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Comprehensive bioinformatics
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between the systemic
lupus erythematosus and
venous thromboembolism

Jingfan Yu1†, Jian Yang2†, Qifan He2†, Zhixuan Zhang1*

and Guoxiong Xu1*

1Department of Vascular Surgery and Intervention, The Affiliated Suzhou Hospital of Nanjing Medical
University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China, 2Department of Interventional
Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
Background: It is well known that patients with systemic lupus erythematosus

(SLE) had a high risk of venous thromboembolism (VTE). This study aimed to

identify the crosstalk genes between SLE and VTE and explored their clinical

value and molecular mechanism initially.

Methods: We downloaded microarray datasets of SLE and VTE from the Gene

Expression Omnibus (GEO) dataset. Differential expression analysis was applied

to identify the crosstalk genes (CGs). Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses

were performed on the shared genes. The shared diagnostic biomarkers of the

two diseases were further screened from CGs using least absolute shrinkage and

selection operator (Lasso) regression. Two risk scores for SLE and VTE were

constructed separately to predict the likelihood of illness according to the

diagnostic biomarkers using a logical regression algorithm. The immune

infiltration levels of SEL and VTE were estimated via the CIBERSORT algorithm

and the relationship of CGs with immune cell infiltration was investigated. Finally,

we explored potential phenotype subgroups in SLE and VTE based on the

expression level of CGs through the consensus clustering method and studied

immune cell infiltration in different subtypes.

Result: A total of 171 CGs were obtained by the intersection of differentially

expressed genes (DEGs) between SLE and VTE cohorts. The functional

enrichment shown these CGs were mainly related to immune pathways. After

screening by lasso regression, we found that three hub CGs (RSAD2, HSP90AB1,

and FPR2) were the optimal shared diagnostic biomarkers for SLE and VTE. Based

on the expression level of RSAD2 and HSP90AB1, two risk prediction models for

SLE and VTE were built by multifactor logistic regression and systemically

validated in internal and external validation datasets. The immune infiltration

results revealed that CGs were highly correlated with multiple infiltrated

immunocytes. Consensus clustering was used to respectively regroup SLE and
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VTE patients into C1 and C2 clusters based on the CGs expression profile. The

levels of immune cell infiltration and immune activation were higher in C1 than in

C2 subtypes.

Conclusion: In our study, we further screen out diagnostic biomarkers from

crosstalk genes SLE and VTE and built two risk scores. Our findings reveal a close

relationship between CGs and the immune microenvironment of diseases. This

provides clues for further exploring the common mechanism and interaction

between the two diseases.
KEYWORDS

venous thromboembolism, systemic lupus erythematosus, bioinformatics analysis,
transcriptomics, immune cells infiltration, unsupervised clustering
Introduction

Systemic lupus erythematosus (SLE) is a chronic autoimmune

disease with multisystemic involvement and complicated clinical

symptoms(1). It should be noted that SLE patients may increase

the risk of venous thromboembolism (VTE) according to past

research (2–4). Abnormality of the blood coagulation system is also

a significant characteristic of SLE patients (5). VTE comprises both

pulmonary embolism (PE) and deep vein thrombosis (DVT) with a

high incidence rate. According to estimates, approximately 1 or 2

cases per 1000 persons per year in USA (6). Accumulating evidence

suggested the pathogenesis of VTE is not restricted to the coagulation

system only, but the immune system is also a crucial link for the

formation of thrombosis (7). Moderate and severe inflammation was

found in 13.4% and 1.3% of thrombus samples from pulmonary

thromboendarterectomy (8). Gene microarray analysis of PE and

DVT specimens presented nearly 10% of differential expression genes

were immunity/inflammatory genes (9).

The coagulation and immune systems have a common

evolutionary origin (10). The relationship between immunity and

plasma coagulation is an intricate and interconnected network.

Especially, aberrant interactions among immune cells play a critical

role at the crossroads between inflammation and haemostasis (11).

