammation and immune dysregulation observed in the

periphery and lungs of COVID-19 patients are characteristic of

“Cytokine Storm Syndromes”. Acute respiratory distress syndrome

(ARDS) and Multiple organ dysfunction syndrome (MODS) are the

main causes of mortality in patients with COVID-19, while CSS will

lead to ARDS and MODS (20–25). Therefore, CSS plays a very

critical role in patients with severe COVID-19.

CSS refers to a diverse set of conditions that collectively manifest

a clinical phenotype of hyperinflammation, hyperferritinemia, and

multiorgan failure. The spectrum of cytokine storm syndromes spans

wide-ranging conditions, one of which is called Macrophage

Activation Syndrome (MAS) (26). MAS is a prototypic form of

CSS that develops in many rheumatic diseases, such as the Still’s

disease spectrum (systemic juvenile idiopathic arthritis [sJIA] and

adult-onset Still’s disease) (27), systemic lupus erythematosus (28)

and Kawasaki disease (29). Considerable studies have been performed

to elucidate that MAS is involved in COVID-19 associated with worse

disease severity and poorer prognosis (30). Overzealous immune

responses associated with MAS, may be driving COVID-19 related

ARDS (21). There has been research shows that treatment of MAS,

such as the use of tocilizumab and the combination of tocilizumab

and steroids, significantly reduced the intubation or death of severe

patients (31, 32).

While the new case of COVID-19 infections is decreasing, it is

premature for ceasing the research on its treatment when there is so

much uncertainty about how SARS-CoV-2 will behave, the path of

its mutations, as well as its many possible long-term effects.

Standard treatment for MAS includes several immunosuppressive

drugs (33). Furthermore, many cytokines targeted therapeutic
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agents have achieved good results in the treatment of MAS, such

as Anakinra, Tocilizumab, etc. al (30, 34–36). However, further

research into SARS-CoV-2 pathogenesis has found some differences

between MAS and COVID-19, which makes the therapeutic effect

uncertain. More recently, randomized trials of anti-IL-1 and IL-6

agents have found little evidence of overall benefit (37–39). It is

obvious that the effect of therapeutic interventions for MAS in

COVID-19 is controversial. To address this issue, in this review, we

systematically summarize the advances in attractive therapeutic

approaches to treat MAS for COVID-19.
2 The MAS of COVID-19

MAS is a fatal complication of immune system disease, which is

caused by the excessive activation and proliferation of macrophages

and cytotoxic T cells (CTL). MAS can lead to a cytokine storm and a

persistent inflammatory state (40, 41). This disease is caused by the

combination of the following three conditions (1): the inability of the

cytolytic function of NK cells and CTL cells (2); the high sensitivity of

macrophages caused by the high response of macrophage pattern

recognition receptors (PRR) to pathogen-associated molecular patterns

(PAMP) and the underlying inflammatory symptoms of the body;(3)

trigger factors (42). Under the above conditions, the end product is

escalating production of cytokines. The main diagnostic criteria that

contribute to the development of a diagnostic score for MAS include:

Fever, hepatosplenomegaly, hyperferritinemia, hepatopathy,

coagulopathy, thrombocytopenia, hypertriglyceridemia, decrease in

erythrocyte sedimentation rate and bone marrow hemophagocytosis

(30, 43).

COVID-19 related hyperinflammation shares common clinical

features with the above MAS symptoms, such as hypercytokinemia,

hyperferritinemia, coagulopathy (2, 18, 19, 21, 44) (17). Some

scholars proposed some classification framework for identifying

COVID-19 cytokine storms according to diagnostic and

classification criteria of MAS, such as cHIS (COVID-19 associated

hyperinflammatory syndrome) and COVID hyperinflammation

(COV-HI) (45, 46).

The entry of SARS-CoV-2 into cells depends on the binding of S

protein on the surface of virus particles to the ACE2 receptor of

cells, and the activation of S protein by the host membrane serine

protease TMPRSS2 (47, 48). SARS CoV-2 virus was found in

alveolar macrophages in autopsy of SARS CoV-2 pneumonia

patients, but the macrophages do not express ACE2 and

TMPRSS2 (49). Therefore, the entrance of virus into

macrophages should be achieved by other means (35, 50).This

leads to abnormal activation of macrophages to release cytokines

including IL-6, which is one of the driving factors of MAS (51–53).

In MAS, immune exhaustion or defective anti-viral responses leads

to inadequate cytolytic capacity of CTL which contributes to

prolonged interaction between CTL, APCs and macrophages (54).

It is possible that the same process also occurred in COVID-19

patients, and further led to a cytokine storm confined to the lungs

(55)(Figure 1).In deed, in addition to macrophages, there are many

other cells, which will release a large number of cytokines and
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chemokines, thus leading to the inflammatory cascade reaction to

further expand the cytokine storm (56).And then, the local

inflammation induced by SARS-CoV-2 infection spread rapidly to

the entire lung (57). Accumulation of immune cells accelerates the

progression of lung inflammation into ARDS, which is associated

with the poor prognosis of severe patients such as multiple organ

failure and even death (24, 35).

Although the process of macrophage over activation is very

similar to that of MAS, there are still many differences between

them, such as clinical manifestations, laboratory tests and specific

forms of cytokine storm (2, 58, 59). In severe COVID-19, many

studies have found the expansion of alveolar macrophages and the

obvious increase of pulmonary inflammatory factors (IL-6, IL-8, IL-

1b) (60–62). And David A. Dorward et al. have observed that

although SARS-CoV-2 RNA exists in many organs, such as the

gastrointestinal tract, liver and kidney, these extrapulmonary sites

with evidence of viral transcription, did not have substantial local
Frontiers in Immunology 03
inflammation (63).The evidence above supports a model of a lung-

centric, self-sustaining inflammatory loop leading to cytokine storm

(55). However, in MAS, cell mediated cytotoxicity fails due to

various reasons such as genetic or viral infection, which leads to

the prolonged cell-to-cell interactions, the cascade expansion of

proinflammatory cytokines, and then the generation of systemic

cytokine storms (Figure 2). Cytokine storm will further lead to

systemic macrophage activation, hemophagocytosis and multiple

organ dysfunction (54). To sum up, it is easy to see that in terms of

the specific form of cytokines storm, the main differences between

them is the cytokines storm in COVID-19 pneumonia is mainly the

specific damage of the lung, while in MAS is easy to develop into

systemic (58, 59).

Precisely because of the similarity between over-activated

alveolar macrophages in COVID-19 and MAS, the therapeutic

approach of MAS might be able to analogize to COVID-19

patients, but the effect is still not so clear (55). Although some
FIGURE 1

Pathways of MAS in COVID-19. The entry of SARS-CoV-2 into cells depends on the binding of S protein on the surface of virus particles to the ACE2
receptor of cells; ①. Macrophage ingests viral RNA through phagocytosis, phagocytosis of alveolar epithelial cells infected by SARS-CoV-2 viruses or
phagocytosis of viruses through Fc receptor mediated endocytosis. This leads to abnormal activation of macrophages to release cytokines; ②.
Dendritic cells and neutrophils will also be recruited here. On the one hand, neutrophils and dendritic cells will produce a variety of cytokines under
the stimulation of SARS-CoV-2, on the other hand, they will also transmit activation signals to macrophages, making them release cytokines and
chemokines; ③. SARS-CoV-2 stimulates anti-viral immune pathways with CD8+ T cell expansion. Expanded CD8+ T cells produce interferon-g (IFN-
g), IFN-g binds the IFN-g receptor and further stimulate macrophage activation to produce multiple anti-inflammatory cytokines through the JAK-
STAT pathway. And some of these cytokines signal via the JAK-STAT pathway, including IL-6 and IFN (but not IL-1 and TNF), to regulate cell
homeostasis, proliferation and differentiation as well as control the immune system and inflammatory response. Inadequate cytolytic capacity due to
immune exhaustion and/or defective antiviral responses leads to prolonged cross-talk between CD8+ T cell, Antigen-presenting cells (APCs) and
alveolar macrophages, contributing to the further release of many proinflammatory cytokines.
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scholars believe that the concept of MAS in COVID-19 is relatively

abstract (64), and many of the supporting evidence for drugs and

treatments we have found are only case reports, with relatively

limited reference value. However, the treatment of MAS like

inflammation in COVID-19 could be improved by summarizing

some treatment targets and interventions of MAS and we may be

able to propose some potential treatment methods, so as to improve

the prognosis of COVID-19.
3 The attractive therapeutic approach
to prevent MAS in COVID-19

3.1 Early identification and active
interventions

Early active intervention is necessary to improve the prognosis of

MAS in COVID-19 patients, so early identification of MAS in

COVID-19 patients is very important. However, in the research of

Caricchio and colleagues, we found that some patients suspected of

COVID-19 cytokine storm rarely met the diagnostic criteria of HLH/
Frontiers in Immunology 04
MAS, whether HLH-2004 or 2016 MAS Criteria (55, 65). Even

HScore, a score recommended by Puja Mehta and colleagues to

detect the inflammatory states of COVID-19 patients (21), was

considered to lack sensitivity in managing hyperinflammatory states

in patients by David L Leverenz in May 2020 and therefore not

recommended for use (66).Therefore, some authors have developed

new methods to identified the MAS in COVID-19. Webb and

colleagues developed a classification framework called cHIS

(COVID-19 associated hyperinflammatory syndrome) with 6 core

features of CSS including: fever, macrophage activation, liver

inflammation, hematologic dysfunction, coagulopathy, and

hypercytokinemia (45). Besides, Manson et al. classified patients as

having COVID hyperinflammation (COV-HI) with ferritin>1500mg/

L, or CRP >15 mg/dL or doubling in 24h (46). These scores and

classifications have a very significant relationship with the prognosis of

patients, and can identify the time for intervention earlier. It has also

been applied in subsequent studies and clinical practice (67–69).