For example, platelets can promote neutrophil activation and lead

to neutrophil extracellular traps (NETs) (12). These aggregates of

decondensed chromatin concentrate high amounts of crucial

autoantigens for the development of SLE and coagulation triggers

such as TF or von Willebrand factor (13). TF pathway-dependent

thrombin formation is an indispensable part of the process of

thrombosis. Some studies have shown that TF pathway activation

can be detected in patients with SLE (14).

However, although an enormous amount of research implies

the intricate connection between immunity and coagulation, the

relevance of VTE and SLE were still unclear. Thus, we first used

multiple bioinformatics techniques to comprehensively analyze the

relationship between SLE and VTE based on microarray and high-

throughput sequencing and explore potential cellular and molecular

mechanisms. In this study, we identified the potential crosstalk
02
genes (CGs) between SLE and VTE and evaluated the interaction

between these CGs and infiltrating immune cells utilizing a variety

of advanced statistical algorithms to gain a deeper understanding of

the pathophysiological processes that may link SLE and VTE.

Moreover, the latent value of CGs in disease diagnosis was

assessed and validated in different cohorts.

Materials and methods

Data download

We obtained the gene microarray data of SLE and VTE, which was

downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/

geo/) (15). Based on the GPL570 platform, the GSE61635 dataset

contains 79 blood samples of SLE patients and 30 healthy controls. To

estimate the diagnostic efficiency, the GSE50772 dataset based on

GPL570 was downloaded, containing 81 SLE blood samples and

health controls. A gene expression dataset related to VTE

(GSE19151) was based on the GPL571 platform and included 133

blood samples (70 VTE patients and 63 healthy controls). To estimate

the diagnostic efficiency, we also downloaded GSE48000 (based on the

GPL10558 platform), containing 134 VTE samples and 44 healthy

controls. All samples were taken from whole blood and all patients had

been comprehensively diagnosed by pathologic biopsy, blood

examinations and imaging examination. The raw CEL files

downloading from GEO datasets were normalized by the robust

multichip average (RMA) which was implemented in the R package

affy (version 1.54.0) (16). When a gene symbol corresponded to

multiple probes, the mean expression level of all probes served as the

final value.
Identification of CGs and
enrichment analyses

The ‘limma’ R package was used to screen the differentially

expressed genes (DEGs) from the GSE61635 and GSE19151

datasets. The selection criteria of DEGs in GSE61635 were set as |
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log FC| ≥ 1 and p-value> 0.05, and the DEGs were screened for

GSE19151 with and |log FC| ≥ 0.8 and p-value> 0.05. The results

were displayed utilizing gene clustering heatmaps and volcano

maps. A combined analysis of DEGs between GSE61635 and

GSE19151 was conducted by drawing Venn diagrams.

Overlapping genes were considered the crosstalk genes (CGs) of

the two diseases and were extracted for further functional

enrichment analysis. The Gene Ontology (GO) enrichment

analysis was conducted by the R package ‘clusterProfiler’ (17).

The significant differential GO terms were defined with a strict

cut-off of p < 0.01. The gene set variation analysis (GSVA) was

performed to calculate the normalized Enrichment score (NES) of

the hallmark gene set (c2.cp.kegg.v7.2) using the ‘GSVA’ R package,

and p-value < 0.05 and FDR < 0.25 were considered to be

statistically significant (18). Gene set enrichment analysis (GSEA)

was also implemented to identify the biological attribute and gene

function by R package ‘clusterProfiler’, and p-value < 0.05 and FDR

< 0.25 were considered to be the statistically significant

difference (19).
Selection of shared diagnostic CGs
and establishment of risk scores for VTE
and SLE