3.1.1 Antiviral
Antiviral drugs have been widely concerned since the beginning

of the epidemic. Remdesivir, a nucleotide analog, is the first direct
FIGURE 2

(A) (a) SARS-CoV-2 directly leads to abnormal activation of macrophages to release cytokines. (b) Dendritic cells and neutrophils will also be
recruited. On the one hand, neutrophils and dendritic cells will produce a variety of cytokines under the stimulation of SARS-CoV-2, on the other
hand, they will also transmit activation signals to macrophages, making them release cytokines and chemokines. (c) SARS-CoV-2 stimulates anti-viral
immune pathways with CTL expansion. Expanded CTL produce interferon-g(IFN-g), IFN-g binds the IFN-g receptor and further stimulate macrophage
activation to produce multiple anti-inflammatory cytokines. (B) Cytotoxic function of NK cells fails to clear tumor or infected cells and cytotoxic T
cells. Cytotoxic function of CTLs fail to clear tumor cells and APCs. And then Proliferation of the population of activated CTLs induce activation and
proliferation of tissue macrophages (histiocytes). Further haemophagocytosis and cytokine storms occur. (C) Under the dual effects of non-
infectious factors, bacterial or viral attacks, and the patient’s own genetic susceptibility, both the adaptive and innate immune systems are activated.
In the innate immune system, the activity of macrophages and neutrophils is abnormally elevated, and the activity of NK cells is impaired. In the
adaptive immune system, Th1 and Th17 activities increase while Treg activity decreases. Under the combined action of these immune cells, the body
produces cytokine storms.
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antiviral drug. According to the data, early use of this drugs after

diagnosis can reduce the symptoms and hospitalization rate of

patients (70). However, the drug is expensive and must be injected

intravenously (71–73). Recently, oral antiviral drugs for COVID-19

have achieved great progress. The United States (US) Food and

Drug Administration (FDA) issued an EUA for the use of the

molnupiravir and nirmatrelvir-ritonavir (Paxlovid) (74). In a recent

meta-analysis, the existing data showed that these new oral antiviral

drugs can effectively reduce the mortality and hospitalization rate of

patients with COVID-19, and will not increase the incidence of

adverse events (75). As mentioned earlier, MAS often occurs in

patients with systemic inflammatory reaction in the late stage of

infection, so the early application of these antiviral drugs may also

have a very expectant effect on the prevention of MAS.

3.1.2 Convalescent plasma (CP) therapy
Antibodies in convalescent plasma can kill or prevent further

replication of the virus (76), and then further inhibit the

inflammatory reaction and reduce the risk of excessive immune

response (77). It has been proved that early administration of CP

(within 9 days after the onset of symptoms) can significantly reduce

the risk of hospitalization due to disease progression (78, 79). In a

systematic review and meta-analysis of CP, there was a clear

association between the use of CP and the mortality benefit of

hospitalized patients with COVID-19 (80). In addition,

inflammatory markers such as IL-6 and CRP are also less

expressed in COVID-19 patients receiving CP blood transfusion

(81). And IL-6 plays a key role in the pathogenesis of MAS (82).

Therefore, the early use of CP may have active effect on the

prevention of MAS in COVID-19.

However, the application value of CP in patients who require

invasive mechanical ventilation is limited (83). Moreover, there are

currently some issues with the collection of CCPs. Because most

blood services do not actively collect CP, people can only use old

stocks of CCPs. The effect of the old CP on the current epidemic

strains may be limited, due to differences between variants of

COVID-19 (84). It is impractical to conduct new experiments

every time a new strain of virus appears, and collecting CCP

again, so the application prospects of this treatment method are

still relatively limited.
3.2 Therapeutic plasma exchange (TPE)
and hemadsorption

Although the treatment of the virus itself is certainly desired,

hypercytokinemia will occur in COVID-19 associated

hyperinflammation, which will lead to sever cytokine storm. Therefore,

it is also a necessary treatment to eliminate inflammatory cytokines

through Therapeutic Plasma exchange (TPE) and Hemadsorption.

With the background therapy of glucocorticoids and

immunosuppressive agents, Plasma exchange is an effective

approach to rapidly clear inflammatory cytokines and reduce

mortality of autoimmune inflammatory rheumatic diseases

(AIIRD)-associated MAS (85). A prospective randomized
Frontiers in Immunology 05
controlled trial of Yuan YH et al. showed that incorporation of

plasma exchange could reduce the levels of CRP, procalcitonin,

alanine transaminase and total bilirubin, reduce the stay time in

ICU and increase the response rate to other treatments (86). Satoshi

Sato et al. also reported a case recently, after using standard treatment

and immunosuppressions, the patient still did not achieve clinical

remission. However, after initiation of PE, the patient’s symptoms

improved significantly (87). The evidences above provide a practical

basis for applying this method to COVID-19.

As early as 2020, Philip Keith et al. have proposed the possibility

of applying TPE to fulminant COVID-19 (88). In fact, a lot of

evidence has emerged to prove that TPE can significantly reduce the

mortality rates of COVID-19 since then (89–97). In a recent meta-

analysis conducted by JinlvQin et al., it was proposed that TPE

significantly reduced the mortality of hospitalized patients with

moderate risk COVID-19 (98).What is more remarkable is that TPE

can significantly reduce the levels of IL-6, ferritin and CRP in

COVID-19 in these studies. As mentioned earlier, these laboratory

indicators are markers of MAS. Therefore, we have reason to believe

that TPE has therapeutic and even preventive effects on MAS, and

has obvious benefits for the prognosis of patients.

Hemadsorption can also significantly reduce the high level of

cytokines in the patient’s circulation (99). But unlike PE,

hemadsorption does not require plasma separation and allows for

simultaneous fluid removal (100)(Figure 3). Recently, many reports

have found that this treatment can rapidly reduce the level of IL-6

and IL-10, significantly improve hemodynamics, and without

relevant associated adverse effects (101, 102). Therefore,

hemadsorption can be used as an effective and safe rescue

treatment for patients with MAS and multiple organ

dysfunctions, and complementary to standard protocol treatments

(103, 104). In a randomized controlled trial, it was clearly proved

that Hemadsorption can early relieve organ dysfunction in critically

ill patients with COVID-19 and stabilize the clinical symptoms,

although it has no significant impact on inflammatory indicators

and 28 day mortality (105). Besides, in a case report by Rajib Paul

et al, they proposed that Hemadsorption was effective in providing

hemodynamic stability, improving organ dysfunction, and

modulating the cytokine storm (106).

To sum up, TPE has therapeutic and even preventive effects on

MAS of COVID-19 patients, and can reduce the mortality of

patients. But hemadsorption may not have a direct impact on the

mortality, but it can also stabilize the patient’s general condition to

provide time for further treatment.
3.3 Extensive immunosuppressive agent

3.3.1 Steroids
According to the Consensus-Based Guidelines for the Recognition,

Diagnosis, and Management of Hemophagocytic Lymphohistiocytosis

in Critically Ill Children and Adults, corticosteroids are the backbone

of the therapy of MAS (107). Moreover, the efficacy of corticosteroids

as a basic treatment for MAS has been proven in many studies and

clinical practices (108–110). Sathish Loganathan et al. reported two
frontiersin.org
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cases using tapering dose regimen of intravenous methylprednisolone

(IVMP), and they achieved good results (111). In addition, early

treatment of steroids can help stabilize the disease and buy time for

further diagnosis and treatment (107).

But in the initial expert opinion, steroids are discouraged for use

in viral lung infections, including COVID-19 (112). They believe

that the immunosuppressive effect of steroids will lead to prolonged

viremia and increased risk of bacterial coinfection. And based on

some past research experience in the treatment of SARS-CoV-1

(113) and Middle East respiratory syndrome (MERS)-CoV (114),

they believe that the use of steroid drugs should be very cautious.

However, in February 2021, Peter Horby et al. reported for the

first time that dexamethasone (6 mg once daily for up to 10 days)

reduced the 28-day mortality of hospitalized patients with COVID-

19 through a randomized controlled trial (115). In a previous

prospective meta-analysis of clinical trials in 257 critically ill

patients with COVID-19, the use of systemic corticosteroids was

associated with lower 28-day 258 all-cause mortality (116). In a

recent meta-analysis conducted by Manisha Thakur et al., it further

explained that the steroids play a significant role in the decrease of

demises of hospitalized COVID-19 patients (117).

Frank L. van de Veerdunk et al. believes that the observation

that the beneficial effects of steroids are significant in sicker patients

could be explained by the pleiotropic effects of steroids (118).

However, they also suggested that excessive use of corticosteroids,

especially in the early stage of disease, may be harmful. In addition,
Frontiers in Immunology 06
some experts suggested that glucocorticoids should be used, but

only at the right time (119). In other words, glucocorticoid can only

be prescribed in the inflammatory phase of COVID-19 (120, 121).

This is different from the therapeutic backbone role of steroids in

MAS. Steroid is a systemic and widespread immunosuppressive

drug, so it is easier to benefit from the treatment of MAS, while the

use of early COVID-19 patients should be cautious, and it is easier

to benefit from severe COVID-19 patients.

3.3.2 Calcineurin inhibitors (CNIs)
The two most common CNIs drugs are cyclosporine A (Cys) and

tacrolimus (TAC), which are most commonly used in solid organ

transplantation(SOT) (122) and systemic rheumatic diseases (123).

When MAS develops to moderate or response to steroids is not

evident, early initiation of cyclosporine a rapid and effective treatment

option (124–126). Besides, later studies showed that anti thymocyte

globulin (ATG)may be a safer choice for patients who failed to respond

to the combined treatment of steroids and cyclosporine A (127–129).

As early as July 2020, Ren é Hage et al. found that a few of the

patients with SOT who used tacrolimus reported severe COVID-19,

and proposed that this type of drugs might prevent or even treat the

excessive inflammation caused by SARS CoV-2 infection (130).