Lasso regression was employed to identify the potential

diagnostic CGs for VTE and SLE using the ‘glmnet’ package of R

software (20). The optimal values of the penalty parameter were

determined through 10 cross-validations. Subsequently, we selected

overlapping CGs as optimal shared diagnostic CGs and assess their

expression levels in the several cohorts. The area under the curve

(AUC) of receiver operating characteristic (ROC) was utilized to

evaluate the diagnostic effectiveness of these biomarkers. The

correlation analyses among the shared diagnostic CGs were

applied to avoid the multicollinearity problem of variables. Multi-

factor logical regression was performed to establish the SLE

(GSE61635) and VTE (GSE19151) risk scores based on the

shared diagnostic biomarkers. These two predictive scores for

each sample were calculated by the expression of shared

diagnostic CGs and their logical regression coefficient. The risk

score formula was established as follows:

Risk score =o
i
Coefficient of (i)� Expression of gene (i)

The coefficient of the gene (i) is the regression coefficient of the

gene (i), and the Expression of the gene (i) is the expression value of

gene (i) for each patient. Nomograms were drawn by the ‘rms’

package to elevate the operability and practicability of the risk

models. In the internal (GSE61635 and GSE19151) and external

(GSE50772 and GSE48000) validation analyses, the ROC curve and

AUC value assessed the efficiency of diseases prediction for the risk

models, and the calibration curves and C-indexes were used to

evaluate the consistency of prediction and actual observation.

Additionally, we used ‘ComBat’ function in ‘sva’ package (2) to

remove the batch effect between GSE19151 and GSE48000 and

merge them into one dataset (VTE combined database). The same
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approach was then used to merge the SLE datasets (GSE61635 and

GSE50772) and validate the prediction of risk scores in these

combined datasets.
The association networks of CGs

The protein-protein interaction network (PPI) of the CGs was

downloaded from the STRING online dataset (https://cn.string-db.org/

) (21) and visualized using Cytoscape software (22). The minimum

required interaction score of association was set as 0.4. The key CGs of

the network were identified using a Cytoscape plugin named

cytoHubba which contains several topological algorithms such as

Maximum Neighborhood Component (MNC), maximal clique

centrality (MCC), Edge Percolated Component (EPC), Degree, and

so on (23). For further checking the expression features for crucial

genes in different datasets, we respectively compared their expression

levels based on the VTE cohort (GSE19151 and GSE48000) and SLE

cohorts (GSE61635 and GSE50772) using the t.test algorithm.
Immune infiltration analyses of the SLE and
VTE cohorts

The distribution of immune cells between diseases and normal

groups was explored using the CIBERSORT algorithm, which is a

tool to calculate the relative percentage of 24 immune cells based on

gene expression matrix (24). The immunocyte types with low

infiltration levels (mean value < 1%) were eliminated. The

‘pheatmap’ package was used to draw heatmaps that can visualize

the correlation offive hub CGs with the abundance of immune cells.
Detection of CGs-related subsets

The unsupervised consensus clustering method (K-means) was

applied to identify CGs-related subtypes in SLE and VTE patients. The

unsupervised clustering “Pam”method based on Euclidean andWard’s

linkage was carried out to process this analysis, executed by using the

“ConsensuClusterPlus” R package and repeated 1,000 times to ensure

classification stability (25). The package “MCPcounter” was used to

estimate the absolute population abundance of tissue-infiltrating

immunocytes from transcriptomic data (26). Then, we assessed the

distribution of SLE and VTE subtypes in immunocytes infiltration data

of MCPcounter and CIBERSORT. Finally, we compared the GSVA

score between different subtypes using the limma package and

displayed the remarkably different pathways by heatmaps. Fifty

hallmark gene sets were curated from the MSigDB as the reference set.
Statistical analysis

R software 3.6.5 was performed for statistical analyses and

visualization. For differences of gene expression levels or

immunocyte fractions between different clinical groups were

analyzed by a two-sided Wilcoxon test. Correlation analysis was
frontiersin.org
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conducted using the Spearman test. The p-value was adjusted by the