This therapeutic drug may be superior to steroids. On the one hand,

cyclosporine A can protect the upstream of cytokines in patients

with COVID-19, rather than just targeting proinflammatory

cytokines (131).On another hand, Long term and chronic use of
FIGURE 3

(A) The mechanisms of action of Convalescent Plasma(CP) include direct antiviral effects (eg, viral neutralization), viral clearance via immunoglobulin
(Ig M and IgA-mediated neutralization, non-neutralizing IgG Fc-mediated functions (eg, antibody-dependent cellular cytotoxicity, phagocytosis and
complement activation), and immunomodulation (1). (B) Hemadsorption is a technique in which a sorbent is placed in direct contact with blood in
an extracorporeal circuit. CytoSorb is a highly adsorptive and biocompatible polymer able to eliminate various mediators (e.g., IL-1/6/8/10), bacterial
toxins, and danger-associated molecular patterns (DAMPS) from the bloodstream (2). (C) Plasma exchange involves separating and discarding the
plasma and blood cells in a patient’s body, and replacing them with an equal amount of fresh frozen plasma or human albumin exchange solution.
There are metabolic toxins and various inflammatory mediators of all sizes present in the discarded plasma (3).
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glucocorticoids may lead to severe COVID-19, complications, etc.,

while chronic CNIs treatment has no effect on mortality (132). In

addition to its immunosuppressive effect, CNIs can also prevent the

occurrence of MAS from the upstream of cytokine storm through

its antiviral activity shown in many RNA viruses (133, 134) and the

ability to prevent mitochondrial failure (135, 136).

However , l ike the appl icat ion of other extensive

immunosuppressive drugs in viral infections, CNIs may lead to

uncontrolled initial viral replication, viral immune evasion, and

higher mortality rates (137–139). Moreover, there is still a lack of

prospective and randomized clinical trials to demonstrate the

specific effects of CNIs in the treatment of COVID-19.
3.4 Etoposide

The etoposide (VP-16)-based regimens, a kind of treatment

approach for MAS, include HLH-94, HLH-04 and the modified

Doxorubicin−Etoposide-Methylprednisolone (DEP) regimen (140).

In the HLH-94 and HLH-2004 regimens, the incorporation of

etoposide and dexamethasone has been proposed as the treatment

pillar. Karin Palmblad et al. found that the use of etoposide can lead to

clinical improvement coinciding with a decline of systemic HMGB1,

IL-18, IFN-g, and ferritin levels (141). Although there is some evidence

that this drug may aggravate the infection or make it easier to develop

new infections, its benefits are obviously greater (140).

Modified Doxorubicin−Etoposide−Methylprednisolone (DEP)

regimen has attracted much attention since it was proposed.

Doxorubicin can quickly eliminate the overactivated macrophages

and T cells (142). Besides, the dose of the glucocorticoid in the

regimen was reduced to avoid the adverse effects in patients who

failed to achieve remission after glucocorticoid pulse therapy.

Recently, the research hold by He, L. et al. have demonstrated

that modified DEP regimen is a promising alternative therapy for

adults with R/R MAS owing to the high response rate, rapid action,

and satisfactory tolerance (143).

As early as 2020, some people put forward the idea of using

etoposide to treat severe patients with COVID-19 accompanied by

systemic inflammation (144–146). In a mouse model study, the

combination of low-dose etoposide and prednisolone improved the

survival rate of fatal ARDS model mice, which all suffered from

hypercytokinemia and MAS (147). They also found that this

treatment combination can inhibit the recruitment and activation

of macrophages, T cells, NK cells and neutrophils in the lung. And it

has been proved that early administration of etoposide is a

treatment option for EBV-related MAS patients (148). So

similarly, low-dose etoposide may play a therapeutic role in

treating MAS in COVID-19. Akiyoshi Takami believes that low-

dose etoposide can update the CTL that has lost its function so that

the abnormally activated macrophages and SARS-CoV-2 infected

cells are eliminated, thus recovering the abnormal immune

regulation associated with SARS-CoV-2 infection (146). A clinical

trial lasting from May 8, 2020 to the present will likely contribute to

further evaluate the safety and efficacy of etoposide in COVID-19

patients (ClinicalTrials.gov Identifier: NCT04356690).
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3.5 Cytokine-targeted therapies

As mentioned earlier, many cytokines play a key role in the MAS

caused by individual MAS and COVID-19, so the treatment methods

targeting these cytokines are also the focus of current research.

3.5.1 IL-1
IL-1 blockers mainly include anakinra, canakinumab,

rilonacept, gevokizumab and bermekimab.

Enough clinical trials have proved that anakinra can achieve

obvious benefit in the treatment of macrophage activation

syndrome (MAS), sepsis with MAS, and severe acute respiratory

syndrome coronavirus 2–associated cytokine storm (149,

150).Recently, a retrospective analysis of 218 COVID-19 patients

with MAS conducted by S. Amikishiyev et al. suggests that starting

anakinra earlier in hospitalized patients may provide better results

(151). Another retrospective analysis involving 16 patients showed

that the patients had good tolerance to anakinra compared with the

above etoposide-based therapy anakinra (152).Besides, there is a

case report and a single-center, retrospective experience highlight

that anakinra use in treating MAS is effective (153, 154). Therefore,

there is no doubt that Anakinra has a positive effect on the

treatment of MAS. In fact, this drug has also been included in the

Consensus-Based Guidelines for the Recognition, Diagnosis, and

Management of Hemophagocytic Lymphohistiocytosis in Critically

Ill Children and Adults (107).

However, anakinra’s treatment effect on patients with COVID-

19 is still controversial so far. A cohort study recorded a clear benefit

from the use of this drug in severe forms of COVID-19 (155). They

put forward that anakinra reduced both need for invasive

mechanical ventilation in the ICU and mortality among patients

with severe forms of COVID-19, without serious side-effects.

Similarly, this view was put forward by two other cohort studies

in the same period (156, 157). However, in a later randomized

controlled experiment, totally different results were obtained (38).

The experimental results showed that Anakinra could not effectively

reduce the need for mechanical ventilation and mortality in patients

with mild to moderate COVID-19. So, up to now, there are still

several related studies on this drug in progress (ClinicalTrials.gov

Identifier: NCT04357366 NCT04362111). Elnaz Khani et al.

summarized the existing evidence on the use of Anakinra in

COVID-19 (158). They believed that the benefits of Anakinra in

patients with high inflammation were highly related to the duration

of treatment, drug dose, route and time of administration. This is

very similar to the treatment of anakinra in MAS. In the early stage

of inflammation, around the first week of symptom onset, when

patients need to supplement oxygen and do not undergo invasive

mechanical ventilation within about 10 days, high dose of anakinra

(>100 mg) may be effective and improve the results.

In addition to anakinra, canakinumab are also being tried for

MAS treatment. Some studies have shown that canakinumab

administered at doses of 4 mg/kg monthly does not have a major

effect on the risk of developing MAS or on its clinical features (159).

Some scholars believe that this is related to the dose. The monthly

dose does not exceed 4 mg/kg, which may not be sufficient to
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neutralize the excessive IL- 1b in MAS activity. Kostik et al. recently

described eight patients with sJIA treated with canakinumab.

Several patients had the dose of canakinumab increased and they

experienced the resolution of MAS. And there were no notable

short-term adverse events (160). In a case-based review of Deniz

Gezgin Yıldırım et al., a case that did not respond to anakinra but

well responded to canakinumab was reported (161). Although this

drug is more used in sJIA patients. But this may provide a new

possibility for the management of MAS in COVID-19, especially for

patients who do not respond to anakinra.

In August 2020, Ucciferri et al. described for the first time

through a retrospective analysis that subcutaneous injection of

canakinumab 300mg can rapidly reduce systemic inflammatory

reaction and improve the oxygenation of COVID-19 patients (162).

Lorenza Landi et al. also proved that this drug can reduce the

inflammatory markers of patients with COVID-19 and improve the

survival rate of patients (163). Furthermore, Guangyu Ao et al. infer

that canakinumab could mitigate and even prevent immune-

mediated tissue damage and organ dysfunction by limiting the

level of acute inflammation and propensity for the activation of a

cytokine storm (164–166). However, some people believe that the

treatment of severe COVID-19 with canakinumab may increase the

incidence rate of severe infection (167). And severe infection will

induce macrophage activation syndrome. So, more trials are needed

to prove the safety and efficacy of canakinumab injection in prevent

MAS in COVID-19.

Besides, rilonacept is approved for the treatment of IL-1-

mediated diseases too. Although rilonacept can improve some

inflammatory diseases such as sJIA (168), familial cold

autoinflammatory syndrome (FCAS) and Muckle-Wells syndrome

(MWS) (169). However, rilonacept does not have much evidence

and research to prove its therapeutic effect in COVID-19, just as it is

in the treatment of MAS.

Overall, Anakinra seems to be superior to the other two drugs in

the actual treatment process, which may be due to its better safty,

rapid effect, short half-life and its ability to block both IL-1a and IL-

1b. The increased dosage of canakinumab may provide a new

possibility for the treatment of patients who do not respond to

anakinra. The treatment of Rilonacept in MAS is relatively rare. It is

easy to find that the effect of cytokines targeting drugs against IL-1

in preventing MAS in COVID-19 is different from that in patients

with MAS alone, which may be related to the difference between

MAS and MAS in COVID-19 mentioned above. Therefore, more

research is needed to ensure the efficacy of these drugs.