FDR method for multiple hypothesis testing. Dichotomous

variables were compared using the chi-square test.
Results

Identification of CGs in VTE and
SLE cohorts

In the SLE dataset GSE61635, a total of 3321 DEGs, consisting

of 2492 upregulated DEGs and 829 downregulated DEGs, were

identified (Figure 1A). In the VTE dataset GSE19151, a total of 768

DEGs, consisting of 421 upregulated DEGs and 347 downregulated
Frontiers in Immunology 04
DEGs, were identified (Figure 1B). As the Venn diagram showed in

Figure 1C, there were 171 overlapping CGs between SLE and VTE

cohorts. PCA analysis of the expression matrix suggested that

samples in the disease and control groups were clearly distributed

on both sides (Figures 1D, S1). The heatmaps show the expression

pattern of CGs in VTE and SLE cohorts (Figures 1E, F).
Enrichment analysis of CGs

GO and KEGG enrichment analyses were conducted to

investigate the biological function of CGs. The results indicated

that CGs were mainly enriched in immune and inflammatory

pathways, including the B/T cell receptor signaling pathway,
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Differential expression gene analysis. (A, B) Volcano plots showed differentially expressed genes (DEGs) in GSE19151 and GSE61635. (C) Venn plots of
the crosstalk genes (CGs) between GSE19151 and GSE61635. (D) The distribution characteristics of samples based on PCA results in GSE19151. (E, F)
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Interleukin-2 production, T cell differentiation, T cell activation and

chemokine signaling pathway (Figures 2A, B). Besides, the results of

GSVA of VTE cohorts showed that immunity and inflammation

pathways, such as regulation of adaptive immune response,

activation of the immune response, chemokine production, and

natural killer cell-mediated immunity, were mainly enriched in the

normal group compared with the VTE group (Figure 2C). The

results of GSVA of SLE cohorts suggested that immunity pathways,

including positive regulation of B cell activation, Activation of

innate immune response, Mast cell activation, and response to

chemokine, were mostly enriched in the SLE group compared with

the normal group (Figure 2D). The immune response patterns of

the two diseases seem to be different. The GSEA was also applied to

evaluate the signaling pathways involved in the CGs. The results

demonstrated that the CGs were negatively linked to the immune

pathways (TNF signaling pathway, B cell receptor signaling
Frontiers in Immunology 05
pathway, and Th1/Th2/Th17 cell differentiation) in VTE

(Figure 2E) and were positively linked to the immune responses

(TNF signaling pathway, IL-17 signaling pathway, and NOD-like

receptor signaling pathway) in SLE (Figure 2F). These results

illustrated that CGs were involved in the regulation of immune

function in the SLE and VTE.
Identification of optimal shared
diagnostic CGs

In GSE61635, the lasso regression algorithm identified eight

diagnostic CGs under the most appropriate l=0.14 (Figure 3A). In

GSE19151, the lasso regression algorithm identified seven

diagnostic CGs under the most appropriate l=0.061 (Figure 3B).

Three overlapping CGs (HSP90AB1, FPR2, and RSAD2) were
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screened to be the optimal shared diagnostic CGs for SLE and VTE

(Figure 3C). Figures 3D-G show the differential gene expression

patterns of the three candidate biomarkers in SLE (GSE61635 and

GSE50772) and VTE datasets (GSE19151 and GSE48000).

Compared with the control group, FPR2 and RSAD2 were

upregulated and HSP90AB1 was downregulated in the SLE group.

Meanwhile, FPR2 and HSP90AB1 were downregulated and RSAD2
Frontiers in Immunology 06
was upregulated in the VTE group. We then used ROC curves to

validate the diagnostic efficacy of HSP90AB1, FPR2, and RSAD2 in

the SLE dataset and the VTE dataset, and all showed potent

performance of disease identification (Figure 3H). Univariate

logistic analysis of the three candidate biomarkers also showed

they can accurately distinguish the patients and healthy

individuals (Figure 3I).
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Construction and validation of SLE and VTE
risk scores