3.5.2 IL-6
Tocilizumab is a recombinant humanized IL-6 receptor

monoclonal antibody. Although it has been reported previously

that tocilizumab can reduce the clinical symptoms of MAS (170).A

recent single-center observational study found that up to 6 of the 20

patients with adult-onset Still’s disease (AOSD) under tocilizumab

treatment developed clinically diagnosed MAS (171). In a case

report, a patient successfully treated AOSD with tocilizumab at the

beginning, but when it relapsed, it quickly developed symptoms of

MAS after using tocilizumab again (172).However, in another case
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produced significant clinical improvement in a critically unwell

patient (173). This may be because the selective inhibition of IL-6 by

toci l izumab alone enhances the production of other

proinflammatory cytokines such as TNF-a, IL-1, IL-18, etc. in
AOSD patients prone to MAS (172).

In view of the efficacy of tocilizumab in MAS and the key role of

IL-6 in COVID-19, Bingwen Liu et al. proposed to use this drug for

COVID-19-induced CRS (20). This view has been gradually

confirmed and improved. In a recent systematic review of a

randomized clinical trial, Driton Vela et al. proposed that the use

of tocilizumab in patients with moderate and severe COVID-19

could reduce all-cause mortality without increasing the number of

serious adverse events (174). In another recent systematic review,

they believed that immunosuppressants can significantly reduce

mortality and have no effect on the increase of the risk of secondary

infection (175). In terms of secondary infection, an umbrella review

in August 2022 also put forward same views (176, 177). Their

research shows that the treatment of steroids or steroids plus

tocilizumab did not confer a higher risk of bacterial infections

and improved survival rates. As mentioned above, overlapping

infection is one of the inducements of MAS (42). Tocilizumab

will not increase the risk of overlapping infection when reducing the

inflammatory indicators of patients and blocking the cytokine

storm, so it has an optimistic prospect for the management of

MAS in patients with COVID-19.

However, the population and time of application of this drug

are very critical. In a randomized controlled trial, they found that

among patients with severe or critical COVID-19, tocilizumab did

not benefit, and even increased mortality (178). The reason for this

phenomenon was later explained in a review, in the early stage of

COVID-19, cytokines may have a protective effect, while in the late

stage, IL-6 will be cis phagocytic regulation, promoting cell growth

and survival (179). Therefore, intervention measures should be

taken in the second week of symptom onset (or within 7 days after

hospitalization) to be benefit to patients, which could only disrupt

the presentation and trans-signaling of pro-inflammatory IL-

6 (180).

Therefore, the efficacy and safety of IL-6 monoclonal antibodies

in the treatment of MAS in COVID-19 and in the treatment of

COVID-19 itself need to be more fully evaluated through further

prospective and well-designed clinical studies with larger sample

sizes and long-term follow-up.

3.5.3 IL-18
There is evidence that the level of IL-18 in COVID-19 patients

with MAS and ARDS is significantly higher than that in patients

without MAS and ARDS, and high levels of IL-18 and IL-1Ra also

seem to be related to the mortality of patients (181).

Tadekinig-a is a recombinant human IL-18-binding protein

(rhIL-18BP). So far, there have been many results that can prove a

favorable response toward tadekinig-a in MAS (ClinicalTrials.gov

Identifier: NCT02398435, NCT03113760, NCT03512314). In an

open-label, multicenter, dose-escalating phase II clinical trial, the

use of tadekinig-a led to clinical improvement in 50% of patients
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with AOSD, and although there are some adverse events such as

upper airway infections and arthralgia, most of them were mild and

resolved after drug discontinuation (182). In addition, a recent case

report described that MAS associated with XIAP deficiency was

successfully controlled by using tadekinig-a (183).

At present, no relevant research has been found to prove the

role of tadekinig- a in COVID-19. However, it still provides a new

thought to prevent the occurrence of MAS and ARDS in patients

with COVID-19 and improve the survival rate of patients.

3.5.4 IFN-g
Emapalumab is a fully human monoclonal anti-IFN-g antibody

(184). In November 2018, emapalumab (Gamifant) obtained an

FDA indication for the treatment of children and adults with

relapsed/refractory (not newly diagnosed) HLH. Recently,

Michael Ryan et al. report a case of CAR T therapy-associated

MAS/HLH that was successfully treated with emapalumab in

combination with anakinra and corticosteroids (185). After using

Anakinra, tocilizumab, and dexamethasone, the patient’s clinical

symptoms did not improve. However, after the addition of

emapalumab, the patient became much more stable, and achieve

rapid defervescence. In an open label, single arm, phase 2 study, a

total of 14 patients were enrolled, of which 13 patients achieved

clinical remission (186).

Erkan Cure et al. believed that emapalumab can be life saving

for cytokine storm caused by COVID-19, which is resistant to

anakinra, tocilizumab, and JAK inhibitors (187). In a recent case

report, this is the first case of a pediatric patient with COVID-19

associated sHLH successfully treated with emapalumab (188). The
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patient in this case had symptoms relapse after using etoposide and

dexamethasone, so she received HCT after using emapalumab, and

she has been in remission after treatment. Although this shows that

the application of this drug is promising, the case report cannot

fully prove its therapeutic effect. Clinical trials with a large sample

size are needed to scrutinize the efficacy of emapalumab in MAS

caused by COVID-19.