The correlation among three variables in GSE61635 and

GSE19151 was illustrated in Figures 4A, S2. The correlation

coefficient between the HSP90AB1 and FPR2 was 0.75 in

GSE61635. We consider the high possibility of multicollinearity

between these two variables. So the FPR2 was removed and

HSP90AB1 and RSAD2 were further incorporated into the

multivariate logistic regression model to build predictive scores

(Figure 4B). The results of regression indicated that HSP90AB1 was

an independent protective factor and RSAD2 was an independent

risk factor both in SLE and VTE. By weighting the normalized

expression level of HSP90AB1 and RSAD2 to the regression

coefficients of the multivariate logistic regression analysis, we

established an SLE risk score model (SLE risk score = normalized

expression level of RSAD2 * 1.469 - normalized expression level of

HSP90AB1 * 4.389) and VTE risk score model (VTE risk score =

normalized expression level of RSAD2 * 0.413 - normalized
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expression level of HSP90AB1 * 5.184). Both in the SLE and VTE

cohorts, the bias-corrected lines in the calibration plot were close to

the ideal curve, which indicated good consistency of predictive

models (Figure 4C). The C-index of the SLE and VTE risk models

exceeded that of the single single-factor risk models, suggesting that

our risk scores had favorable efficacy for forecasting the diseases

(Figure 4D). Figure 4E shows the predictive potential of the two risk

scores using ROC curves. The area under the ROC curve (AUC) of

the SLE risk score was 0.98 on the GSE61635 and the VTE risk score

was 0.95 on the GSE19151. Two nomograms respectively based on

SLE and VTE risk scores were constructed to provide clinicians with

a quantitative approach to predicting the risk of illness (Figures 4F,

G). In addition, the results of external validation analysis also

demonstrated the two risk scores achieved excellent predictive

performance. The accuracy, precision, recall rate, and f-measure

of the two risk scores all exceeded 0.75 in GSE50772 and GSE48000

(Figures 5A, B). The calibration curves (Figures 5C, D) and ROC

curves (Figures 5E, F) based on the external data verified their

dependable performance to predict disease. The ROC curves of SLE
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and VTE combined datasets suggested that the two risk scores had

excellent performance (Figure S3).
The PPI network of hub CGs

To identify the potential interaction of CGs, we used Cytoscape

software to build a PPI network according to the STRING database,

integrating 28 nodes and 64 edges (Figure 6A). Next, hub genes

were extracted from CGs using four different topological analysis

methods (MCC, MNC, EPC, and degree). The results of the four

algorithms all point to the five hub CGs: MMP9, FOS, IGF1R,

PIK3R1, and CXCL8 (Figure 6B). Compared with the

corresponding control group, these five hub CGs were all

significantly up/down-regulated in the external (GSE19151 and

GSE61635) and internal datasets (GSE48000 and GSE50772)

(Figures 6C–F).
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Comparison of the immune
microenvironment in VTE and SLE cohorts

To further explore the immune landscapes in VTE and SLE

cohorts, the percentage of the 22 kinds of immune cells in each

sample was calculated using the CIBERSORT algorithm. In the

GSE61635, the most of immune cells, such as neutrophils, CD8 T

cells, naive CD4 T, Monocytes, activating CD4 T memory, resting

NK cells, naive B cells, and follicular helper-like T cells, significantly

infiltrated in the SLE group rather than normal group (Figure 7A).

In the GSE19151, the majority of immune cells, such as monocytes,

regulatory T cells, activated memory CD4 T cells, CD8 T cells, naive

CD4 T cells, naive B cells, resting NK cells, and macrophages,

significantly infiltrated in the normal group rather than VTE group

(Figure 7B). These results suggested that SLE patients exhibit a state

of immune activation and VTE patients had a state of

immunosuppression. Five hub CGs had a significant correlation
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with multiple immune cell infiltration levels both in the SLE and

VTE cohorts (Figures 7C, D).
Association between infiltrating
immunocytes and CGs subtypes