Moreover, like the previous drugs, the time of application of

Emapalumab is also very important, because at some stages,

cytokines are crucial to eliminate SARS-CoV-2, and blocking the

cytokine pathway may lead to more serious consequences (189).

3.5.5 JAKs pathway
Janus kinase inhibitor (JAKi) agents mainly include ruxolitinib,

upadacitinib, baricitinib, tofacitinib, fedratinib, filgotinib,

delgocitinib, oclacitinib and peficitinib, which act on different

targets (190). Among them, ruxolitinib is the most widely used in

the treatment of MAS, with a large proportion exhibiting favorable

responses (191).

Compared with targeting any cytokine alone, ruxolitinib may

produce more extensive anti-inflammatory activity, because these

cytokines, such as IL-2, IL-6, IL-7, IL-10, IFN-g, G-CSF, and GM-

CSF, signals signal through the JAKs pathway (192). Ofer Levy et al.

described a nearly fatal case of a young patient, which has been

refractory to corticosteroids (CS), anakinra, tocilizumab,

cyclosporine A (CSA), and etoposide, but eventually responded

miraculously to salvage therapy with ruxolitinib (193). Josée-

AnneJolyMSc et al. found that a therapy combining inhibition of

JAK-dependent cytokines using ruxolitinib in clinically relevant
TABLE 1 MAS related therapeutic approach and its curative effect.

Therapeutic Approach and Target Drug

Curative Effect’s Reference

MAS MAS in COVID-19

Positive Negative Positive Negative

Antiviral
Remdesivir – – (69) (70–72)

Paxlovid – – (73, 74) –

Convalescent Plasma (CP) therapy – – – (75–79) (82, 83)

Therapeutic Plasma Exchange (TPE) – (84–86) – (87–97) –

Hemadsorption – (98, 100–103) – (104, 105) (105)

Extensive immunosuppressive agent

Steroids (106–111) – (114–120) (107)

calcineurin inhibitors (CNIs) (123–128) – (129–135) (136–138)

Etoposide (139, 140, 142) – (143–146) –

IL-1
Anakinra (111, 148–153) – (154–157) (37)

Canakinumab (159, 160) (158) (161–165) (166)

IL-6 Tocilizumab (169, 172) (170, 171) (20, 173–176, 179) (177)

IL-18 Tadekinig-a (181, 182) – – –

IFN-g Emapalumab (184, 185) – (186–188) –

JAKs pathway
Ruxolitinib (190, 192–194) – (191, 195, 196) (197, 198)

Baricitinib – – (199, 200) –
fr
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doses with low doses of cytokine-specific antibodies against IFN-g
work in concert to temper the inflammatory response and control

the overt activation of antigen-specific T cells, leading to a rapid and

complete resolution of HLH in mice (194). Triebwasser et al. also

described a patient with chronic active EBV-associated HLH who

was refractory to HLH-2004 and anakinra but responded to a

combination of emapalumab and ruxolitinib therapy (195).

Therefore, the potential of ruxolitinib for the treatment of

severe COVID-19 has been concerned for a long time (192, 196,

197). However, in a recent randomized phase 3 trial (198) and a

randomized, double-blind, placebo-controlled phase 3 trial (199),

they have proved that ruxolitinib has no significance in the clinical

improvement of patients and the reduction of 28-day mortality.

Compared with the therapeutic effect of this drug in MAS, this is

very surprising.

However, some scholars have come up with different results.

After the combination with remdesivir, another JAK1/2 inhibitor,

Baricitinib, can reduce recovery time and accelerate improvement

in clinical status among patients with Covid-19 (200). In addition,

in another randomized controlled trial, the combination of

tofacitinib and glucocorticoid significantly reduced the 28-day

mortality and the risk of respiratory failure in patients (201).

In summary, the treatment effect of the same treatment method in

MAS alone and MAS caused by COVID-19 is different. This may be

caused by different immune biological mechanisms. Some cytokines

play a very important role in clearing the virus at the early stage of

virus infection, before the appearance of MAS, and after the body is in

a high inflammatory state, these cytokines will lead to the occurrence

of MAS and ARDS (189). Therefore, the time of intervention, the way

of use and the target population of different treatment methods are

extremely important. A large number of clinical trials with more

careful clinical design are needed to determine when and which

treatment approaches is the most beneficial.
4 Conclusion

Although variants of SARS-CoV-2 are now becoming less

virulent and transmissible, we still don’t know whether new

variants will emerge and whether such variants will again pose a

threat to public health. Therefore, the importance of further in-
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depth research on COVID-19 treatment cannot be made light of.

This research aimed at MAS, which is involved in COVID-19

associated with worse disease severity and poorer prognosis. We

summarized and analyzed the role of various therapeutic

approaches in the two diseases. And found that the treatment

effect of the same therapeutic approach is different (Table 1). This

may be caused by different immune biological mechanisms between

MAS alone and MAS caused by COVID-19. To deal this problem,

further clinical trials and research are needed.
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