For preliminarily studying the correlation of CGs with immune

infiltration in SLE and VTE, we identified CGs subtypes in SLE and

VTE respectively by performing consensus clustering analysis. CGs

subtypes of SLE divided the SLE patients of GSE61635 into C1 and

C2 (Figures 8A-C). CGs subtypes of VTE divided the VTE patients of

GSE19151 into C1 and C2 (Figures 8D-F). To investigate the
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diversities of immune characteristics between the different CGs

subtypes of SLE and VTE from the cell level, the eight infiltrating

immunocyte scores from MCPcounter and 27 infiltrating

immunocyte percentages from CIBERSORT were compared

between C1 and C2 clusters. The results suggested whether it’s the

CGs subtypes of SLE or CGs subtypes of VTE, the C1 subtype

presented higher infiltration levels of most immune cell populations

than the C2 subtype. The C1 of SLE subtypes exhibited immune

infiltration of the NK cells, T cells and CD8 T cells (Figures 9A, B).

The C1 of VTE subtypes showed immune infiltration of the T cells,

CD8 T cells, neutrophils and NK cells (Figures 9C, D). The GSVA

algorithm was applied to calculate the enrichment score and the

limma package was employed to identify the remarkably different
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pathways in different subtypes. The C1 of SLE subtype had higher

immune activation (activation of immune response, T and B cell

activation involved in immune response, myeloid leukocyte mediated

immunity, etc.) than the C2 subtype (Figure 9E). The C1 of VTE

subtype also had higher immune activation (B cell mediated

immunity, somatic diversification of immunoglobulins, regulation

of lymphocyte mediated immunity, positive regulation of leukocyte

mediated immunity, B cell activation involved in immune response,

etc.) than the C2 subtype (Figure 9F). Taken together, consensus

clusters further demonstrated the potential interconnection between

the immune infiltration landscape and CGs. The C1 cluster can be

seen as an immune subtype and C2 cluster as a non-immune subtype

both in SLE and VTE.
Discussion

Venous thromboembolism (VTE) is a common disease in

clinical with high mortality and misdiagnosis rate, comprising of

pulmonary embolism (PTE) and deep venous thrombosis (DVT).

Systemic lupus erythematosus (SLE) is a diffuse connective tissue

disease mediated by autoantibodies and involving multiple systems

and organs. A dysregulated immune response is recognized as a

central contributor to SLE, including innate immunity and adaptive

immunity (27). It has been reported that the risk of VTE in SLE

patients increased significantly, and the incidence of PE and DVT in
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SLE patients were 12.8-fold and 19.7-fold higher respectively than

the control group (28, 29). Previous studies have found the SLE

disease activity index (SLEDAI) was significantly higher in SLE

patients with VTE, and these patients accompanied elevated

neutrophils, sensitivity C reactiveprotein (hsCRP), interleukin-6

(IL-6) and decreased complement [27]. So, there seems to be an

intricate link between these two diseases. In a larger context, the

coagulation process represented by VTE is closely linked to the

immune response represented by SLE. In the past, Virchow’s triad

of factors predisposing to thrombosis, including abnormal stasis of

blood, endothelial damage, hypercoagulability, and vessel wall

damage, were considered the foundation of the pathophysiology

of venous thrombosis by academia (30). Nonetheless, inflammatory

molecules and immune cells are now considered to play a critical

role in the pathogenesis of thrombosis. Foley et al. recently reported

the molecular interactions between inflammation and coagulation

(31). Therefore, whether based on clinical practice or molecular

mechanism research, it’s necessary to explore the evidence and

significance of the potential relevance between SLE and VTE. Our

research integrated the transcriptomes from the public database for

the first time to reveal potential crosstalk genes between SLE and

VTE and further investigated their clinical value and latent

association with immune cells.

In our study, SLE and VTE gene expression matrices

(GSE19151 and GSE61635) were used to identify DEGs by the

‘limma’ R package. A total of 171 crosstalk genes (CGs) were
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screened out by the combination of DEGs in the SLE and VTE

cohorts. The results of GO and KEGG enrichment analyses present

CGs mainly involved in the immune regulation and inflammatory

response. Then, five hub CGs (MMP9, FOS, IGF1R, PIK3R1 and

CXCL8) were identified from the PPI network of CGs. MMPs are

extracellular matrix (ECM)-degrading enzymes that can involve in

the inflammatory response and immune response (32). Some

studies have shown that MMP-9 plays an important role in the

pathogenesis of SLE by activating the inflammatory response (32,

33). Additionally, MMP-9 can degrade components of the vascular

basement membrane that help inflammatory cells invade the

vascular wall and induce inflammation associated with the

pathogenesis of SLE, thus increasing endothelial cell permeability

(34, 35). IGF1 is a member of the insulin-like growth factor family

involved in mediating growth and development (36). Previous

studies have shown that IGF1 was involved in immune and

autoimmune diseases, including Graves’ disease and RA, and

plays an anti-inflammatory role in inflammatory responses (37–

39). IGF1 also exerts critical effects in endothelial-protective, anti-
Frontiers in Immunology 11
platelet and anti-thrombotic activities in cardiovascular disease

(40). The FOS gene family consists of 4 members: FOS, FOSB,

FOSL1, and FOSL2. They are found up-regulated in response to

various inflammatory processes (41). Prior research suggested FOS

is associated with lower indices of atherothrombotic risk in patients

with cardiovascular diseases (42). Hae et al. found FOS family genes

were associated with immunoglobulin A nephropathy (IgAN) and

the clinical phenotypes of IgAN patients (43). The protein encoded

by CXCL8 is a major mediator of the inflammatory response.

CXCL8 can exert a substantial proinflammatory effect in

peripheral blood mononuclear cells from SLE patients under the

activation of IL-36 (44). We verified the abnormal expression of five

hub CGs in different cohorts and discovered the significant

correlation of infiltrating immunocytes with them according to

the immune infiltration analysis. These findings are generally

consistent with above-mentioned research results. In order to

further study the relationship between CGs and the immune

microenvironment in SLE and VTE, we respectively constructed

the two subtypes for SLE and VTE in accordance with expression
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Consensus clustering. (A) Consensus CDF when k = 2-5 and Relative alterations in the area under CDF curve based on GSE61635. (B) Consensus
matrix heatmap of SLE cohorts when k = 2. (C) The heatmaps of CGs expression between C1 and C2 clusters of SLE subtypes. (D) Consensus CDF
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profiling of CGs. Both in SLE and VTE cohorts, the C1 presented

higher immune cell infiltrations and stronger immune activation

than the C2 subtype. Therefore, these classifications can reflect the

immune landscape of SLE and VTE patients, which implied that the

CGs were the important participants in the immunopathology of

SLE and VTE.

Besides, we found the difference of the immune pattern between

SLE and VTE according to the CIBERSORT results. Compared to

the control group, multiple types of immune cells, such as

neutrophils, B cells and T cells, infiltrate more in SLE samples

and less in VTE samples. The results of GSVA showed the multiple
Frontiers in Immunology 12
immune activation-related pathways enriched in the SLE group,

and the VTE group displayed the status of immunosuppression.

Previous studies have shown that SLE can cause the abnormal

activation of multiple immunocytes. Activated neutrophils can

produce a great number of cytokines and chemokines and lead to

immune dysfunction in SLE (45). It is reported that autoantibodies

in vasculitis and SLE are components of neutrophils extracellular

traps (NETs), a fibrous network released from the membrane of

neutrophils that are activated (46). Choi et al. found that increased

follicular helper-like T cells (Tfh) were positively associated with the

disease activity and serum autoantibody titers in vivo experiments
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FIGURE 9

Correlation of two CGs subtypes and immune cell infiltration. (A, B) The immune cell distribution in C1 and C2 of SLE CGs subtypes based on
CIBERSORT and MCPcounter. (C, B) The immune cell distribution in C1 and C2 of VTE CGs subtypes based on CIBERSORT and MCPcounter.
(E, F) GSVA showed the pathways with significantly different distribution in C1 and C2 of SLE and VTE subtypes. Statistical significance at the level of
ns ≥ 0.05, * <0.05, ** <0.01, *** <0.001 and **** <0.0001.
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(47). The diffuse B-cell over-reactivity exhibited in SLE and plenty

of autoantibodies leading to the occurrence of lupus were produced

by self-reactive B cells (48). On the other hand, the antigen

recognition and killing function of T cells were markedly

compromised, and the functions of NK cells were significantly

decreased in VTE patients (49). The decreased CD3 and CD8 levels

and the increased CD4/CD8 ratio were discovered in the s acute

pulmonary embolism and chronic thromboembolic pulmonary

hypertension (CTEPH) patients, meaning the dysfunction of CD3

+ CD8+ T Cell immunity (50).

In order to evaluate the clinical diagnostic value of CGs, lasso

regression was applied to identify the best diagnostic CGs. Three

biomarkers (HSP90AB1, FPR2, and RSAD2) exhibited good

diagnostic capability and were validated through ROC analysis

and simple factor logistic regression analysis. As an important

crosstalk gene between SLE and VTE, HSP90AB1 encodes a

member of the heat shock protein 90 (HSP90) family which is

involved in signal transduction, protein folding, degradation and

morphological evolution (51). HSP90 is an important modulator of

multiple innate and adaptive inflammatory processes (52). High

levels of HSP90 were discovered in the serum of SLE patients and

the deposition of HSP90 in the glomerulus was found in some SLE

patients (53). Besides that, the copy number variations (CNVs) of

HSP90AB1 are associated with a higher risk of SLE (54). FPR2 is a

member of formyl peptide-receptors (FPRs) that highly express in

granulocytes, monocytes and macrophages (55). Current

knowledge indicates that some genetic variants will alter FPR2

mRNA and protein expression levels and causes susceptibility to

SLE (54). FPR2 also takes part in the regulation of the platelet

function to promote the remission of Inflammation (56). RSAD2

(Radical S-Adenosyl Methionine Domain Containing 2) plays a role

in innate immune signaling and antiviral immune response (57, 58).

Some research has detected the association between RSAD2 and

multiple autoimmune diseases, such as RA, SLE, and AS (59). Sezin

et al. considered RSAD2 as a hub gene in the pathogenesis of SLE

(60). After excluding the interference variable of multicollinearity,

we constructed the VTE and SLE risk scores based on the

HSP90AB1 and RSAD2 by multivariate logistic regression. Our

study conducted a systematic evaluation of the performance of the

two risk models, and the predictive power of the risk scores was

validated in other independent cohorts using the same sequencing

technique as the training cohort. The AUCs of the risk model used

to predict SLE were 0.95 and 0.94 respectively in internal and

external datasets. And the AUCs of the risk model used to predict

VTE were 0.95 and 0.68 in the internal and external datasets. Thus,

both SLE and VTE risk scores have good predictive properties for

the diseases.

The present study had several limitations. Our research is based

on several public cohorts from GEO datasets and detailed clinical

data for most samples were missing. Of course, the data providers

indicated that the baseline information of the patients, such as age,

gender, and weight, was similar between the disease and the

normal groups. Secondly, the crosstalk genes we identified have

not been experimentally validated by further functional validation

and immune correlation analysis in the current study. In addition,

although we constructed risk scores and identified different disease
Frontiers in Immunology 13
subtypes based on CGs, further validation by prospective studies

with a large sample number is needed before clinical application.
Conclusion

We identified the three crosstalk genes (FPR2, RSAD2 and

HSP90AB1) as promising diagnostic biomarkers and constructed

the SLE and VTE risk models based on them respectively. Immune

infiltration analysis demonstrated the intimate relevancy of CGs

and immunocytes. Immune responses may play an important role

in the association between SLE and VTE. Moreover, we proposed

two new molecular classifications for SLE and VTE patients based

on CGs, comprising immune and non-immune subtypes.
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